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The CRISPR-Cas9 system has revolutionized gene editing both on single genes and in 

multiplexed loss-of-function screens, enabling precise genome-scale identification of 

genes essential to proliferation and survival of cancer cells. However, previous studies 

reported that an anti-proliferative effect of Cas9-mediated DNA cleavage confounds such 

measurement of genetic dependency, particularly in the setting of copy number gain1-4. 

We performed genome-scale CRISPR-Cas9 essentiality screens on 342 cancer cell lines 

and found that this effect is common to all lines, leading to false positive results when 

targeting genes in copy number amplified regions. We developed CERES, a 

computational method to estimate gene dependency levels from CRISPR-Cas9 

essentiality screens while accounting for the copy-number-specific effect, as well as 

variable sgRNA activity. We applied CERES to sets of screens performed with different 

sgRNA libraries and found that it reduces false positive results and provides meaningful 

estimates of sgRNA activity. As a result, the application of CERES improves confidence 

in the interpretation of genetic dependency data from CRISPR-Cas9 essentiality screens 

of cancer cell lines. 

Major efforts using loss-of-function genetic screens to systematically identify genes essential to 

the proliferation and survival of cancer cells have been reported1-9. Genes identified by these 

approaches may represent specific genetic vulnerabilities of cancer cells, suggesting treatment 

strategies and directing the development of novel therapeutics. The CRISPR-Cas9 genome 

editing system has proven to be a powerful tool to interrogate gene essentiality in cancer cell 

lines. Its relative ease of application, high rates of target validation, and increased specificity 

compared to RNA interference technology make it an ideal instrument for use in high-throughput 

functional genomic screening10. 

However, we and others have recently observed that measurements of genetic dependency in 

genome-scale CRISPR-Cas9 loss-of-function screens are influenced by the genomic copy 

number (CN) of the region targeted by the sgRNA-Cas9 complex1-4. Targeting Cas9 to DNA 

sequences within regions of high CN gain creates multiple DNA double-strand breaks (DSBs), 

inducing a gene-independent DNA damage response and a G2 cell-cycle arrest phenotype2. 

This systematic, sequence-independent effect due to DNA cleavage (copy-number effect) 

confounds the measurement of the consequences of gene deletion on cell viability (gene-

knockout effect) and is detectable even among low-level CN amplifications and deletions. In 

particular, this phenomenon hinders interpretation of CRISPR-Cas9 experiments in cancer cell 
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lines, which are frequently aneuploid and harbor large numbers of genomic amplifications and 

deletions. In these cell lines, amplified genes represent a major source of false positives2,3. 

Existing methods to handle the copy-number effect adopt filtering schemes4, which preclude 

examination of data from amplified regions and ignore the copy-number effect at low level 

alterations. Here, we present CERES – a method to estimate gene dependency from 

essentiality screens while computationally correcting the copy-number effect – enabling 

unbiased interpretation of gene dependency at all levels of CN. 

As part of our efforts to build a Cancer Dependency Map, a catalog of cell line-specific genetic 

and chemical vulnerabilities, we performed genome-scale CRISPR-Cas9 loss-of-function 

screens in 342 cancer cell lines representing 27 cell lineages (Supplementary Table 1) using 

the Avana sgRNA library11 (Supplementary Table 2) and assessed the effects of introducing 

each sgRNA on cell proliferation (Online Methods). After applying quality control measures, 

ROC analysis of sgRNAs targeting common core essential and nonessential genes12 

demonstrated high screen quality in all cell lines (Fig. 1a). We also reanalyzed published 

datasets of 33 cancer cell lines of diverse cell lineage (GeCKOv2)2 and 14 AML cell lines 

(Wang2017)4(Supplementary Fig. 1a).  

The copy-number effect was characterized in previous efforts in a limited number of cell 

contexts with measurements using different sgRNA libraries. We assessed the 342 cell lines 

screened in our dataset for sensitivity to Cas9-mediated cleavage as in Aguirre et al.2. In 

consonance with previous observations, every cell line in our panel was sensitive to the copy-

number effect, where sgRNAs targeting more genomic loci were on average more depleted, 

frequently to levels at or below the depletion of sgRNAs targeting cell-essential genes (Fig. 1b, 

Supplementary Fig. 1b). While this relationship held in all cell lines, some variability in the 

strength of effect could be explained by p53 mutational status (Supplementary Fig. 1c). 

To determine how this sgRNA-level effect translates into false positive gene dependencies, we 

ranked the genes in each cell line by the average depletion of their targeting sgRNAs (average 

guide score). In an example breast cancer cell line, HCC1419, high-ranking genes were 

enriched for both genes involved in fundamental cellular processes and genes with amplified 

CN (Fig. 1c). The depletion ranks of the 100 genes with the largest CN measurements were 

significantly higher than expected for the majority of cell lines (300/342 with FDR-corrected p < 

0.05, one-sample one-tailed K-S test; Fig. 1d) and the extent of enrichment was significantly 
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correlated with the average CN of these genes (Spearman ⍴ = 0.60, p < 2.2 x 10-16; 

Supplementary Fig. 2a), consistent with previous studies (Supplementary Fig. 2b). 

In order to decouple gene dependency from the effects of Cas9-mediated cleavage in sgRNA 

depletion data, CERES models each measured depletion value as a sum of unknown gene-

knockout and copy-number effects (Fig. 2). The copy-number effect is a function of the number 

of DNA cuts induced by the sgRNA, accounting for potential multiple alignments to the genome 

and the CN at each locus. The sum of these two effects is multiplied by a guide activity score, 

which estimates the degree to which the sgRNA induces the expected depletion effects and was 

included to lessen the impact of low-quality reagents11,13,14. CERES infers the gene-knockout 

effects, which represent the underlying gene dependencies in each cell line, as well as the 

copy-number effects and the guide activity scores by fitting the above model to sgRNA depletion 

and CN data (Online Methods). 

We applied CERES to our dataset of 342 essentiality screens and assessed the performance of 

the model by comparing CERES gene dependency scores to the uncorrected average guide 

scores. As expected, CERES markedly reduced the relationship between CN and gene 

dependency found in the uncorrected average guide scores (Fig. 3a, Supplementary Fig. 3a). 

We correlated dependency scores for each gene to its CN measurements before and after 

correction and found that CERES shifted the mean correlation to near zero (Supplementary 

Fig. 3b). CERES also improved the identification of essential genes in all 342 screens, as 

measured by the recall of cell-essential genes at a 5% false discovery rate (FDR)8, by an 

average of 21.8 percentage points (Fig. 3b, Supplementary Fig. 4) (Online Methods). 

Reassuringly, CERES preserved expected cancer-specific dependencies, even in amplified 

regions. In an example KRAS amplification on chromosome 12p of the DAN-G pancreatic 

cancer cell line, CERES removed the local enrichment of gene dependencies while preserving 

the essentiality of KRAS (Fig. 3c, Supplementary Fig. 5). Additionally, KRAS-mutant cell lines 

remained substantially enriched over wild type for KRAS gene dependency (Fig. 3d, 

Supplementary Fig. 6).  

While it is infeasible to experimentally validate the activity of all sgRNAs in a genome-scale 

library, sequence determinants have proven useful in the prediction of on-target activity11,15,16. 

The Avana sgRNA library was optimized using such predictions. Fittingly, CERES estimated 

higher guide activity scores on average for the Avana dataset relative to GeCKOv2, with a near 

nine-fold increase in the ratio of high- to low-activity sgRNAs (Fig. 4a). The guide activity scores 
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for the 5,044 sgRNAs shared between the two libraries showed substantial agreement 

(Spearman ⍴ = 0.53, p < 2.2 x 10-16), demonstrating that CERES captured a measure of sgRNA 

activity that is reproducible across independent screens of cell line panels (Fig. 4b, 

Supplementary Fig. 7). For both the GeCKOv2 and Avana libraries, we compared CERES 

guide activity scores to sequence-based predictions of sgRNA activity (Doench-Root scores) 

and found significant correspondence (Avana: Pearson ⍴ = 0.22, p < 2.2 x 10-16; GeCKOv2: 

Pearson ⍴ = 0.44, p < 2.2 x 10-16; Fig. 4c). Taken together, this evidence demonstrates that the 

guide activity scores inferred by CERES are useful for estimating gene-knockout effects and, 

furthermore, suggests that these scores could be helpful in the selection of reagents for follow-

up experiments. 

To identify cancer-specific genetic vulnerabilities, we used a metric of differential dependency to 

represent the strength of dependency in a cell line relative to all other lines screened (Online 

Methods). We assessed an upper bound on the number of false positive differential 

dependencies due to CN amplifications by calculating the fraction of amplified genes at every 

threshold of differential dependency across our dataset. In the uncorrected data, the fraction of 

amplified genes increased at stronger dependency thresholds, climbing above 30% at the 

highest levels of differential dependency (Fig. 5a, Supplementary Fig. 8a). By contrast, 

CERES results maintained a low prevalence of amplified genes at every level of differential 

dependency. We next used a similar procedure to examine unexpressed genes, expected to be 

functionally inconsequential, which represent an overt source of false positives if scored as 

differentially dependent. We found that CERES reduced the fraction of unexpressed genes at 

high levels of dependency from 7% to 1%, indicating a substantial improvement in specificity 

(Fig. 5b, Supplementary Fig. 8b). 

A dataset of this scale enables the discovery of genetic vulnerabilities specific to a subset of 

cancer cell lines defined by some cellular context, such as cell lineage. We hypothesized that in 

this setting, copy-number effects driven by recurrent CN alterations, even with small effect 

sizes, could introduce false positives. For each gene, we compared average guide scores in 

breast cancer cell lines to those of all other cell lines (Online methods). Indeed, significant 

differential dependencies in breast lines were enriched on chromosome 8q, which is recurrently 

amplified in breast tumors (Fig. 6a). The same analysis applied to CERES-corrected 

dependency scores yielded two 8q genes with significant differential dependency: TRPS1 and 

GRHL2 (Fig. 6b). Previous studies have implicated these transcription factors in breast cancer 

progression17,18, and analysis of expression levels of these and other transcription factors 
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suggest that they are likely to be truly differentially dependent in breast lines (Supplementary 

Fig. 9). We expanded this analysis to all cell lineages with recurrently amplified chromosome 

arms and quantified the enrichment of differential dependencies before and after CERES 

correction in each context. We observed that CERES reduced the fraction of differential 

dependencies on the recurrently amplified chromosome arm in 19 out of 24 such cases (Fig. 

6c) (Online Methods). 

Here we introduce the largest set of CRISPR-Cas9 essentiality screens to date and propose a 

methodology to estimate gene dependency while correcting for copy-number effects. CERES 

removes false positive results due to the copy-number effect, revealing underlying genetic 

dependencies and enabling identification of essential genes with improved specificity. 
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Figure 1: Genomic copy number confounds the interpretation of CRISPR-Cas9 loss-of-

function proliferation screens of cancer cell lines. (a) Screen quality for each cell line in the 

panel (n=342), as measured by area under the receiver operating characteristic curve (AUC) in 

discriminating between predefined sets of common core essential and nonessential genes. (b) 

For each cell line, the depletion of sgRNAs is regressed against the number of perfect-match 

genomic cut sites using a piecewise-linear fit. The slope of the fit is plotted and represents the 

average effect per expected cut on cell proliferation. Each cell line is scaled such that the 

median of sgRNAs targeting cell-essential genes is at -1, marked by a dashed line. (c) Genes 

are ranked by the mean depletion of targeting sgRNAs (average guide score) and plotted for an 

example cell line. A value of -1 represents the median of cell-essential genes, indicated by a 

dashed line. Below, depletion ranks of genes involved in fundamental cell processes and genes 
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at various ranges of CN amplification are shown. (d) The median and interquartile range (IQR) 

of depletion ranks for the 100 most amplified genes per cell line are plotted. Color indicates 

mean amplification level of these genes. The grey shaded area indicates the IQR of all genes.  
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Figure 2: Schematic of the CERES computational model. As input, CERES takes sgRNA 

depletion and CN data for all cell lines screened. During the inference procedure, CERES 

models the depletion values as a sum of gene-knockout and copy-number effects, multiplied by 

a guide activity score parameter. CERES then outputs the values of the parameters that 

produce the highest likelihood of the observed data under the model. 

  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 10, 2017. ; https://doi.org/10.1101/160861doi: bioRxiv preprint 

https://doi.org/10.1101/160861
http://creativecommons.org/licenses/by-nc/4.0/


 12 

 
Figure 3: CERES corrects the copy-number effect and improves specificity of CRISPR-

Cas9 essentiality screens, while preserving true gene dependencies. (a) Boxplots of gene 

dependency scores are shown across CN for uncorrected average guide scores and CERES 

gene dependency scores. Data are scaled as in Fig. 1b such that -1 represents the median 

score of cell-essential genes. (b) The recall of cell-essential genes at a 5% FDR of nonessential 

genes is plotted for each cell line before (red) and after (blue) CERES correction. Precision-

recall curves are inset for example cell lines with poor recall (bottom left) and good recall (top 

right) before CERES correction. (c) An example amplified region on chromosome 12p is shown 

for the DAN-G pancreatic cell line. The top track represents CN with amplifications shown in 

red. The middle track shows the uncorrected average guide score for each gene in this region, 

with the purple trend line representing the median value in each CN segment. KRAS 

dependency is highlighted in orange. The bottom track shows the CERES gene dependency 

score, with the trend line as above. (d) KRAS gene dependency and CN are shown for all cell 

lines after CERES correction, with mutant KRAS lines in orange. 
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Figure 4: CERES infers guide activity scores for each sgRNA. (a) sgRNAs are binned into 

groups with high (0.9-1), moderate (0.2-0.9), and low (0-0.2) estimated activity scores. The 

compositions of guide activity scores are shown for the set of screens performed with the 

GeCKOv2 sgRNA library and the Avana sgRNA library, which is more optimized for on-target 

activity. (b) For the set of 5,044 sgRNAs shared between the GeCKOv2 and Avana libraries, 

sgRNAs are ranked by guide activity scores in each dataset and are plotted against each other, 

with darker purple representing greater density of sgRNAs. (c) sgRNAs are binned by predicted 

on-target activity using the Doench-Root score. For each dataset, the composition of CERES-

estimated guide activity scores is shown for each Doench-Root bin. 
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Figure 5: CERES reduces false positive differential dependencies. (a) For all cell lines in 

our dataset, the percentage of genes on amplified regions (CN > 4) below a given differential 

dependency threshold is plotted for the uncorrected average guide score in red and the CERES 

gene dependency score in blue. (b) The percentage of unexpressed genes (log2RPKM < -1) 

below a given differential dependency score is plotted as in (a). 
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Figure 6: CERES reduces false positives in lineage-specific differential dependencies 

due to recurrently amplified chromosome arms. (a) Differential dependency in breast cancer 

cell lines is calculated as the difference in mean gene scores between breast lines and the rest 

of the cell lines screened. The distributions of differential dependencies in breast lines are 

plotted red for genes on chromosome 8q (commonly gained in breast tumors) and black for all 

other genes. Below, the differential dependency for each gene is plotted against the FDR-

corrected p-value, calculated from a student’s t-test, with colors as above. The dashed line 

represents an FDR of 5%. (b) Data is plotted for CERES-inferred gene effects as in (a). (c) 

Percentage of lineage-specific differential dependencies (FDR < 0.05) that are on the specified 

chromosome arms is shown for arms that are recurrently amplified in those lineages, before and 

after CERES correction. 
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