PHASIS: A computational suite for de novo discovery and characterization of phased, siRNA-generating loci and their miRNA triggers

Atul Kakrana\(^1,2\), Pingchuan Li\(^2,3\), Parth Patel\(^1,2\), Reza Hammond\(^1,2\), Deepti Anand\(^4\), Sandra M. Mathion\(^5\), Blake C. Meyers\(^5,6^*\)

\(^1\)Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19714, USA

\(^2\)Delaware Biotechnology Institute, University of Delaware Newark, DE 19714, USA

\(^3\)Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Canada

\(^4\)Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA

\(^5\)Donald Danforth Plant Science Center, St. Louis, MO 63132, USA

\(^6\)University of Missouri – Columbia, Division of Plant Sciences, 52 Agriculture Lab, Columbia, MO 65211, USA.

*To whom correspondence should be addressed; Email: bmeyers@danforthcenter.org

Keywords: phased siRNAs, phasiRNA, tasiRNA, piRNA, small RNA.
Abstract

Phased, secondary siRNAs (phasiRNAs) are found widely in plants, from protein-coding transcripts and long, non-coding RNAs; animal piRNAs are also phased. Integrated methods characterizing “PHAS” loci are unavailable, and existing methods are quite limited and inefficient in handling large volumes of sequencing data. The PHASIS suite described here provides complete tools for the computational characterization of PHAS loci, with an emphasis on plants, in which these loci are numerous. Benchmarked comparisons demonstrate that PHASIS is sensitive, highly scalable and fast. Importantly, PHASIS eliminates the requirement of a sequenced genome and PARE/degradome data for discovery of phasiRNAs and their miRNA triggers.

Background

Phased siRNAs (phasiRNAs) are a major subclass of secondary siRNAs, found extensively in plants [1]. The defining characteristic of phasiRNAs is the DCL-catalyzed processing of double-stranded RNA (dsRNA) precursors, starting from a precisely delimited 5’ terminus and generating regularly-spaced 21- or 24-nt populations of siRNAs [2]. PhasiRNAs can be further subdivided into three main categories based on their precursor mRNAs and spatiotemporal patterns of accumulation: i) The first phasiRNAs identified, so-called trans-acting siRNAs (tasiRNAs) generated from a small set of long, non-coding mRNAs (IncRNAs) referred to as TAS genes [3–5]; ii) phasiRNAs from protein-coding transcripts, such as NB-LRRs or PPRs [6]; and iii) two classes, 21-nt premeiotic or 24-nt meiotic phasiRNAs, highly enriched in reproductive tissues and also produced from IncRNAs, reported in grasses, but with no as-yet reported targets [2,7]. Thus, the umbrella name of “phasiRNAs” refers simply to their biogenesis and not their function (unlike the subset of tasiRNAs) because many phasiRNAs lack validated targets, either in cis or trans [6,8].

The biogenesis of phasiRNAs in plants is dependent on a triggering mechanism that sets the phase of the resulting secondary siRNAs, generated from a specific nucleotide in the mRNA precursor. To date, the only described type of trigger is a miRNA, and a breakthrough in our
understanding of plant miRNA function came with the observation that all or nearly all 22-nt miRNAs trigger phased siRNA biogenesis from their targets [9,10]. These miRNA triggers function via the ARGONAUTE (AGO) proteins into which they are loaded, and since phased siRNA biogenesis requires both SGS3 and RDR6 [3,4], there may be interactions between these proteins, ultimately recruiting DCL4 or DCL5. SGS3 and RDR6 proteins function in the cytoplasm, forming siRNA bodies [11]. Recent work has identified membrane-bound polysomes in the rough ER as the site where miRNA triggers of phased siRNAs accumulate, leading to phased siRNA biogenesis [12]. miRNA triggers are thus an important component in the analysis of plant phased siRNAs, and the identification of specific triggers with specific PHAS targets is an integral part of phased siRNA analysis.

Since the discovery of phased siRNAs in 2005, TAS genes have been characterized in detail, especially the eight loci in Arabidopsis but these represent only a small fraction of the PHAS repertoire found in many plant genomes. In other eudicot genomes, there are hundreds of protein-coding genes that are targeted by diverse miRNAs, many of which are lineage-specific [8,13–15]. Grass genomes contain even more PHAS loci. For example, loci yielding reproductive phased siRNAs number in the hundreds to thousands in maize [7] and rice [16], and have yet to be characterized broadly in monocots or other lineages outside of the grasses. These include the premeiotic PHAS loci that are targeted by miR2118 family members, triggering production of 21-nt phased siRNAs accumulating in early anther development, and the 24-PHAS loci that are targeted by miR2275 family members, triggering production of 24-nt phased siRNAs, accumulating in anthers during meiosis [7]. Analysis of the spruce genome, a gymnosperm that speciated ~325 million years before the evolution of monocots and eudicots, identified over 2000 PHAS loci mostly from protein-coding genes, including over 750 NB-LRRs [17]. Thus, plant PHAS loci are widely prevalent and highly variable from genome to genome both in the total number and in terms of the types of loci that generate them. Characterization of PHAS loci from each sequenced plant genome will provide insights into this unusual type of post-transcriptional control, its evolution, and diversification.
Tools for the de novo identification of PHAS genes (or loci) to date have required an assembled genome for their discovery and additional experimental data such as PARE [18], degradome [19] or GMUCT [20] libraries to identify their miRNA triggers. Integrated tools for discovery and in-depth characterization of PHAS genes have not yet been developed, and the existing options are both limited in number and function. These algorithmic limitations and bioinformatic gaps along with the increasing depth and volume of sequencing data necessitates scalable, fast and advanced methods to study this relatively new class of secondary siRNAs for which parallels exist between plants and animals [2,13,21,22]. Motivated by this need for software, the prospect of discovering novel phasiRNA modules, the emerging importance of phasiRNAs, and the explosion in the number of plant species that are being investigated for small RNAs (sRNAs), we developed a new computational suite that we call "PHASIS". The name "PHASIS" is from the ancient Greek city of Phasis, a destination for Jason and the Argonauts according to Greek mythology; we selected the name as it links the colloquialism “phasis” as short for phasiRNAs, with the Argonaut proteins that bind them. This set of tools facilitates the discovery, quantification, annotation, comparison of PHAS loci (and precursors) and identification of their miRNA triggers, from a few to hundreds of sRNA libraries in a single run. PHASIS not only addresses crucial bioinformatic gaps while providing an integrated and flexible workflow for the comprehensive study of PHAS loci, but it is also fast and sensitive.

Results
Assessment and benchmarking
We first sought to assess the sensitivity and specificity for PHASIS; ideally, this would be done with a gold-standard reference set of experimentally-validated PHAS loci in plants. While the definition of “gold standard” is as-yet unclear for PHAS loci, the recently-described maize loci are among the most exhaustively characterized [7], and thus we used these data below. We also compared PHASIS predictions and performance with PhaseTank [23]. Currently, two computational tools are capable of de novo discovery of PHAS loci – PhaseTank [23] and ShortStack [24]. PhaseTank is exclusively built for predicting PHAS loci in plants, while ShortStack aims to annotate and quantify diverse sRNA-associated genes (or clusters), and it’s...
typically deployed for characterizing miRNAs in plants and animals [24]. A direct comparison between PHASIS and ShortStack is not possible due to significant differences in their scope, utility and workflow (Table 1). So, for comparative benchmarking, we chose PhaseTank, mainly because of matching objectives and its published superiority over ShortStack in predicting PHAS loci [23]. Benchmarking was performed across five plant species – Arabidopsis thaliana (Arabidopsis), Brachypodium distachyon (Brachypodium), Oryza sativa (rice), Zea mays (maize) and Lilium maculatum (Lilium). These species were selected based on availability of high-quality nuclear genome assemblies or anther transcriptomes (in case of Lilium – generated for a different study but included here), and deep sRNA libraries from premeiotic and meiotic anther or from at least one of these two stages that should contain many reproductive phasiRNAs (Supplementary Table 1). Arabidopsis was included because it was originally used in PhaseTank benchmarking [23]. For PhaseTank, the reference genome, transcriptome and sRNA libraries were converted to the appropriate formats, and the time for file conversion process, although complex and lengthy, was not added in the PhaseTank runtimes. PHASIS and PhaseTank use inherently different scoring schemas; because of this difference, we used a conservative p-value (1e-05) for PHASIS and the recommended score (i.e. 15) for PhaseTank. All benchmarks were performed on a 28 core, 2.42 GHz machine with 512 GB of RAM, running CentOS 6.6.

PHAS prediction and runtime performance

We first compared PHAS loci and transcript predictions from PHASIS and PhaseTank. Since Arabidopsis lacks 24-PHAS loci (none have ever been published, nor have we found any), and the genome encodes just eight TAS genes, these were excluded from quantification of prediction and speed comparisons. PHASIS demonstrated an edge over PhaseTank in PHAS predictions: in genomic analyses, it predicted up to 2.5 times more PHAS loci, ranging from 73 24-PHAS (145% gain) to 380 21-PHAS (24% gain) loci in Brachypodium and rice respectively (Table 2). The biggest gain was observed in an analysis of the Lilium transcriptome, in which PHASIS predicted ~10 times (n=408) more 21-PHAS and 18 times (n=9065) more 24-PHAS precursor transcripts compared to PhaseTank (Figure 2). The specific data format requirements of PhaseTank made it difficult to accurately determine the set of common PHAS predictions.
(the ‘common PHAS pool’, hereafter) for transcriptome level analysis, however, by matching the sequences we determined that PHASIS captured at least 66% of 21-PHAS and 99% of 24-PHAS predictions from PhaseTank. For genomic analyses, PHASIS captured >80% of PhaseTank predictions, except in rice and Arabidopsis in which PhaseTank predicted additional 24-PHAS loci (Table 2).

The additional 24-PHAS loci predicted by PhaseTank in rice and Arabidopsis all had significantly lower quality scores (from PhaseTank) compared to the common PHAS pool, as did the PhaseTank-exclusive 21- and 24-PHAS predictions from other species. The average quality scores computed for each species were 1.7 to 7.8 times lower compared to the common PHAS pool (p-value < 0.001, t-test) (Supplementary Table 2); thus, the predictions exclusive to PhaseTank are likely unphased and a misinterpretation of loci yielding profuse heterochromatic siRNAs (hc-siRNAs). This may explain the 24-PHAS predictions in Arabidopsis by PhaseTank (Figure 2b and Table 2), as 24-nt phasedRNAs have not been reported in Arabidopsis despite exhaustive analyses [1]. Nonetheless, considering that these PhaseTank predictions could represent weak PHAS loci, we attempted to capture them by running PHASIS at lower p-value cutoff (1e-03) but still failed to detect >96% of them. Manual investigation of a portion of these PHAS loci using our custom sRNA browser, which uses a slightly different PHAS scoring schema [25], revealed that these are indeed either unphased or show typical characteristics of hc-siRNA loci such as similarity to transposons, and we concluded that these are false positives predicted by PhaseTank (Supplementary Figure 1A). However, we could detect 70% (n=67) of the total 24-PHAS PhaseTank predictions in rice at the lower p-value cutoff (1e-03) of PHASIS, and a majority of these showed weak phasing patterns (Supplementary Figure 1B), suggesting that PHASIS missed these at the selected cutoff. However, the count of 24-PHAS loci predicted in rice by both tools in these libraries from a recent study [16], was lower than earlier estimates [2], indicating that the libraries likely missed meiotic peak of accumulation. These contrasting observations – Arabidopsis, in which PHASIS correctly excluded 24-PHAS predictions even at relaxed cutoff, versus rice, in which it correctly captured 70% of weakly phased 24-PHAS loci – highlights differences in scoring in the two tools, with the default PHASIS p-value cutoff (1e-05)
more stringent than that of PhaseTank (score=15). Using a lower p-value cutoff for PHASIS could further increase the gain in PHAS predictions over PhaseTank without adding much noise.

We manually investigated 21- and 24-PHAS predictions that are exclusive to PHASIS, using our public, custom genome browser (https://mpss.danforthcenter.org/). The majority of these displayed characteristics matching those of the canonical 21- and 24-PHAS loci reported in maize [7] (Supplementary Figure 2). Moreover, a major proportion of these PHASIS-exclusive predictions had PARE-validated miRNA triggers, matching to the earlier reports from maize, rice and Brachypodium [2,7,13].

Next, we compared prediction runtimes of PHASIS and PhaseTank from genome- and transcriptome-level experiments. To get the correct runtimes for both tools, we excluded the execution time for a common step performed by an external tool (Bowtie, version 1) that prepares the index for the reference genome or transcriptome. For genome-level experiments, PHASIS displayed a minimum speed gain of 3x in Arabidopsis and rice and a maximum speed gain of 7x in maize (Figure 3). In transcriptome-level experiments, both tools took almost equal time (Figure 3). However, PHASIS yielded 10x (n=408) to 17x (n=9065) more PHAS predictions for 21- and 24-PHAS loci, respectively (Table 2 and Supplementary Figure 3), compared to PhaseTank, which means that PHASIS processed a high number of PHAS transcripts in the same runtime. Moreover, the time and effort required to convert the reference genome as well as the sRNA libraries to meet PhaseTank input requirements were not included in these runtime comparisons. Lastly, it should be noted that PHASIS takes significantly less time for any subsequent analyses in these species because of its unique ability to systematically store ancillary data in the first run, check data integrity and compatibility with parameters for subsequent runs, and avoid redoing the slowest steps, such as reference preprocessing, index preparation, etc.

Comparison of PHASIS predictions with manually-curated data

We next wanted to address how well the predictions from PHASIS compare with a set of manually-curated PHAS loci. We and collaborators curated a set of 21- and 24-PHAS (n= 463 and 176 loci from precisely-staged, premeiotic and meiotic maize anthers [7]. This curated set
was prepared by first combining all libraries from the sampled premeiotic and meiotic stages into a single file, followed by genome wide scans to identify phasiRNA generating loci using a score-based approach [5] and finally curating each PHAS locus to exclude those that overlap with repeat-associated regions or display sRNA distribution atypical of hc-siRNA generating loci [7]. PHASIS processes each library separately mainly to a) detect phased patterns independently in at least one of the input sRNA libraries, b) minimize any noise that could be added by combining sRNAs from multiple stages, tissues or treatments, and c) infer the correct 5'-end of PHAS loci by collating data from different libraries. Therefore, unlike the original analysis, we did not combine the 32 libraries (see Supplementary Table 1) for predictions by PHASIS. Furthermore, to emulate ‘real world’ conditions in which PHASIS would be used by non-experts, we did not provide a confidence cutoff - i.e. PHASIS was run in the default mode. Of the manually-curated 463 21-PHAS and 176 24-PHAS loci, PHASIS captured 89.0% (n=411) and 85.79% (n=151) (Supplementary Table 5). The majority of those missed either lacked continuous phased positions or had a very low abundance across all sRNA libraries, and some had a single sRNA read accounting for the major proportion (>90%) of the abundance at the PHAS locus. The average abundance of siRNAs in the ‘missed’ 21- and 24-PHAS set was ~12- and 252-times lower compared to the common pool (p < 1.02e-09), supporting the observation that those missed by PHASIS were weakly phased loci; a portion of these could be captured with a relaxed cutoff. Nonetheless, these results demonstrate that PHASIS predictions are largely consistent with the manually-curated data, and for most studies, the use of PHASIS may ameliorate the need to manually curate PHAS locus predictions, an otherwise complex and cumbersome task especially when PHAS loci number in the hundreds to thousands, as reported in many plant genomes [2,7,8,13,14,17].

Trigger prediction and runtime performance

The identification of the miRNA triggers of PHAS loci is important for understanding their potential roles, classification and for discovery of secondary siRNA cascades. In addition, a set of PHAS loci or transcripts when combined with the trigger identity may serve as a gold-standard reference set for downstream experimental and bioinformatics studies. Given the

7
importance of trigger identification, we compared the trigger prediction performance of PHASIS in ‘validation’ mode with PhaseTank. The PHASIS ‘validation’ mode will identify triggers for PHAS loci or transcripts using experimental data such as PARE, degradome or GMUCT libraries (‘PARE’, henceforth) [18–20]. PhaseTank by default predicts triggers in ‘validation’ mode, i.e. experimental data is required. Since PHASIS predicted more PHAS loci compared to PhaseTank, the number of PHAS loci (and transcripts) with the predicted triggers by PHASIS was higher too.

So, for a fair comparison, we used only the common pool of PHAS loci to evaluate the trigger prediction performances. PHASIS displayed a gain of up to 76.0% in predicted triggers, except for 21-PHAS loci in Arabidopsis (Figure 2A and B), with a minimum accuracy of 96.0% for 24-PHAS maize loci and maximum accuracy of 99.5% in Brachypodium 21-PHAS loci (Supplementary Table 3). This accuracy was computed as the proportion of triggers (out of the total) that match to known triggers of phasiRNAs and tasiRNAs described in earlier studies [2,5,6,8,25–27]. These estimates of accuracy are likely conservative, given that there might be a few new and unknown triggers that we counted as false positives in our accuracy computations. We excluded rice 24-PHAS loci from our comparisons because both tools failed to report triggers for these loci, likely due to sRNA libraries that were not precisely staged relative to the accumulation of 24-nt phasiRNAs and thereby making it difficult to capture the 5’ and 3’ ends of PHAS loci – information crucial to the identification of correct triggers. Lilium 21- and 24-PHAS transcripts were also excluded from the comparisons because of a lack of PARE data from the corresponding anther stages, data required by PhaseTank to predict triggers. Likewise, Arabidopsis 24-PHAS couldn’t be included in our comparison as PhaseTank predicted loci (n=146) were false positives, and there were no overlapping loci with PHASIS.

We noticed a decline in number of predicted triggers by PHASIS for 21-PHAS loci in Arabidopsis, compared to those predicted by PhaseTank (Figure 2A). This decline in predicted triggers was traced to seven phased loci corresponding to the pentatricopeptide repeat (PPR) gene family, with phasiRNAs triggered by miR161. We found trigger sites predicted by PhaseTank for five of these loci, located 214 nt to 310 nt from the first or last phased cycle of the PHAS loci, towards their middle (Supplementary Table 4). Since phastrigs, the trigger discovery tool of PHASIS, is
built with the aim to eliminate the need for experimental data and because trigger sites are expected to overlap with 5’ or 3’ ends of the phased region, it uses a narrow search space at the 5’ and 3’ ends to search for triggers. Hence, these miR161 target sites were missed by PHASIS. In phastrigs, the search space to identify triggers is defined by the number of phased positions (PHAS-index) on either side of 5’ and 3’ ends of phased regions, and by default PHAS-index is set to ± 3 positions for both ends. The PHAS-index setting to expand or the narrow search space for triggers is user tunable and can be adjusted to capture such cases. Nonetheless, these 21-PHAS loci from Arabidopsis support our estimates that trigger identification by phastrigs is conservative, and relaxing the phastrigs search parameters could further increase the gain in predicted triggers compared to PhaseTank.

Identifying PHAS triggers without additional experimental data

We next evaluated the performance of PHASIS in trigger ‘prediction’ mode by comparing it with PhaseTank and PHASIS in the ‘validation’ mode. We define PHASIS ‘prediction’ mode as an analysis to predict triggers for PHAS loci or transcripts without any supporting experimental data such as PARE, degradome or GMUCT libraries. Lilium was excluded from the comparison of predicted triggers due to the lack of PARE data, which is compulsory for PhaseTank to predict triggers and required by PHASIS in ‘validation’ mode. Also, for reasons mentioned above, 24-PHAS loci from Arabidopsis and rice were excluded from the comparisons. PHASIS displayed a minimum gain of 40.3% and maximum gain of 178.3% over PhaseTank in predicting triggers for 21-PHAS and 24-PHAS loci from Brachypodium, respectively (Table 2 and Figure 2). The gain in the number of triggers ranged from a minimum of 35 for maize 24-PHAS loci to a maximum of 611 for rice 21-PHAS loci. In addition to the gain in trigger prediction, PHASIS also displayed significant accuracy in prediction mode, with a minimum accuracy of 89.9% in predicting triggers for 24-PHAS loci from maize and maximum accuracy of 99.9% in the case of Lilium 24-PHAS precursor transcripts, however, with an exception for Lilium 21-PHAS triggers. The accuracy of predicted triggers of Lilium 21-PHAS loci was significantly lower (43.9%) compared to the other species (Supplementary Table 2). For Lilium, we used miRNAs from well-characterized monocots like rice and maize because a complete set of miRNAs were not...
available due to the absence of a sequenced genome. Surprisingly, we found that for Lilium 21-
PHAS transcripts a majority of triggers corresponded to miR2275 instead of miR2118; this
observation was puzzling because miR2275 is known to trigger 24-nt phasiRNAs in the grasses
[2,7,13], and this was the basis for the low recorded accuracy in predicting Lilium 21-PHAS
triggers. We did not further investigate the miR2275-triggered 21-PHAS transcripts. We also
noticed that the proportion of 21- and 24-PHAS precursors for which triggers could be
identified in Lilium, 18.1% and 25.9% respectively (Table 2 and Figure 2), was substantially
lower compared to the overall average of 73.8% in other species for which genomic analysis
was performed. Plant PHAS precursor transcripts are typically cleaved by the miRNA trigger,
converted to dsRNA by an RNA-dependent RNA polymerase, and then successively diced by a
Dicer enzyme. Since no data on transcriptional rate, stability and half-life of phasiRNA
precursors are available, we speculated that a portion of the Lilium PHAS precursor transcripts
were shortened by processing from the 5′ end, removing the trigger target sites. Identifying
triggers from such “processed” precursor transcripts is not possible because the P1 site
corresponding to the first phasiRNA (at the 5′ terminus) could be missing from the transcript. In
addition, the presence of already-processed mRNAs will confound the de novo assembly of
precursor transcripts from short-reads.

To test whether the low yield of triggers by phastrigs resulted from our use of processed
precursor transcripts and not a technical shortcoming of PHASIS, we generated Single Molecule
Real Time (SMRT) PacBio sequencing data from Lilium anthers 4 mm to 6 mm in length. These
sizes represented premeiotic and meiotic stages of anther development (see supplementary
methods) and were selected based on the availability of the samples. Capturing PHAS
precursors is complex, not just because these are targets of miRNAs presumably rapidly
processed by a Dicer, but reproductive phasiRNAs are ephemeral in development and thus not
easily captured [7]. SMRT-seq produced 425,897 full-length transcripts for 176,373 unique
isoforms, which were pre-processed to generate 122,779 high quality (polished) transcripts.
This set had 5,131 unique proteins covered by more than 80% protein length, relative to the
Uniprot protein-sequence resource, thereby suggesting a reasonable assembly of the anther
transcriptome. **PHASIS** identified 87 21-PHAS and 175 24-PHAS precursor transcripts. This low yield of PHAS transcripts was expected, though not to such a degree, because of the combination of the following: a) low read counts for SMRT-seq compared to the deep RNA-seq data, b) the coverage-based error correction algorithm - ‘Quiver’ implemented in the IsoSeq protocol (SMRT Analysis software version 2.3, Pacific Biosciences) which filters out transcripts with insufficient coverage, i.e. those that cannot be confidently corrected, and c) the aforementioned processive cleavage of PHAS precursors by Dicer. *phastrigs* could identify triggers for only 21.8% (n=19) of 21-PHAS precursors, a slight increase compared to 18.1% in the RNA-seq assembly, and these triggers included miR2275, miR2118 and miR390. This low proportion of triggers detected for 21-PHAS could result from missing the precise stage at which 21-PHAS precursors accumulate in the Lilium samples. However, *phastrigs* could identify triggers for 54.2% of the 24-PHAS precursors, a significant increase over the 25.9% in the RNA-seq assembly, supporting our premise about the completeness of the PHAS precursor transcripts. The processed precursors were likely collapsed into the full-length or the longest transcript in SMRT-seq assembly, thereby enriching the proportion of uncleaved precursor transcripts. Hence, it should be noted that neither the precursors from neither RNA-seq nor SMRT-seq may accurately represent the true total count of PHAS loci in Lilium.

Lastly, we compared runtimes for both tools for miRNA trigger prediction of PHAS loci and transcripts. **PHASIS** showed a minimum speed gain of 3.3x and a maximum speed gain of 12.6x over **PhaseTank** in ‘validation’ mode (Figure 3). In ‘prediction’ mode, **PHASIS** was at least 5.0x and at most 31.2x faster compared to its own ‘validation’ mode without any significant loss in accuracy (Supplementary Table 3). **PhaseTank** requires PARE data to predict triggers, and lacks a function equivalent to **PHASIS** ‘prediction’ mode, but since **PHASIS**, even without the additional experimental data (like PARE) displays >89.9% accuracy in trigger prediction, we decided to compare runtimes for both. **PHASIS** in ‘prediction’ mode displayed a minimum speed gain of 33.3x and a maximum gain of 104.3x for Arabidopsis 21-PHAS loci (Figure 3). The trigger predictions for 24-PHAS loci from Arabidopsis and rice, which displayed even higher speed gains, were excluded from the runtime comparisons due to the reasons described above. This
gain in PHAS trigger identification demonstrates the capacity of PHASIS to predict triggers without experimental data. This functionality will save time and the cost of preparing PARE libraries; it will also reduce the amount of sample required for phasiRNA analysis. Protocols for preparing PARE libraries require comparatively more input RNA relative to RNA-seq or sRNA-seq [28].

Conclusions
Loci generating 21- and 24-nt phasiRNAs are widely prevalent across land plants [2,5,8,14,16,17,29], varying in numbers per genome from tens to thousands, displaying diverse spatial and temporal expression patterns, and participating in an array of different functions [5,7,8,29,30]. Recently, piRNAs in Drosophila too were reported to be phased, generating ‘trailer’ piRNAs in 27-nt intervals after cleavage by secondary siRNA and Zucchini-dependent processing of cleaved transcript [21,22]. Given the wide prevalence of phasiRNAs and the rate of genome sequencing, it is likely that they will be better characterized and studied in the coming years. The existing tools for computational characterization of PHAS loci or transcript are limited both in number and functionality.

The PHASIS suite provides an integrated solution for the large-scale survey of tens to hundreds of sRNA libraries for the following applications: a) de novo discovery of PHAS loci and precursor transcripts, b) a summarization of PHAS loci from specific groups of sRNA libraries, c) a comparison of PHAS summaries between groups corresponding to samples from different stages, tissues and treatments, d) quantification and annotations of PHAS loci, and e) discovery of their miRNA triggers. PHASIS generates easily parsed output files for downstream bioinformatics analysis, formatted result files for immediate consumption and organized ancillary data to facilitate optimizations like a re-summarization to exclude or include libraries.

More complete characterization of phasiRNAs in evolutionarily diverse plant genomes will advance our understanding of phasiRNA function and the adaptation of the pathway, and it may yet discover new classes of PHAS genes. PHASIS will thus facilitate the discovery of
phasiRNAs and their precursors, and the identification of their triggers by eliminating the requirement of a genome assembly and experimental PARE/degradome data. PHASIS offers flexibility to users to tailor analyses for their own goals and it integrates an array for functions in one package.

Methods

PHASIS comprises three components that together perform de novo discovery, annotation, quantification, comparison and trigger identification for PHAS loci or precursor transcripts. We chose a modular approach over the single ‘one-command’ style for the following reasons: a) to maximize the flexibility for specific data or study requirements; b) to integrate multiple, connected analyses; and, c) to reduce overall runtime by maximizing phase- and step-specific parallelization. A description of these tools – phasdetect, phasmerge, phastrigs – in order of their utility or phases of study is provided below (see also Figure 1). PHASIS leverages the Python (v3) process-based “threading” interface to achieve efficient scalability and significantly reduce runtimes through parallel computing.

phasdetect performs de novo prediction of PHAS loci or precursor transcripts using user-supplied sRNA libraries along with a reference genome or transcriptome. It can efficiently process tens to hundreds of sRNA libraries in parallel, reducing runtimes. phasdetect operates via three main steps: a) first, sRNA libraries are normalized and mapped to the reference; b) second, mapped sRNA reads are scanned to identify regions rich for specific size classes, such as those generated by Dicer activity (typically 21, 22, or 24 nt in plants); and, c) finally these regions are stitched into clusters and the phasing of the small RNAs is computed as a p-value.

We adopted a standard approach to compute p-values [9]. Parameters controlling these steps can be modified by users via the setting file “phasis.set”, including values for phase, mindepth and clustbuffer; these refer to the phasing periodicity, minimum sRNA abundance to be included for p-value computation, and the minimum distance separating two clusters. These parameters are explained in detail on the PHASIS wiki page (https://github.com/atulkakrana/PHASIS/wiki/). The output for phasdetect includes library-
specific list of PHAS loci (or transcripts) at several different confidence levels plus ancillary data, used to reduce runtime for subsequent analyses. For example, in case of a reanalysis after adding new libraries, phasdetect checks for any changes in parameters from the earlier analysis, assesses the integrity and compatibility of the ancillary data for, and reuses existing data to avoid repetition. This ancillary data also enables an array for downstream analyses and analysis-specific optimizations directly through phasdetect.

phasmerge generates a summary, matches PHAS loci to annotations and performs a comparison between the PHAS summaries using the library-specific PHAS lists and ancillary data generated by phasdetect. These operations are selected by using the \texttt{-mode} option with the \texttt{merge} (default) or \texttt{compare} values. The \texttt{merge} mode prepares a PHAS summary for the libraries of interest, or for libraries that belong to different groups based on sample stages, tissues or treatments. The analysis can be tailored to meet the study requirements. For example, to maximize discovery, a user might set a lower confidence level (\textit{p-value}) for summarization and consider all loci with a trigger predicted without the PARE data (identified through phastrigs) for downstream analyses. In contrast, a user motivated to maximize the quality might identify PHAS loci with the highest confidence level, followed by pruning of results with stringent quality parameters (described on the \textit{phasmerge} wiki), and use PHAS loci that have PARE-supported triggers. PHAS summaries from different groups of libraries can be compared using \texttt{compare} mode. This is particularly useful to identify intersecting and exclusive PHAS loci between different groups of stages, tissues or treatments. In \texttt{merge} mode, if an additional annotation file is provided, then merged PHAS loci are matched to genome annotations so as to identify coding PHAS loci or other available annotations. This function also supports quick discovery of precursor transcripts for summarized PHAS loci when provided with a GTF file generated from mapping the transcriptome assembly to genome. Furthermore, phasmerge attempts to determine the correct 5’ terminus of PHAS loci by optimizing for the best 5’ or 3’ coordinates based on the user’s sRNA data – a crucial functionality for determination of the correct miRNA trigger. phasmerge benefits from the modular PHASIS
workflow, allowing users to optimize their results for the study which may vary in purpose, and
making phasmerge independent from other tools.

phasmerge workflow has three mandatory and two optional steps: a) via merge mode,
phasmerge first generates a unique list of PHAS loci (or transcripts) for each user-specified
library, by selecting predictions with the highest available confidence score (lowest p-value)
that pass a user-supplied p-value cutoff, after comparing predictions from all available
confidence levels; b) phasmerge clusters the “best” candidate loci from specified libraries
specific by the user, based on the degree of overlap in phased positions (or ‘cycles’) to select a
representative locus for each cluster; finally, c) phasmerge computes library-specific
abundances, a size-class ratio, the maximum to total phasiRNAs abundance ratio, and other
quality information. Optional steps include d) compare mode, which first reads PHAS loci (or
transcripts) from user-supplied summaries (n=2) and then identifies matching PHAS pairs based
on the overlap in phased positions, to report a combined matrix including both shared and
unique loci in each PHAS summary file, and e) merge mode; when supplied with annotations,
as described above, phasmerge matches a merged set of PHAS loci with genome annotations or
with a genome-matched transcriptome assembly, both provided as GTF file, to report exonic or
complete overlaps with annotated transcripts. This step requires prior installation of SQLite on
user’s machine. phasmerge generates several reports as output, most importantly, PHAS
summary for libraries of interest which includes quality parameters (see online wiki for more
information), FASTA files for size-specific siRNAs and all the siRNAs from phased positions along
with detailed information on phased clusters with phasiRNAs, positions, associated p-values,
etc.

phastrigs identifies sRNA triggers for PHAS loci and precursor transcripts using the phasmerge
summaries and a user-provided list of miRNAs (or any other small RNA). It was developed with
the idea to minimize the requirement of experimental PARE libraries [18–20]. However, if such
data (‘PARE’, henceforth) are provided, then phastrigs reports sRNA triggers with experimental
support; these may be of higher confidence for some downstream experimental analyses.
Phastrigs uses an algorithm designed to be both fast and exhaustive. It uses miRferno, an exhaustive target prediction algorithm that we developed [31] to predict target sites for user-supplied miRNAs. The speed and precision of phastrigs is enhanced by a scan focused on the 5' terminus of each PHAS locus (5'-end of the first cycle, the P1 position) for the trigger site, which reduces the search space and chance of reporting false triggers. This 5' terminus is inferred at the summarization step by phasmerge while collating data from different sRNA libraries. In the case of PHAS transcripts, only the 5' terminus of the phased precursor is scanned, while in case of genomic PHAS loci, either the 5' or 3' end of the phased region is chosen, based on the strand targeted by a specific miRNA. Phastrigs analysis is divided into two main steps: a) PHAS transcripts or genomic sequences are extracted, and targets for user-supplied miRNAs are predicted; b) next, a scan of phased positions located at the 5' or 3' termini of precursor for a target site that corresponds with the production of phasiRNAs is performed; this scan looks for target sites within ± 3 nt of the 'PHAS index', defined as theoretical phased positions upstream from the 5' terminus of P1. If PARE data is supplied, then PARE-validated cleavage sites are used for trigger identification. The phastrigs report includes detailed information on miRNA-target interactions, PARE abundances at the predicted cleavage site, and the PHAS index of the predicted trigger site relative to the P1 position.

Software

The methods and algorithm described in this article, implemented as PHASIS suite of tools for PHAS discovery, are freely available from https://github.com/atulkakrana/PHASIS. PHASIS is released under the OSI Artistic License 2.0. Tools and Perl libraries required to use PHASIS along with the instructions to install and usage of individual tools is provided in detail in the PHASIS wiki (http://github.com/atulkakrana/PHASIS/wiki/).

Abbreviations

PHASIS: PHAS Inspection Suite; tasiRNAs: trans-acting siRNAs; PMC: pollen mother cells; PARE: Parallel Analysis of RNA Ends; SMRT: Single Molecule Real Time Sequencing; GMUCT: genome-wide mapping of uncapped and cleaved transcripts
Additional files

Additional file 1: Supplementary methods in Microsoft Word (.doc) format.

Additional file 2: Supplementary figures from S1 to S3 in Portable Document Format (PDF).

Additional file 3: Supplementary tables from S1 to S4 in Office Open XML Spreadsheet format (.xlsx)

Acknowledgments

We thank Bruce Kingham and Olga Shevchenko from Delaware Biotechnology Institute (Newark, DE, USA) for their help with PacBio sequencing. We thank Karol Miaskiewicz from Delaware Biotechnology Institute (Newark, DE, USA) for work on the SMRT portal and the PB-Tofu command line environment. We also thank Kun Huang from University of Delaware (Newark, DE, USA) for helpful discussions on the developmental stage and anther size correlations.

Funding

This work was supported by U.S. National Science Foundation Plant Genome Research Program (NSF-PGRP) grant (1649424) and University Competitive Fellow Award (2015-2016) from University of Delaware.

Author contributions

AK conceived the project. AK and PL designed and implemented the method, individual contributions are marked on scripts. PP, RH, DA and AK tested tools and compiled benchmarking data. AK and SM collected the Lilium samples. SM prepared the SMRT sequencing libraries. AK and BCM wrote the manuscript. All authors read and approved the final manuscript.
Competing interests

The authors declare that they have no competing interests.

References

Figure legends

Figure 1. PHASIS workflow.

PHAS loci or precursors transcripts are predicted through *phasdetect* in the first step. The library-specific list of PHAS predictions can be summarized and annotated through *phasmerge* for libraries of interest into a PHAS summary. These summaries from two different groups can also be compared using “compare” mode of *phasmerge*. Triggers for PHAS summaries are identified through *phastrigs* either with PARE data in “validation” mode or without any experimental data in “prediction” mode. Selection between these two modes is made automatically based on a PARE library input or the lack of it. All analysis steps are independent and their execution depends upon the requirements of the user.

Figure 2. Number of PHAS loci or transcripts and their triggers, predicted by PHASIS.

PHASIS is labelled as ‘PS’ and it is compared to *PhaseTank* for benchmarking. **A)** 21-PHAS and **B)** 24-PHAS loci identified by both tools along with their triggers in Arabidopsis (ath), Brachypodium (bdi), Lilium (ima), rice (osa) and maize (zma). For *PHASIS* trigger prediction, results from both “validation” and “prediction” mode were included. The bars for Lilium 24-PHAS loci are split at two different points for display purposes. Triggers assigned to PHAS loci that do not match with known or published miRNA triggers were represented as ‘unknown’ triggers.

Figure 3. Runtime comparisons between PHASIS and PhaseTank.

A) Time taken by both tools in prediction of 21- and 24-PHAS loci or precursors transcripts. Speed gain displayed by *PHASIS* over *PhaseTank*, approximated for both size classes, is individually marked for each species. **B)** and **C)** Time taken by both tools in predicting 21- and 24-PHAS triggers, respectively. Speed gain displayed by *PHASIS* in “validation” and “prediction” mode over *PhaseTank* is displayed in blue and orange colors respectively. In all comparisons, *Arabidopsis* is marked as “ath”, Brachypodium as “bdi”, rice as “osa”, maize as “zma” and Lilium as “ima”.

http://dx.doi.org/10.1101/158832

CC-BY-ND 4.0 International license

The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-ND 4.0 International license.
Table 1. Comparison of features from existing tools for phasiRNA characterization.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tool-specific data format requirement?</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Library-specific results?</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>PHAS prediction in w/o genome assembly?</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Results grouped based on stage, tissue or treatments?</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>PHAS comparison between groups?</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>PHAS locus annotation?</td>
<td>yes (from genome GFF only)</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>PHAS trigger prediction w/o PARE data?</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>miRNA/hairpin locus prediction?</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Whole-genome report of sRNA cluster characteristics?</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 2. Comparison of predictions for PHAS loci, precursor transcripts, and their miRNA triggers.

<table>
<thead>
<tr>
<th>Species</th>
<th>Type</th>
<th>PHAS locus gain with PHASIS over PhaseTank</th>
<th>PhaseTank PHAS loci captured by PHASIS</th>
<th>Gain in miRNA triggers: PHASIS (PARE supported) vs. PhaseTank (PARE supported)</th>
<th>Gain in triggers, (predict PhaseTank support)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabidopsis</td>
<td>21-PHAS</td>
<td>21%</td>
<td>84%</td>
<td>-54%</td>
<td>-18</td>
</tr>
<tr>
<td>Brachypodium</td>
<td>21-PHAS</td>
<td>145%</td>
<td>79%</td>
<td>76%</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>24-PHAS</td>
<td>49%</td>
<td>85%</td>
<td>36%</td>
<td>69%</td>
</tr>
<tr>
<td>Rice</td>
<td>21-PHAS</td>
<td>24%</td>
<td>97%</td>
<td>5%</td>
<td>54%</td>
</tr>
<tr>
<td></td>
<td>24-PHAS</td>
<td>-33%</td>
<td>29%</td>
<td>No predictions</td>
<td>N.I</td>
</tr>
<tr>
<td>Maize</td>
<td>21-PHAS</td>
<td>81%</td>
<td>97%</td>
<td>4%</td>
<td>55%</td>
</tr>
<tr>
<td></td>
<td>24-PHAS</td>
<td>59%</td>
<td>86%</td>
<td>9%</td>
<td>64%</td>
</tr>
<tr>
<td>Lilium</td>
<td>21-PHAS</td>
<td>907%</td>
<td>67%*</td>
<td>No PARE data</td>
<td>No PAR</td>
</tr>
<tr>
<td></td>
<td>24-PHAS</td>
<td>1694%</td>
<td>94%*</td>
<td>No PARE data</td>
<td>No PAR</td>
</tr>
</tbody>
</table>

For Lilium, no PARE data were available for trigger predictions. N.D. = not determined, capture trigger miRNAs.
* Estimates, as processing for PhaseTank data made it difficult to accurately assess the prop.
Figure 1

Mandatory Inputs

- sRNA libs (FASTA or tab-count format)
- Genome or transcriptome assembly (FASTA)

Step I

- de novo phased clusters discovery

Step II

- Summarization, quantification and annotation

Step III

- PHAS trigger prediction

Optional for Step II

- Ancillary data

Optional for Step III

- phastRNAS and PHAS clusters summary, annotations

Two groups

- Comparison of PHAS summaries

- Matched summaries

Library-specific stack

- phasdetect

Ancillary data

- Phased clusters

PHAS trigger prediction

- S

- Trigger summary
Figure 2

A

- Loci with a known 21- or 24-PHAS trigger
- Loci with an unknown trigger
- Loci with no identified trigger

B

- Loci with a known 21- or 24-PHAS trigger
- Loci with an unknown trigger
- Loci with no identified trigger
Figure 3

A

B

C

Runtime (min.)

~3x

~8x

~3x

~7x

0

5

10

15

20

25

30

ath

bdi

osa

zma

lma

21-PHAS PhaseTank

21-PHAS PHASIS

24-PHAS PhaseTank

24-PHAS PHASIS

PhaseTank

PHASIS “validation” mode

PHASIS “prediction” mode