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Abstract

Two-sample summary data Mendelian randomization (MR) incorporating multiple
genetic variants in a meta-analysis framework is a popular technique for assessing
causality in epidemiology. If all genetic variants satisfy the instrumental variable (IV)
assumptions, then their individual causal ratio estimates should be homogeneous. Ob-
served heterogeneity, therefore, supports the notion that a portion of variants violate
the IV assumptions due to pleiotropy. Model fitting and heterogeneity assessment in
MR requires an approximation for the variance of each ratio estimate. We show that
the most popular approximation can lead to an inflation in the chances of detecting
heterogeneity when in fact it is not present. Conversely, an ostensibly more accurate
approximation can dramatically increase the chances of failing to detect heterogene-
ity, when it is truly present. Here we derive a ‘modified 2nd order’ approximation to
the variance that makes use of the derived causal estimate to mitigate both of these
adverse effects. Using Monte Carlo simulations, we show that the modified 2nd order
approximation outperforms both its 1st and 2nd order counterparts in the presence of
weak instruments or a large causal effect. We illustrate the utility of the new method
using data from a recent two-sample summary data MR analysis to assess the causal
role of systolic blood pressure on coronary heart disease risk. Modified 2nd order
weighting should be used as standard within two-sample summary data MR studies
for model fitting, the quantification of heterogeneity and the detection of outliers. R

code is provided to apply these weights in practice.

Key words: Mendelian randomization, two-sample MR, Cochran’s Q statistic, MR-
Egger regression, Rücker’s Q

′
statistic.
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Introduction

Mendelian randomization (MR) [1] is an instrumental variable approach that uses
genetic data, typically in the form of single nucleotide polymorphisms (SNPs), to
assess whether a modifiable exposure exerts a causal effect on a health outcome in the
presence of unmeasured confounding. Traditionally, researchers have assumed that
SNPs used for MR studies are valid instrumental variables (IVs) for the purposes
of inferring the causal effect of an exposure, X, on an outcome, Y . Specifically,
the SNP is: associated with X (IV assumption 1 (IV1)); not associated with any
confounders of X and Y (IV2); and can only be associated with Y through X (IV3).
The IV assumptions are represented by the solid lines in Figure 1 for a SNP Gj,
with unobserved confounding represented by U . Dotted lines represent dependencies
between G and U , and G and Y that are prohibited by the IV assumptions.

X Y

U

G j
βIV1

IV2

IV3

Figure 1: Causal diagram representing the IV assumptions (and violations thereof) for
a SNP Gj, an exposure X and an outcome Y . The causal effect of X on Y , denoted
by β, is the quantity we wish to estimate.

Suppose initially that a SNP, Gj, is a valid IV. Further assume that the associ-
ation of Gj with both X and Y is linear with no effect modification, and X affects
Y linearly with no effect modification. The underlying SNP-outcome association Γj -
the increase in Y for a unit increase in Gj - can then be expressed as a scalar multiple
of the underlying SNP-exposure association estimate, γj - the increase in X for a unit
increase in Gj. That is: Γj = βγj, where β denotes the causal effect of a unit increase
in X on the outcome Y .

Figure 1 encodes the assumptions that are traditionally required for a single sam-
ple of individuals for whom G, X and Y are measured. A particular MR study design
gaining in popularity instead combines publically available summary data on SNP-
exposure and SNP-outcome associations from two separate studies for large numbers
of uncorrelated variants G1,...,GL within the framework of a meta-analysis. These
studies should ideally contain no overlapping individuals (to ensure independence)
but should also originate from the same source population. This is referred to as two-
sample summary data MR [2]. Providing the aforementioned modelling assumptions
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are met and each SNP is a valid IV, when SNP-exposure and SNP-outcome associa-
tions are estimated from their respective samples the ratio β̂j = Γ̂j/γ̂j for any single
variant should also provide a consistent estimate for β. Combining the set of L ratio
estimates obtained across all variants into an overall inverse variance weighted (IVW)
estimate using the standard meta-analytic formula:

β̂IV W =

∑L
j=1wjβ̂j∑L
j=1wj

where wj = var(β̂j)
−1, (1)

then provides an efficient and consistent estimate for β. For a more detailed descrip-
tion of the assumptions required by two-sample summary data MR, see Bowden et al
[3].

Heterogeneity assessment

If the aforementioned modelling and IV assumptions hold, then Cochran’s Q statistic:

Q =
L∑
j=1

Qj =
L∑
j=1

wj(β̂j − β̂IV W )2. (2)

should follow, asymptotically, a χ2 distribution on L-1 degrees of freedom. Excessive
heterogeneity could therefore indicate the modelling assumptions have been violated,
or that some of the genetic variants violate the IV assumptions. For example, even
if all SNPs are valid IVs, causal effect heterogeneity will exist whenever the SNP-
outcome association is an odds ratio, due to issues of non-collapsibility [4]. Specifi-
cally, the causal effect identified by a SNP will depend on its strength of association
with the outcome (which is itself a function of the SNP-exposure association and the
SNP-outcome standard error), rather than being equal to a constant value β. It could
instead be the case that a SNP actually increases the exposure for one group of indi-
viduals and decreases it for another, which would be a violation of the monotonicity
assumption [5]. Another potential source of heterogeneity that has received a lot of
attention in the literature in recent years is that some or all of the SNPs could in fact
exert a direct effect on the outcome not through the exposure [6] by violating IV2, IV3
or both, which is termed ’horizontal pleiotropy’ [7, 8]. ‘Vertical pleiotropy’ - in which
the effect of a SNP on the exposure of interest is actually mediated through other,
earlier exposures, does not pose a problem. For brevity we will refer to problematic
horizontal pleiotropy simply as pleiotropy from now on.

The presence of heterogeneity does not necessarily invalidate an MR study. For
example if the underlying cause of the heterogeneity is pleiotropy but, across all
variants, the amount of pleiotropy is independent of instrument strength (the InSIDE
assumption [9]), then a standard random effects meta-analysis will still yield reliable
inferences [3, 9]. If the pleiotropy is instead ‘directional’ (it has a non-zero mean)
then a random effects meta-analysis will be biased, but MR-Egger regression [9] can
still yield reliable inferences. MR-Egger regression has been used extensively as a
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sensitivity analysis tool since its proposal for this reason (see [10, 11, 12, 13, 14] for
some recent examples).

Choice of weights in two-sample summary data MR

Two popular choices for the inverse variance weights used to calculate both the IVW
estimate in (1) and Cochran’s Q in (2) are:

1st order weights: wj =
γ̂2j
σ2
Y j

(3)

2nd order weights: wj =

(
σ2
Y j

γ̂2j
+

Γ̂2
jσ

2
Xj

γ̂4j

)−1

(4)

where σ2
Y j represents the variance of Γ̂2

j and σ2
Xj represents the variance of γ̂2j . 2nd

order weights, which are derived via a Taylor series expansion, attempt to acknowledge
uncertainty in both the numerator and denominator of the ratio estimate (note that
in the two-sample setting, it is not necessary to include terms in the Taylor series
expansion involving the covariance of γ̂j and Γ̂j, because they are obtained from
separate samples). 1st order weights ignore uncertainty in the denominator of the
ratio estimate, which is equivalent to making the NO Measurement Error (NOME)
assumption (γ̂j = γj) as defined in [15] within the context of a two-sample MR
analysis. The same simplifying approximation has also been used extensively for
general IV analyses in economics [16, 17]. In practice when SNP-exposure association
estimates are very precise, for example when they are derived from a study with a
large sample size, the two weighting schemes can be very similar. Unfortunately, this
is often not the case.

Further remarks on Cochran’s Q

Provided that the two samples used in the analysis are homogeneous, and the SNPs
used as IVs are mutually independent, the IVW estimate obtained using 1st order
weights is asymptotically equivalent to the two-stage least squares (TSLS) estimate
for the causal effect obtained using individual level data on G, X and Y from either
sample, if such data were available (see for example Section 2.2 in [18]). Simulations
conducted by Del Greco et al [6] and methodological work by Windmeijer [19] have
also clarified the fact that Cochran’s Q statistic for detecting heterogeneity amongst
summary data estimates is asymptotically equivalent to the Sargan’s test for over-
identification with individual level data. A further fact noted by Windmeijer is that
both Cochran’s Q and the Sargan test statistic are minimised at the IVW and TSLS
estimates respectively. We can see this for Cochran’s Q by noting that β̂IV W in (1)
satisfies:

∂Q

∂β
(β = β̂IV W ) = 0.
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This expression presents Cochran’s Q as an estimating equation for the causal param-
eter β. Given that 2nd order weights provide an ostensibly more accurate reflection of
the variance of the ratio estimate, it would seem obvious that they should be used as
standard within an MR study to calculate the IVW estimate and Cochran’s Q. How-
ever, Thompson et al [20] showed that 2nd order weights produce causal estimates
which are generally more biased than using 1st order weights. The reason for this
apparent paradox is that 2nd order weights can be highly correlated with the ratio
estimates themselves. Strict independence is required between the wj and β̂j terms
in (1) in order for the IVW estimate to be consistent.

In this paper we derive a simple approximation to the variance of the ratio esti-
mate that circumvents the deficiencies of 1st and 2nd order weighting. We show by
Monte Carlo simulation that it can dramatically improve the reliability of Cochran’s
Q statistic for detecting heterogeneity amongst a set of ratio estimates. We then go on
to demonstrate how our modified weights can also improve the assessment of hetero-
geneity about the MR-Egger estimate in the presence of directional pleiotropy, when
using a generalized heterogeneity measure known as Rücker’s Q

′
[3, 21]. In the Results

section we apply our improved heterogeneity statistics to a two-sample summary data
MR study to determine the causal effect of systolic blood pressure on coronary heart
disease originally published by Ference et al [22], with recent application of IVW and
MR-Egger approaches in Lawlor et al[13].

Materials and Methods

We start by motivating the derivation of the IVW estimate using 1st and 2nd order
weights. We assume the basic underlying model generating the observed SNP-outcome
association estimates:

True model: Γ̂j = βγj + σY jεj, var(εj) = 1 (5)

Note that model (5) assumes no heterogeneity (e.g. due to pleiotropy), and is
a function of the true underlying SNP-exposure association γj. In practice, when
fitting this model we must work with the SNP-exposure association estimate γ̂j (with
variance σ2

Xj) instead. Substituting γ̂j into (5) in place of γj therefore yields:

Fitted model: Γ̂j = βγ̂j +
√
β2σ2

Xj + σ2
Y jεj (6)

We can derive an expression for the ratio estimate β̂j and its variance that is

consistent with 2nd order weighting, by replacing β with Γ̂j/γ̂j in equation (6), and
by dividing through by γ̂j to give:

β̂j = β +

√
Γ̂2
j

γ̂4j
σ2
Xj +

σ2
Y j

γ̂2j
εj. (7)

6

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 5, 2017. ; https://doi.org/10.1101/159442doi: bioRxiv preprint 

https://doi.org/10.1101/159442
http://creativecommons.org/licenses/by-nd/4.0/


Setting σ2
Xj in formula (7) to zero yields an expression for the ratio estimate β̂j and

its variance that is consistent with 1st order weighting.

Modified 2nd order weights

Replacing β with Γ̂j/γ̂j in equation (6), as suggested by 2nd order weighting, means
that the variance of each ratio estimate will be a function of the ratio estimate itself.
It is easy to see that this will induce a negative bias in the IVW estimate because
whenever β̂j is randomly large, its contribution to (1) will be down-weighted (likewise

its contribution to (1) will be up-weighted when β̂j is randomly small). This negative
bias will also effect Cochran’s Q statistic. This problem can be avoided when using 1st
order weights by setting σ2

Xj to zero, but the obvious downside is that the variance of

each β̂j is then under-estimated. We therefore suggest the following scheme to address
both shortcomings, by plugging in an overall estimate for β in model (6) instead. The
procedure for calculating the weights is as follows:

1. Use 1st order weights and formula (1) to derive the IVW estimate, β̂IV W ;

2. Calculate the modified 2nd order weights via the formula:

wj(β̂IV W ) =

(
σ2
Y j + β̂2

IV Wσ
2
Xj

γ̂2j

)−1

(8)

where β̂IV W is obtained from step 1.

The modified 2nd order weights can then be used to re-calculate β̂IV W to (a) give
an overall measure of causal effect, and (b) to evaluate Cochran’s Q statistic to look
for the presence of heterogeneity. If performed recursively, the above procedure would
find the value of β satisfying:

∂Qm(β)

∂β
= 0, for Qm(β) =

L∑
j=1

wj(β)(β̂j − β)2, (9)

and where wj(β) is taken from formula (8). A brief investigation revealed that our
simple procedure is essentially idempotent after one iteration, and therefore additional
steps are unnecessary.

IVW and Cochran’s Q analysis when no pleiotropy present

Naturally we would like Cochran’s Q to follow a χ2
L−1 distribution as closely as pos-

sible when no heterogeneity is present, to guard against the erroneous detection of
pleiotropy. We now assess the performance of all three weighting schemes to achieve
this aim via simulation. Two-sample summary data MR studies comprising L=25
SNP-exposure and SNP outcome association estimates (Γ̂j, γ̂j) were generated from
the following normal models:

γ̂j ∼ N(γj, σ
2
Xj), Γ̂j ∼ N(βγj, σ

2
Y j) (10)
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Mean 1st order wj 2nd order wj Modified 2nd order wj
F Q T1E(Q) β̂IV W (S.E.) Q T1E(Q) β̂IV W (S.E.) Q T1E(Q) β̂IV W (S.E.)

No heterogeneity, β=0
100 23.9 0.05 0.00 (0.011) 22.8 0.028 0.00 (0.011) 23.9 0.05 0.00 (0.011)
61 23.9 0.046 0.00 (0.011) 21.8 0.016 0.00 (0.011) 23.9 0.046 0.00 (0.011)
40 24.0 0.051 0.00 (0.011) 20.4 0.006 0.00 (0.011) 24.0 0.050 0.00 (0.011)
25 24.0 0.049 0.00 (0.011) 17.6 0.001 0.00 (0.01) 23.9 0.048 0.00 (0.011)
10 24.0 0.049 0.00 (0.009) 12.3 0.000 0.00 (0.008) 23.7 0.045 0.00 (0.009)

No heterogeneity, β=0.05
100 24.1 0.048 0.049 (0.011) 22.8 0.023 0.048 (0.011) 23.9 0.044 0.049 (0.011)
61 24.5 0.057 0.049 (0.012) 21.9 0.016 0.047 (0.011) 24.1 0.049 0.049 (0.012)
40 24.8 0.063 0.048 (0.012) 20.3 0.007 0.045 (0.011) 23.9 0.046 0.048 (0.012)
25 25.9 0.092 0.046 (0.012) 17.9 0.002 0.041 (0.011) 24.1 0.054 0.046 (0.012)
10 31.5 0.278 0.033 (0.012) 13.5 0.00 0.027 (0.011) 26.1 0.114 0.034 (0.012)

No heterogeneity, β=0.1
100 24.8 0.065 0.099 (0.012) 22.9 0.028 0.097 (0.012) 24.0 0.048 0.099 (0.012)
61 25.7 0.086 0.098 (0.012) 21.9 0.019 0.095 (0.012) 24.0 0.052 0.098 (0.012)
40 27.2 0.13 0.096 (0.013) 20.4 0.009 0.091 (0.012) 24.0 0.050 0.096 (0.013)
25 31.7 0.277 0.092 (0.014) 18.3 0.003 0.083 (0.014) 24.5 0.062 0.092 (0.014)
10 53.8 0.788 0.065 (0.018) 15.8 0.004 0.055 (0.015) 30.1 0.228 0.070 (0.017)

Table 1: Mean Q statistic and IVW estimate β̂IV W calculated 1st order, 2nd order
and modified 2nd order weights. Results calculated over 10,000 simulated data sets.
Type I error rate (T1E(Q)) refers to the proportion of times Q is greater than the
upper 95th percentile of a χ2

24 distribution.

given parameter values for (γj, σ
2
Xj, σ

2
Y j) and β. Data generated under Model (10)

furnishes a set of ratio estimates between which no heterogeneity should exist asymp-
totically, as the variance of γ̂j, σ

2
Xj, reduces to zero. To highlight this the magnitude

of σ2
Xj was varied in order to mimic a range of MR studies, from very small (with

mean F -statistic 10), to very large (with mean F -statistic 100). Note in this scenario
the F -statistic for SNP j can be approximated by the squared t-statistic γ̂2j /σ

2
Xj.

Table 1 (columns 2-9) show the mean Q statistic, IVW estimate and the probability
of the Q statistic detecting heterogeneity at the 5% significance level (the type I error
rate), when using 1st and 2nd order weights. Five different mean F -statistic values
were considered for β=0 (no causal effect), β=0.05 and β=0.1, giving 15 scenarios in
total.

From equation (4) we can see that 1st order weights are valid when σ2
Xj=0, which

would imply that its F -statistic were infinite. Whenever σ2
Xj is non-negligible, 1st

order weights under-estimate the true variability amongst the ratio estimates. One
might therefore suspect that their associated Q statistics would be too large on aver-
age (i.e. positively biased beyond their expected value of 24). This would inflate the
type I error rate for detecting pleiotropy beyond nominal levels. From Table 1 we can
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see that this is indeed the case when β is non-zero, when β = 0 the correct behaviour
is observed. One might also suspect that 2nd order weights would naturally eliminate
this undesirable property, furnishing a Q statistic following the required distribution.
From Table 1 we can see that this is, unfortunately, not the case: 2nd order weighting
appears to over-correct the Q statistic so that it is negatively biased, thereby remov-
ing any ability to detect heterogeneity at all.

Table 1 columns 10-13 shows the performance of modified 2nd order weights with
respect to estimation of β and Q. When β is non-zero, modified 2nd order weights
are much more effective at preserving the type I error rate of the Q statistic at its
nominal level, unless the mean F -statistic is very low (indicating weak instruments).
Figure 2 (left and right) shows the distribution of Q statistics under each weighting
scheme for β=0.1 when the mean F -statistic is 100 and 10, to illustrate this point.

The IVW estimate is known to suffer from regression dilution bias towards zero by
an amount approximately proportional to the inverse of the mean F -statistic. For
example, if the mean F -statistic is 100 and the true causal effect is 0.1, the expected
dilution would be 1% (giving an expected estimate of 0.099). In these simulations,
2nd order weighting yields estimates with the largest dilution, and modified 2nd order
weights yield estimates with the smallest dilution. This dilution can be mitigated to
a large degree by applying a bias correction. For example Bowden et al [15] proposed
the use of SIMulation EXtrapolation (SIMEX) [23] to account for regression dilution
bias in MR studies, and applied it to the IVW estimate in [3]. For brevity, we do not
additionally assess SIMEX correction here.
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Figure 2: Distribution of Q statistics using 1st order, 2nd order and modified second
weights in simulation scenario 1 (left) and scenario 5 (right) of Table (1) respectively.
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IVW and Cochran Q analysis in the presence of heterogeneity

Let αj represent the pleiotropic effect of SNP j on the outcome not via the exposure
and let µα and σ2

α denote the sample mean and variance, respectively, of these L
pleiotropic effects. Suppose that the pleiotropic effects collectively satisfy the InSIDE
assumption, and that the mean pleiotropic effect µα = 0. This is referred to as
‘balanced’ pleiotropy. Two common frameworks to account for heterogeneity are
the additive random effects model [24] and the multiplicative random effects model
[25, 26]:

Additive pleiotropy model: Γ̂j = µα + βγj +
√
σ2
α + σ2

Y jεj (11)

Multiplicative pleiotropy model: Γ̂j = µα + βγj +
√

1 + σ2
ασY jεj, (12)

When balanced pleiotropy is assumed, µα is constrained to zero in both (11) and
(12). The multiplicative model is far less intuitive than the additive model, but it has
the following attractive property. if heterogeneity is detected, point estimates for β
remain unchanged (i.e. they are the same as those obtained from a fixed effect model),
but their standard errors are scaled up accordingly. Additive random effects models
yield different point estimates and standard errors compared to fixed effect models,
and are known to be more prone to bias in the presence of model misspecification.
For a more lengthly discussion see [3].

In Table 1 the type I error rate of Cochran’s Q statistic to detect heterogeneity using
2nd order weights was below its nominal level. This is detrimental if it translates
into a low statistical power to detect heterogeneity when it is truly present. Figure
3 (left) shows the power of Cochran’s Q to detect heterogeneity as a function of all
three weighting schemes when data are simulated under additive random effects model
(11) with balanced pleiotropy for increasing values of σα. We see that the power of
Cochran’s Q to detect heterogeneity approaches 100% for all weighting schemes as
σα increases. However, the power of 2nd order weighting is considerably lower than
either the 1st order or modified 2nd order weights with more moderate heterogene-
ity. Results for data simulated under the multiplicative pleiotropy model were highly
similar (data available from the authors on request).

Comparison with the work of Thompson et al.

In related work, Thompson et al [20] also noted the poor performance of 2nd order
weights when estimating the causal effect via the IVW approach in two-sample sum-
mary data MR. They also proposed two methods for improving the performance of
1st order weights. Firstly, they derived a bias reduced estimate for each ratio esti-
mate, by multiplying it by a function of its F statistic. Secondly, they noted that a
more precise estimate for the association between SNP j and the exposure could be
derived by combining the original estimate γ̂j with a second estimate Γ̂j/β̂IV W via an
inverse variance weighted average. We conducted an investigation into the effective-
ness of these two procedures, a full description of which is given in the Appendix. In
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Figure 3: Left: Power of Cochran’s Q statistic to detect heterogeneity as a function of
σα using 1st order, 2nd order and modified 2nd weights under a balanced pleiotropy
model. Right: Power of Rücker’s Q statistic to detect heterogeneity as a function
of σ2

α using 1st order, 2nd order and modified 2nd order weights under a directional
pleiotropy model.

summary, Thompson et al’s improved precision formula is generally effective for IVW
analyses: It produces Q statistics and associated p-values that are conservative, but
the level of conservatism is far less severe than 2nd order weighting. However, the
addition of Thompson et al’s bias correction formula leads to a dramatic instability
in the distribution of Cochran’s Q statistic - its mean value is highly unstable unless
the mean F statistic is very large. Due to this apparent limitation we do not consider
this procedure further, although it is an interesting avenue for future research.

MR-Egger regression and Rücker Q
′
analysis

When Cochran’s Q statistic detects significant amounts of heterogeneity, it is prudent
to test whether it is meaningfully biasing the analysis. This would indeed be the
case if the heterogeneity were caused by directional pleiotropy with a non-zero mean.
Equations (11) and (12) can still serve as underlying models for the data by allowing
the parameter space of µα to be unconstrained, and making use of MR-Egger regres-
sion [9, 3]. This approach simply regresses the SNP-outcome association estimates on
the SNP-exposure association estimates, where the SNPs are coded to make each γ̂j
positive. Traditionally, it is initially fitted as a fixed model using 1st order weighting
[9], which for the purposes of this paper, is equivalent to:

β̂j =
β0E
γ̂j

+ β1E + w
− 1

2
j εj. (13)
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where wj are taken from (3). Model (13) assumes that there is no heterogeneity
about the MR-Egger fit after the addition of an intercept, so that σ2

α is implicitly set
to zero. The observed heterogeneity around the MR-Egger fit can then be quantified
using Rücker’s Q

′
statistic: [21, 3]:

Q
′
=

L∑
j=1

Q
′

j =
L∑
j=1

wj(β̂j −
β̂0E
γ̂j

− β̂1E)2, (14)

where, again, wj are taken from (3). If Q
′

is larger than L-2, its expected value under
the assumption of no heterogeneity, standard errors of the MR-Egger intercept and
slope estimates are inflated by factor of

√
1 + σ̂2

α, where σ̂2
α is estimated directly from

Q
′
. This is consistent with assuming a multiplicative random effects model. See Bow-

den et al [3] for further details as well as a description of how MR-Egger regression
can be fitted within an additive random effects framework.

In truth, it highly implausible to think that non-zero mean pleiotropy could exist,
but have a zero variance, and therefore that the null χ2

L−2 distribution of Q
′

will ever
hold. However, this does not mean that Q

′
is useless: we can still use it to ascertain

the amount that variant j contributes to the overall heterogeneity via Q
′
j, and assess

the relative goodness-of-fit of MR-Egger over the IVW model (e.g. via QR = Q
′
/Q

as defined in [3]).

2nd order and modified 2nd order weights for MR-Egger

To fit MR-Egger regression and evaluate Rücker’s Q
′
statistic using 2nd order weights,

we simply replace wj in equation’s (13) and (14) with weights defined in equation (4).
Modified 2nd order weights for MR-Egger regression can also be substituted into these
formulae, after being derived in the following manner:

1. Use 1st order weights and formula (13) to derive the MR-Egger slope and inter-
cept estimates, (β̂0E, β̂1E);

2. Calculate modified 2nd order weights via the formula:

wj(β̂1E) =

(
σ2
Y j + β̂2

1Eσ
2
Xj

γ̂2j

)−1

(15)

where β̂1E is obtained from step 1.

The modified weights can then be used to re-calculate (β̂0E, β̂1E) and Rücker’s Q
′

statistic. As for the IVW case previously, recursive application of the above rule
would find the value of βE = (β0E, β1E) satisfying:

∂Q
′
m

∂βE

= (0, 0), for Q
′

m =
L∑
j=1

wj(β1E)(β̂j − β0E/γ̂j − β1E)2, (16)
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and where wj(β1E) is taken from formula (15). As before, only one iteration of this
procedure is sufficient. In the Appendix we provide R code to fit MR-Egger regression
using 1st order, 2nd order and modified 2nd order weights.

Performance of modified weights

In order to test the reliability of each weighting scheme for MR-Egger, we simulate
two-sample summary data in the following manner:

γ̂j ∼ N(γj, σ
2
Xj), αj ∼ N(µα, σ

2
α), Γ̂j ∼ N(βγj + αj, σ

2
Y j) (17)

and evaluate the performance of β̂1E and Q
′

just as for β̂IV W and Q in Table 1, with
one notable change. Whereas the data in Table 1 were generated given parameter val-
ues for (γj, σ

2
Xj, σ

2
Y j) that induced a range of mean F -statistic values in the data, we

now choose parameters that induce a range of I2GX values instead. It is this statistic,
first defined in [15], which both encapsulates instrument strength for MR-Egger and
indicates the likely dilution towards 0 when 1st order weights are used. Put simply,
I2GX quantifies the proportion of the observed variation amongst the SNP-exposure
association estimates (the γ̂js) that is due to true differences in their underlying pa-
rameter values (the γjs). An I2GX value of 90% indicates an expected dilution of 10%
in the MR-Egger causal effect estimate. SIMEX can be used to adjust MR-Egger
regression estimates for regression dilution, regardless of the weighting used.

Data were simulated to give I2GX values ranging from 99% to 82%. For the same
data, mean F -statistic values ranged from roughly 600 (when I2GX = 99%) to 60
(when I2GX = 82%). This highlights the fact that MR-Egger regression is far less
efficient than an IVW analysis (as discussed at length in [3, 9, 27] and elsewhere) and
requires instruments that are both strong as well as having variable magnitudes of
effect on exposure in order to function effectively.

No heterogeneity around the MR-Egger fit

Table 2 shows the results when the mean pleiotropic effect, µα equals 0.1 and the
pleiotropy variance σ2

α is set to zero. In this case, MR-Egger regression should per-
fectly adjust for the directional pleiotropy and no residual pleiotropy should remain.
Rücker’s Q

′
should therefore not detect heterogeneity beyond nominal levels. We

again see that first order weights can inflate the chances of erroneously detecting het-
erogeneity, with the type I error increasing as the magnitude of β increases, especially
when I2GX is low. Likewise, 2nd order weights are always too conservative, failing
to detect heterogeneity at the nominal level of the test, especially when β is small.
Modified 2nd order weights appear to offer a good compromise, with good behaviour
across all settings. In terms of point estimation, all methods are unbiased under the
causal null, and I2GX gives a good prediction as to the magnitude of dilution when
the causal effect is non-zero. Unlike in the previous simulation, the dilution of the
MR-Egger estimate is at its least when 2nd order weights are used. For illustration
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Figure 4 shows the distribution of Q
′

statistics using the three weighting schemes
when I2GX = 97% (left) and I2GX = 82% (right). As I2GX increases towards 100%, their
distributions converge on the truth, but can be very different for smaller I2GX values.

Mean 1st order wj 2nd order wj Modified 2nd order wj
I2GX Q

′
T1E(Q

′
) β̂1E (S.E.) Q

′
T1E(Q

′
) β̂1E (S.E.) Q

′
T1E(Q

′
) β̂1E (S.E.)

σ2
α=0, µα = 0.1, β=0

99 23.0 0.048 0.00 (0.012) 22.1 0.034 0.00 (0.012) 22.9 0.048 0.00 (0.012)
98 22.9 0.048 0.00 (0.012) 21.4 0.026 0.00 (0.012) 22.9 0.048 0.00 (0.012)
97 23.1 0.051 0.00 (0.012) 20.6 0.020 0.00 (0.012) 23.0 0.051 0.00 (0.012)
95 23.0 0.051 0.00 (0.012) 18.8 0.008 0.00 (0.013) 22.9 0.049 0.00 (0.012)
82 23.0 0.051 0.00 (0.010) 14.3 0.001 0.00 (0.013) 22.7 0.046 0.00 (0.010)

σ2
α=0, µα = 0.1, β=0.05

99 23.2 0.053 0.05 (0.012) 21.7 0.031 0.051 (0.012) 23.0 0.050 0.05 (0.012)
98 23.4 0.058 0.049 (0.012) 20.8 0.022 0.051 (0.013) 23.0 0.051 0.049 (0.012)
97 23.7 0.063 0.048 (0.012) 19.5 0.011 0.051 (0.013) 22.9 0.049 0.048 (0.012)
95 24.7 0.090 0.046 (0.013) 17.6 0.005 0.050 (0.014) 23.1 0.054 0.046 (0.012)
82 29.7 0.254 0.032 (0.013) 13.3 0.000 0.041 (0.016) 24.8 0.100 0.033 (0.013)

σ2
α=0, µα = 0.1, β=0.1

99 23.7 0.056 0.099 (0.013) 21.3 0.021 0.100 (0.013) 22.9 0.042 0.099 (0.013)
98 24.5 0.081 0.098 (0.013) 20.4 0.017 0.100 (0.013) 23.1 0.047 0.098 (0.013)
97 25.9 0.119 0.096 (0.013) 19.0 0.009 0.100 (0.014) 23.0 0.050 0.096 (0.013)
95 29.9 0.260 0.091 (0.015) 17.2 0.005 0.098 (0.016) 23.5 0.062 0.092 (0.014)
83 49.9 0.765 0.065 (0.019) 14.2 0.004 0.080 (0.022) 28.7 0.221 0.069 (0.018)

Table 2: Mean Q
′

statistic and MR-Egger estimate β̂1E calculated 1st order, 2nd
order and modified 2nd order weights. Results calculated over 10,000 simulated data
sets. Type I error rate (T1E(Q

′
)) refers to the proportion of times Q

′
is greater than

the upper 95th percentile of a χ2
23 distribution.

Heterogeneity around the MR-Egger fit

Figure 3 (right) shows the power of Rücker’s Q to detect heterogeneity as a function
of all three weighting schemes when data are simulated with mean I2GX=98% and
β=0.1, but the pleiotropy variance σ2

α is allowed to be non-zero. As before, second
order weighting is seen to result in the lowest power, but the power loss is less dramatic
than in the IVW case.

Results

Figure 5 (left) shows a scatter plot of summary data estimates for the associations of 26
genetic variants with systolic blood pressure (SBP, the exposure) and coronary heart
disease (CHD, the outcome). SNP-exposure association estimates were obtained from
the International Consortium for Blood Pressure consortium (ICBP) [28]. SNP-CHD
association odds ratios were collected from Coronary ARtery Disease Genome-Wide
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Figure 4: Distribution of Q
′

statistics using 1st order, 2nd order and modified 2nd
order weights in simulation scenario 3 (left) and scenario 5 (right) of Table (2) re-
spectively.

Replication And Meta-Analysis (CARDIoGRAM) consortium [29]. These data have
previously been used in a two-sample summary data MR analysis by Ference et al
[22] and Lawlor et al [13], but we extend their original analysis here in by applying
our modified 2nd order weights and conducting a more in depth inspection of each
variants contribution to the overall heterogeneity. The mean F statistic for these data
is 61, and the I2GX statistic is 84%.

The ratio estimate for any individual variant is the slope joining its data point to
the origin. Using 1st order weights the IVW estimate for these data, which represents
the causal effect of a 1mmHg increase in SBP on the log-odds ratio of CHD is 0.053.
This is shown as the slope of a solid black line passing through the origin (note: the
origin is not visible in either plot because of a truncated x-axis). The MR-Egger re-
gression causal estimate obtained using 1st order weights is very close to zero (-0.002)
due to the detection of positive directional pleiotropy. If the causal effect were larger,
it would be tempting to apply a SIMEX correction to the MR-Egger estimate given
I2GX predicts an expected dilution of 16% in its estimate. However, this would have
little impact in absolute terms because the estimate itself is so close to zero.

Table 3 shows the results of applying the IVW and MR-Egger regression ap-
proaches to the data using all three weighting schemes. Point estimates and standard
errors are in good agreement across the different weights. All three schemes detect
significant heterogeneity about the IVW and MR-Egger fits (as quantified by Q and
Q

′
respectively). As expected, the observed heterogeneity is largest when using 1st

order weights, smallest when using 2nd order weights, and in between the two when
using modified 2nd order weights.
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Figure 5: Scatter plots of SNP-outcome associations Γ̂j versus SNP-exposure associa-
tions γ̂j. IVW slope shown as a black line, MR-Egger slope shown as a blue line. 1st
order weights used. Left: Full data. Right: with SNP rs17249754 removed.

When heterogeneity is detected by the IVW model, and is only partially mitigated by
applying MR-Egger regression, it is important to investigate whether the heterogene-
ity is contributed to by all SNPs, or if a small number of SNPs are responsible. Under
their respective null hypotheses, Q and Q

′
should follow χ2

L−1 and χ2
L−2 distributions.

Following on from this, each component of Q and Q
′

(Qj and Q
′
j) can be loosely

approximated by χ2
1 distribution. Both statements of course require the specification

of ‘correct’ weights. Figure 6 (top-left and top-right) shows Qj and Q
′
j under each

weighting scheme. Horizontal lines have been drawn to indicate the location of the
5th, 1st and 0.19th percentile of a χ2

1 in order to help assess the magnitude of the con-
tributions. The 0.19th percentile is derived as a 0.05 threshold adjusted for multiple
testing using the Bonferroni correction. From Figure 6, we see that the eighth SNP in
our list (rs17249754) is responsible for the vast majority of the excess heterogeneity
in both Q and Q

′
. Q8 ranges from approximately 24.5 to 28 and Q

′
8 ranges from ap-

proximately 16 to 19, depending on weighting. Variant rs17249754 sits in the ATPase
plasma membrane Ca2+ transporting 1 (ATP2B1) gene, which is involved in intra-
cellular calcium homeostasis, and is strongly associated with higher SBP. However, in
the CARDIoGRAM consortium it is associated with reduced CHD. It could be that
rs17249754 truly increases SBP in the ICBP population but decreases it in CARDIo-
GRAM, which would be a violation of the monotonicity assumption. Alternatively,
rs17249754 could be exerting a pleiotropic effect on CHD not through SBP in a con-
sistent manner for both the ICBP and CARDIoGRAM study populations, which is
then reflected in the CARDIoGRAM estimate. As previously discussed, incorporating
odds ratios into an MR analysis can lead to heterogeneity amongst causal estimates
due to non-collapsibility. However, this could only ever do so by shrinking estimates
towards zero, not changing their sign. We can therefore rule out this explanation here.
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Figure 6: Contribution to Cochran’s Q statistic and Rücker’s Q
′

statistic for the
complete data (top-left and top-right) and with SNP rs17249754 removed (bottom-left
and bottom-right).
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Method (weights) Estimate S.E. P-value Het. Stat (p)
Complete data

Causal estimate

IVW (1st) β̂IV W : 0.053 0.010 3.01×10−5 Q = 67.1 (1.03×10−5)

MR-Egger (1st) β̂1E: -0.002 0.031 0.94 Q
′

= 58.6 (1.00×10−4)

IVW (2nd) β̂IV W : 0.052 0.010 4.54×10−5 Q = 58.8 (1.54×10−4)

MR-Egger (2nd) β̂1E: -0.004 0.030 0.88 Q
′

= 51.1 (1.03×10−3)

IVW (Mod 2nd) β̂IV W : 0.054 0.010 2.40×10−5 Q = 62.8 (4.31×10−5)

MR-Egger (Mod 2nd) β̂1E: -0.000 0.031 1.00 Q
′

= 55.2 (2.92×10−4)
MR-Egger intercept

MR-Egger (1st) β̂0E: 0.033 0.018 0.075 -

MR-Egger (2nd) β̂0E: 0.033 0.017 0.069 -

MR-Egger (Mod 2nd) β̂0E: 0.032 0.018 0.083 -
Weighted median (mod 2nd)

Weighted Median β̂WM : 0.064 0.010 1.56×10−6 -

SNP rs17249754 removed

Causal estimate

IVW (1st) β̂IV W : 0.066 0.008 2.63×10−8 Q = 35.0 (0.068)

MR-Egger (1st) β̂1E: 0.0490 0.028 0.09 Q
′

= 34.3 (0.061)

IVW (2nd) β̂IV W : 0.063 0.008 4.06×10−8 Q = 30.6 (0.164)

MR-Egger (2nd) β̂1E: 0.0447 0.027 0.11 Q
′

= 30.0 (0.151)

IVW (Mod 2nd) β̂IV W : 0.066 0.008 2.90×10−8 Q = 32.8 (0.108)

MR-Egger (Mod 2nd) β̂1E: 0.049 0.028 0.09 Q
′

= 32.2 (0.095)

MR-Egger intercept

MR-Egger (1st) β̂0E: 0.010 0.015 0.51 -

MR-Egger (2nd) β̂0E: 0.011 0.015 0.48 -

MR-Egger (Mod 2nd) β̂0E: 0.010 0.015 0.52 -

SIMEX adjusted MR-Egger

MR-Egger (Mod 2nd) β̂0E: 0.006 0.018 0.76 -

β̂1E: 0.057 0.032 0.09 -
Weighted median (mod 2nd)

Weighted Median β̂WM : 0.065 0.010 1.18×10−6 -

Table 3: IVW, MR-Egger and Weighted Median analyses of the causal effect of
SBP on CHD risk using 1st order, 2nd order and modified 2nd order weights for
the complete data (top) and with SNP rs17249754 removed (bottom). β̂IV W is the
IVW estimate. β̂0E and β̂1E are the MR-Egger intercept and slope parameter esti-
mates respectively. β̂WM is the Weighted Median estimate. Q equals Cochran’s Q, Q

′

equals Rücker’s Q
′
. SIMEX refers to estimates obtained by the method of simulation

extrapolation.
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Since rs17249754 is driving the analysis to a large degree we opt to remove it in
a further sensitivity analysis. Figure 5 (right) and Table 3 shows the results. After
removal of rs17249754, MR-Egger regression does not detect the presence of substan-
tial directional pleiotropy. Consequently, its slope is in broad agreement with that
of the IVW estimate. The agreement is even closer after applying SIMEX correction
(results for the modified 2nd order weights only are shown in the last two rows of Ta-
ble 3). Only borderline evidence of residual heterogeneity in the data remains, with
the strongest evidence suggested by 1st order weighting. Figure 6 (bottom-left and
bottom-right) shows the updated contributions of each SNP to Q and Q

′
. If only 1st

order weighting were available, it might be tempting to exclude further variants from
the analysis. This is appropriately tempered by using the modified 2nd order weights
instead.

First order weights are also used as standard by other MR methods that are ro-
bust to pleiotropy, for example the Weighted Median estimate [31], β̂WM , that can
consistently estimate the causal effect when up to (but not including) half of the in-
formation in the analysis stems from genetic variants that are invalid IVs. Here, for
the first time, we calculate this estimate using modified 2nd order weights. These
are defined by first calculating β̂WM using 1st order weights, and then plugging them
into formula (8) in place of β̂IV W . Table 3 shows the results. Its estimate for the
causal effect both with and without rs17249754 is 0.063 with 0.065 respectively. This
analysis nicely illustrates a major strength of the weighted median is its robustness to
outliers, and why it naturally compliments both the IVW and MR-Egger approaches.

Discussion

In this paper we have demonstrated the limitations of 1st and 2nd order weighting
when used for IVW and MR-Egger regression analysis in two-sample summary data
Mendelian randomization, and suggested a simple modification to help address the
problem. Our simulations show that the new approximation will be most useful when
the causal effect is large, or the instruments are relatively ‘weak’, as measured by the
F statistic for IVW and I2GX for MR-Egger.

Modified 2nd order weights should also prove a more reliable tool for the detection
and removal of outliers in a given data set, as apposed to 1st order weights (which
may detect too many outliers) and 2nd order weights (that may detect too few).
In this paper we used heterogeneity statistics for outlier detection, but many other
test statistics calculated from a fitted model such as Cook’s distance and studentized
residuals can and have been used for this purpose in MR (see for example [30]). No
doubt our modified 2nd order weights would improve their performance too.

We demonstrated the use of modified 2nd order weights within the Weighted Median
estimator. A closely related pleiotropy-robust regression strategy termed the Mode
Based Estimate (MBE) [32] has recently been proposed that can consistenly estimate
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the true causal effect when the most common (modal) pleiotropic effect amongst a
set of SNPs is zero. 2nd order weights have been shown to be most effective for this
estimator so far, but our modified weights may improve its performance further still,
which is another topic for further investigation.

Modified 2nd order weights avoid having to make the NOME assumption when fitting
MR-Egger regression. This does not mean its estimates are immune to regression
dilution bias, although our simulations suggest the bias is smaller compared to 1st
order weights. Applying a SIMEX correction will attenuate the dilution further; R

code is provided in the appendix to implement this. We also provide code to calculate
a more general form of the I2GX statistic, that is specific to the particular weighting
scheme used.
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R code

R code to fit MR-Egger regression using the three weighting schemes is given below

# Pre-processing steps to ensure all

# gene--exposure estimates are positive

BetaYG = BetaYG*sign(BetaXG)

BetaXG = abs(BetaXG)

# 1st order weights

W1 = 1/seBetaYG^2

MREfitR1 = summary(lm(BetaYG ~BetaXG,weights=W1))

# 2nd order weights

W2 = 1/(seBetaYG^2 + (BIV^2)*seBetaXG^2)

MREfitR2 = summary(lm(BetaYG ~BetaXG,weights=W2))

# Modified 2nd order weights

BhatE1 = MREfitR1$coef[2,1]

W3 = 1/(seBetaYG^2 + (Bhat1^2)*seBetaXG^2)

MREfitR3 = summary(lm(BetaYG ~BetaXG,weights=W3))

Here BetaYG,seBetaYG, BetaXG and seBetaYG refer to the vectors of: SNP outcome
associations, their standard errors, the SNP exposure associations and their standard
errors respectively. In order to calculate the corresponding Q

′
statistic for modified

2nd order weights, the following code can be used:

phi_E3 = MREfitR3$sigma^2

QE3 = DF*phi_E3 # Q’ statistic

QEp3 = 1-pchisq(QE3,DF) # pvalue

# individual Q’ contribution vector

QE3ind = W3*(BetaYG - MREfitR3$coef[1,1] - MREfitR3$coef[2,1]*BetaXG)^2

R code to peform an IVW analysis using modified 2nd order weights is given below

# IVW analysis

BIV = BetaYG/BetaXG

W1 = 1/(seBetaYG^2/BetaXG^2)

BIVw1 = BIV*sqrt(W1)

sW1 = sqrt(W1)
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IVWfitR1 = summary(lm(BIVw1 ~ -1+sW1))

Bhat1 = IVWfitR1$coef[1]

DF = length(BIV)-1

# modified 2nd order weights

W3 = 1/(seBetaYG^2/BetaXG^2 + (Bhat1^2)*seBetaXG^2/BetaXG^2)

BIVw3 = BIV*sqrt(W3)

sW3 = sqrt(W3)

IVWfitR3 = summary(lm(BIVw3 ~ -1+sW3))

Bhat3 = IVWfitR3$coef[1]

phi_IVW3 = IVWfitR3$sigma^2

QIVW3 = DF*phi_IVW3 # Q statistic

Qp3 = 1-pchisq(QIVW3,DF) # p-value

# individual Q contribution vector

Q3ind = W3*(BIV - Bhat3)^2

In order to apply SIMEX correction to MR-Egger regression, the following code
can be used

library(simex)

Fit = lm(BetaYG~BetaXG,weights=W,x=TRUE,y=TRUE)

mod.sim1 = simex(Fit,B=1000,measurement.error = seBetaXG,

SIMEXvariable="BetaXG",fitting.method ="quad",asymptotic="FALSE")

summary(mod.sim1)

The value W can be substituted with any weighting scheme defined above.

We now provide R code to calculate the I2GX statistic under any scheme

Isq = function(y,s){

k = length(y)

w = 1/s^2; sum.w = sum(w)

mu.hat = sum(y*w)/sum.w

Q = sum(w*(y-mu.hat)^2)

Isq = (Q - (k-1))/Q

Isq = max(0,Isq)

return(Isq)

}

# General I^2 measure

Isq(BXG*sqrt(W),seBetaXG*sqrt(W))

24

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 5, 2017. ; https://doi.org/10.1101/159442doi: bioRxiv preprint 

https://doi.org/10.1101/159442
http://creativecommons.org/licenses/by-nd/4.0/


# e.g. W=W1 or W=W3

Comparison with the work of Thompson et. al

In related work, Thompson et al [20] also noted the poor performance of 2nd order
weights and, when estimating the causal effect in two-sample summary data MR.
They also proposed two methods for improving the performance of 1st order weights,
which we now summarise. Firstly, they showed that the ratio estimate for SNP j,
β̂j is positively biased by a factor approximately equal to 1 + 1/Fj, where Fj is the
F-statistic γ̂2j /σ

2
Xj. They used this result to derive a bias reduced estimate for the

ratio estimate

β̂j∗ = β̂j
Fj

1 + Fj
(18)

Secondly, they noted that a more precise estimate for the association between
SNP j and the exposure could be derived by combining the original estimate γ̂j with

a second estimate Γ̂j/β̂ via the inverse-variance weighted average:

γ̂∗j =
γ̂j/σ

2
Xj + β̂2Γ̂j/σ

2
Y j

1/σ2
Xj + β̂2/σ2

Y j

, (19)

We assessed the performance of using the improved precision formula (19) in pre-
vious simulation set up, firstly on its own. This was achieved by plugging in the
IVW estimate for β̂ into (19), which was calculated using 1st order weights. The
resulting estimate γ̂j∗ was then used to calculate (a) updated ratio estimates Γ̂j/γ̂j∗
and (b) updated 1st order weights γ̂2j∗/σ

2
Y j before re-estimating the causal effect and

Cochran’s Q. Next we assessed the additional benefit of incorporating bias correction
via formula (18) into the analysis. Note that this bias adjustment also made use of
the updated estimate γ̂j∗ in both the definition of Fj and β̂j. The Results for both
procedures are shown in Table (4).

Thompson et al’s improved precision formula is generally effective: It produces Q
statistics and associated p-values that are slightly conservative - the level of conser-
vatism increasing with either an increasing causal effect or a decreasing mean instru-
ment strength. Point estimates for the causal effect are also less affected by regression
dilution bias also. As expected, incorporating bias correction formula (18) into the
analysis produces causal estimates with minimal bias. However, it also has leads to
a dramatic instability in the distribution of Cochran’s Q statistic - its mean value
explodes unless the mean F statistic is very large.

We investigated two further methods: implementing bias correction on its own, as
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well as combining Thompson’s improved precision formula with our modified 2nd or-
der weights. Both approaches also led to severe instability in Cochran’s Q statistic,
thus ruling them out of further consideration. Further research is required to ascer-
tain whether this deficiency is intrinsic, or if can be circumvented with a suitable
modification. Further work would also be required to extend their approach to the
MR-Egger regression context.

Mean 1st order wj 1st order wj
Improved precision Improved precision + bias correction

F Q T1E(Q) β̂IV W (S.E.) Q T1E(Q) β̂IV W (S.E.)

No heterogeneity, β=0.1
100 23.2 0.037 0.100 (0.012) 24.1 0.052 0.101 (0.012)
61 22.7 0.032 0.100 (0.012) 4.5×106 0.082 0.102 (0.013)
40 21.7 0.022 0.099 (0.013) 7.×1012 0.222 0.103 (0.086)
25 20.3 0.014 0.097 (0.014) 1.5×1013 0.588 0.110 (0.26)
10 19.4 0.031 0.077 (0.016) 1.4×1022 0.984 -0.444 (53.4)

No heterogeneity β=0.05
100 23.7 0.041 0.050 (0.012) 25.3 0.057 0.05 (0.012)
61 23.6 0.043 0.050 (0.012) 2.3×105 0.107 0.051 (0.012)
40 23.2 0.036 0.050 (0.012) 3.7×1011 0.287 0.052 (0.045)
25 22.6 0.033 0.049 (0.013) 1.2×1014 0.697 0.05 (0.392)
10 21.9 0.041 0.041 (0.013) 1.1×1020 0.993 0.057 (5.823)

No heterogeneity β=0
100 23.9 0.050 0.00 (0.012) 27.3 0.067 0.00 (0.012)
62 23.9 0.046 0.00 (0.012) 1.6×106 0.111 0.00 (0.013)
40 24.0 0.050 0.00 (0.012) 7.7×1016 0.321 0.02 (1.918)
25 23.8 0.046 0.00 (0.012) 3.4×1012 0.763 0.00 (0.291)
10 23.3 0.041 0.00 (0.012) 4.0×1014 0.996 0.01 (0.873)

Table 4: Mean Q statistic and IVW estimate β̂IV W calculated using Thompson et al’s
improved precision formula (19) on its own, and in conjunction with bias correction
formula (18). Results calculated over 10,000 simulated data sets. Type I error rate
(T1E(Q)) refers to the proportion of times Q is greater than the upper 95th percentile
of a χ2

24 distribution.
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