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shuffled centers were used to evaluate the enrichment of insulator proteins at the 

boundaries. 

For the evaluation of the co-localization of insulator proteins with TAD borders, 

we considered any insulator protein peak localized within 2 kb of the domain 

boundary as co-localized with that boundary. 

 

Prediction of domain boundaries 

 We used the function linear_model.LogisticRegression from the Python package 

scikit-learn (v0.18) to implement a logistic regression model similar to that described 

(19) to predict the domain boundaries using different combinations of epigenetic and 

insulator markers. The income variables were Z-transformed signals of different 

markers for each fragment from the modENCODE database, with an output value of 

0 indicating an intra-domain fragment and a value of 1 indicating a border-related 

fragment. Training sets and test sets were separated randomly with equal sizes using 

the cross_validation.train_test_split function. The Receiver Operating Characteristic 

curves (ROC curves) and Area Under Curve (AUC) values were calculated using the 

functions metrics.roc_curve and metrics.auc from scikit-learn. 

 

Determination of the DNA condensation within TADs 

 We calculated the average contact frequency of all pairs of fragments located 

inside each TAD as a measure of DNA condensation. The restriction fragments with 

no ligation products were removed from this calculation. To avoid complications 

arising from comparing domains of significantly different sizes, we compared only 

those domains whose size is between 5 kb to 20 kb, since for this range, there are a 

sufficient number of domains of each type. 

 

Calculation of the enrichment of TAD-TAD interactions 

For the evaluation of TAD-TAD interactions, an enrichment ratio matrix was first 

calculated by dividing the contact number of each pair of fragments by the average 

contact number of all pairs of fragments that have the same interaction distance, 
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binning the distances using a 200 bp window. An average enrichment ratio was then 

calculated for each pair of TADs by averaging all the enrichment ratios of all pairs of 

fragments localized in this pair of TADs. 

 

Data analysis of Hi-C data of human GM12878 cells 

We downloaded the GM12878 Hi-C data from the GEO database with accession 

number GSE63525. We determined the normalized Hi-C heatmap using the KR 

normalization factors. We used the Armatus software to annotate TADs in the 1 kb 

resolution data using a gamma value of 0.7. We also annotated large TADs at 5 kb 

resolution using different gammas (0.6 - 1.0) and the majority (70.9%) of boundaries 

of the TADs identified by Rao el at (24) were located within 2 bins of the Armatus 

domain boundaries. 
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Figure legends 

Figure 1. The Drosophila genome is fully partitioned into contiguous TADs including 

within previously annotated “inter-TADs” regions. 

(A) Heatmaps from the left arm of chromosome 3. The left panel shows a heatmap of 

a 2.8 Mb region of this arm at 20 kb resolution, revealing well-defined super-TADs 

(blue bars at the bottom) and inter-super-TADs (red bars at the bottom), consistent 

with previous findings (19). However, at the highest resolution permitted by the data, 

the heatmap shows that both the super-TADs (right upper panel) and the 

inter-super-TADs (right lower panel) are composed of small contiguous TADs. The 

blue (red) bars in these panels now refer to TADs (inter-TADs). (B) The size 

distribution of the TADs annotated from the fragment-limited resolution map. The 

median size of the TADs is 13 kb, much smaller than the size (140 kb) identified from 

previous lower resolution data. (C) The number of TADs within the super-TADs (blue 

bars) and inter-super-TADs (red bars). The super-TADs are found to consist of a range 

of TADs, mostly between 2 to 4, while there are generally between 1 to 4 TADs within 

the inter-super-TADs, where previous work concluded that there were no TADs.  

 

Figure 2. The TADs are demarcated by pairs of insulator proteins. 

(A) The locations of known Drosophila insulator proteins, together with the TADs 

identified in this work, are shown for a 200Kb segment of chr3R. The positions of 

Class I insulator proteins (that includes BEAF-32 and CP-190), as obtained from 

Flybase, are highly localized to the TAD borders. Also shown are the peak locations of 

the individual insulator proteins (BEAF-32, CP-190, and Chromator) characterized in 

the modENCODE project that are enriched at the TAD borders. However, only pairs of 

BEAF-32/CP190 or BEAF-32/Chromator are found to be exclusively associated with 

the TAD borders. (B) Venn diagram showing the genome-wide co-localization of these 

insulator proteins and insulator protein pairs at the TAD borders. There is a 

significantly greater exclusive association of the insulator protein pairs at TAD borders 

than of the individual proteins separately. (C) The enrichment of the insulator protein 

pairs at the TAD borders is further validated by the examination of the extent to 
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which the locations of the insulator protein pairs are predictive of TAD borders using 

logistic regression models. Shown are the receiver operating characteristics curves 

(ROC), with the area under the curve (AUC), reflecting the predictive power indicated 

in the inset of each panel. Both pairs of insulator proteins are highly predictive of TAD 

borders (left panel), while transcriptionally active epigenetic modifications or 

transcriptional levels (right panel) are poorly predictive.  

 

Figure 3. Epigenetic modifications only correlate with higher order folding of the 

TADs but not the folding of individual TADs.  

(A) The TADs could be classified into four major types according to the enrichment of 

15 histone modifications and non-histone chromosomal proteins within each TAD 

(Supplementary Materials). Shown is an example of the distribution of these types 

with active (orange bar below the heatmap), inactive (blue bar), polycomb (green 

bar), and undetermined (grey bar) chromatin within the TADs in a 350 kb region of 

chr2L. Inset: The extent of DNA condensation within the TADs, as determined from 

the sum of contact frequencies between loci within the TAD, is the same, regardless 

of the type of chromatin that is enriched within the TAD (A, active; I, inactive; P, 

polycomb). (B) Active and inactive TADs exhibit dramatically different tendencies to 

interact with neighboring TADs of the same type. The upper heatmap shows the 

positions of the TADs, while the lower heatmap shows the significance of the 

observed contacts, with those colored red (blue) exhibiting much greater (lower) 

interaction strength than expected by chance (materials and methods) in a 530 kb 

region of chr2R. (C) The relative interaction strength (as shown in (B)) between pairs 

of TADs, indicating that TADs containing active chromatin generally tend to avoid 

interacting with each other while those containing inactive or polycomb chromatin 

frequently interact with each other.  

 

Figure 4. The human genome is also partitioned into contiguous small TADs within 

previously described “inter-TAD” regions at least in part.  

Shown are four examples of Hi-C data of GM12878 lymphoblastoid cells determined 
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by Rao et al. (24). In each panel, the main figure is the heatmap of the indicated 

chromosomal position at 5 kb resolution, with the domains annotated by these 

authors indicated by the color bars above each figure. Note that there were smaller 

TADs within larger TADs identified in this previous work, reflected in the three 

different levels in the annotated TADs. The bars colored red reflect the inter-TAD 

regions while those colored blue are the TADs. The inset of each panel is an 

expanded region of an inter-TAD region showing that they consist of many smaller 

TADs, similar to what is observed in D. melanogaster. The TADs annotated using the 

Armatus software are shown below the heatmap. Also shown are the locations of 

CTCF (orange arrows) and cohesin components (Rad21 and Smc3, green and brown 

arrows respectively), as determined previously (24) showing that many of the 

borders of the smaller TADs identified here within these regions also co-localize with 

CTCF/cohesin.   
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