
1 

 

PaSD-qc: Quality control for single cell whole-genome 1 

sequencing data using power spectral density estimation 2 

Maxwell A. Sherman1, Alison R. Barton1, Michael Lodato2,3, Carl Vitzthum1, Michael E. 3 

Coulter2,3, Christopher A. Walsh2,3, and Peter J. Park1,4,* 4 

1Department of Biomedical Informatics, Harvard Medical School, 10 Shattuck St, Boston, MA 02115.  5 

2Division of Genetics and Genomics, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115. 6 

3Howard Hughes Medical Institute, Boston Children’s Hospital, 300 Longwood Avenue, Boston MA, 02115.  7 

4Ludwig Center at Harvard, 200 Longwood Ave, Boston, MA 02115.  8 

*To whom correspondence should be addressed (peter_park@hms.harvard.edu) 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 21, 2017. ; https://doi.org/10.1101/166637doi: bioRxiv preprint 

https://doi.org/10.1101/166637
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

Abstract: 20 

Single cell whole-genome sequencing (scWGS) is providing novel insights into the nature of genetic 21 

heterogeneity in normal and diseased cells. However, scWGS introduces DNA amplification-related 22 

biases that can confound downstream analysis. Here we present a statistical method, with an 23 

accompanying package PaSD-qc (Power Spectral Density-qc), that evaluates the quality of single cell 24 

libraries. It uses a modified power spectral density to assess amplification uniformity, amplicon size 25 

distribution, autocovariance, and inter-sample consistency as well as identifies aberrantly amplified 26 

chromosomes. We demonstrate the usefulness of this tool in evaluating scWGS protocols and in selecting 27 

high-quality libraries from low-coverage data for deep sequencing. 28 
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Background: 47 

Whole-genome DNA sequencing of single cells (scWGS) has recently been made possible by the 48 

introduction of single cell amplification methods. Multiple displacement amplification (MDA) employs a 49 

highly processive polymerase which can synthesize new molecules (amplicons) of ~10-100 kb. High-50 

quality MDA-derived data show that >90% of the human genome is amplified and 40-60% can be 51 

covered at >30X when the average depth is ~40-50X [1]. Copy number variations identified from low-52 

coverage (<5X) MDA data have been used to elucidate tumor evolution [2] and to profile mosaic copy 53 

number variation [3]. With the decrease on cost of deep whole-genome sequencing, more recently, high-54 

coverage (>30X) MDA data have allowed detection of somatic single nucleotide variants in the human 55 

brain [4]. Another protocol is Multiple annealing and looping based amplification cycles (MALBAC), 56 

which amplifies the genome in ~0.3-5 kb fragments and can cover ~50-90% of the human genome [5]. It 57 

has recently been proposed as a method for screening in-vitro fertilized embryos for genetic abnormalities 58 

prior to implantation [6, 7]. A third method based on DOP-PCR can amplify ~10% of the genome and is 59 

suitable for copy number variation detection but not single nucleotide variant detection [8]. 60 

 All scWGS amplification methods induce biases and artifacts. These include non-uniform read 61 

depth that can appear as copy number aberrations, under and over amplification of entire chromosomes, 62 

uneven amplification of the two alleles, and correlation of features at the amplicon scale (e.g. ~10-100 kb 63 

for MDA) [9, 10], as well as single nucleotide and indel mutations and random ligation of fragments that 64 

are hard to distinguish from inversions. These biases fluctuate depending on the exact amplification 65 

protocol used and the state of the isolated cell (Figure 1A). For example, heat lysis during DNA 66 

extraction can increase the rate of artefactual C>T mutations compared to alkaline lysis [11], and cells in 67 

the G2/M phase amplify more uniformly than cells in the G1/G0 phase [12]. These biases in the data can 68 

affect the accuracy of variants detected in downstream analysis, and new protocols are frequently 69 

proposed claiming to mitigate these biases and provide superior variant detection [13, 14, 15]. It is thus 70 

important to characterize the biases computationally and assess the quality of single cell data. 71 
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Despite the growing popularity of scWGS, few methods exist to perform this evaluation, and the 72 

few that do are almost exclusively concerned with estimating the uniformity of amplification. This itself 73 

is a non-trivial task because the true amplification process is masked by non-unique mappability, locus 74 

dropout due to amplification failure, or sampling bias during sequencing; additionally, read depth is 75 

highly correlated at positions spanned by the same amplicon. Current methods fail to account for these 76 

challenges. For example, several methods estimate read depth variance by binning reads [15, 16]. Such 77 

methods evaluate dispersion at a fixed genomic scale (the bin size), which fails to capture the correlation 78 

patterns of scWGS; resolving this requires re-binning at many scales, which is time-intensive and 79 

computationally expensive. More recently, an autocovariance (ACF) method has been proposed [10]. In 80 

theory, ACF is an appealing choice to capture the patterns in scWGS data because it measures 81 

correlations between observations within a dataset; however, in practice algorithms to estimate the ACF 82 

cannot easily be modified to account for regions of low mappability or locus dropout. Additionally, no 83 

standard implementations of these tools are available for incorporation into an scWGS pipeline. 84 

Here, we introduce a suite of tools to comprehensively measure scWGS data quality, in a package 85 

called PaSD-qc (Power Spectral Density-qc, pronounced “passed-qc”). Using techniques from digital 86 

signal processing to estimate the power spectral density (PSD) of a sample and correct for observation 87 

gaps due to non-unique mappability, assembly gaps, and locus dropout without the need for binning, 88 

PaSD-qc provides a robust assessment of amplification uniformity at all genomic scales simultaneously. 89 

Because our estimation method accounts for the uneven spacing of the data while concurrently reducing 90 

background noise, the PSD can be leveraged to obtain more accurate estimates of variance and 91 

autocovariance than other methods; to identify chromosomes which may be copy-aberrant due to 92 

amplification failure in a principled way; and to compare quality across jointly analyzed samples even at 93 

very low coverage (<0.1X). Furthermore, our statistical method can estimate the full distribution of 94 

amplicon sizes in a sample, which has not previously been possible. PaSD-qc can easily be incorporated 95 

into existing pipelines and by default summarizes the quality and properties of each sample in an 96 
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interactive HTML report. We use the tool to profile several different scWGS protocols, compare different 97 

samples from the same protocol, and select high-quality libraries from an initial set of low coverage 98 

(<1X) data for full-depth sequencing.  99 

 100 

Results: 101 

Characterizing the spatial correlation structure induced by whole-genome amplification 102 

Figure 1B provides an overview of PaSD-qc, and precise details of the algorithm are described in 103 

Methods. In brief, to mitigate issues of mappability, locus dropout, and sequencing bias, we extract read 104 

depth only at uniquely mappable positions covered by at least one read. The resulting signal is a time 105 

series (indexed by genomic position) with highly unevenly spaced observations. To infer the correlation 106 

patterns within this series, we apply the Lomb-Scargle algorithm [17, 18] to estimate the power spectral 107 

density (PSD) of the series. This method is one of the few which are capable of accurately analyzing 108 

correlation patterns of unevenly spaced time series data. We additionally apply a Welch correction [19] to 109 

minimize the noise of power spectral density estimation. 110 

 It is reasonable to ask (and was asked in [15]) whether the PSD is an appropriate approach given 111 

that it traditionally identifies periodic features when read depth is naturally an aperiodic signal. In fact, the 112 

PSD is mathematically equivalent to autocovariance, and for aperiodic signals, the PSD exactly estimates 113 

the variance of the generating process. See Supplemental Information (SI) for details. Thus, the smooth 114 

curves which result from our estimation method provide direct insight into the variance of scWGS 115 

amplification protocols at all length scales simultaneously.  116 

Illustrative examples of a bulk sample, an MDA sample, and MALBAC sample are shown in 117 

Figure 2A. Below a genomic scale of ~1 kb, the samples show a characteristic pattern arising from 118 

paired-end sequencing. For a read pair with insert size � starting at positon �, there will be an increase in 119 
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signal at ��  and ���� and a decrease in signal between the two reads. This results in periodicity at small 120 

genomic scales with the strongest periodicity at the mode of the insert size distribution (350 bp for the 121 

bulk sample shown). In fact, at small genomic scales, the PSD closely resembles the distribution of insert 122 

sizes in a sample (Figure S1). Above a genomic scale of ~1 kb, the bulk sample is virtually flat with low 123 

amplitude, indicating that, as expected, the coverage profile from bulk sequencing has low-variance and 124 

has no large-scale correlation structure. The slight increase in the PSD at scales >100 kb is an edge effect 125 

of the Welch correction. This edge effect is removed from scWGS PSDs by using an idealized bulk 126 

sample as a baseline (see Methods).  127 

The MDA and MALBAC curves have a more complex shape above the pair-end scale. To 128 

interpret these curves, consider an amplicon of length � starting at position �. The read depth signal ��  129 

will be correlated with ����  for � � �. How often a correlation at length � is observed depends on the 130 

number of amplicons with length � � �. If � is less than the smallest amplicon, then read depth ��  and 131 

����  will almost always be correlated, resulting in small local variance and thus a lower amplitude PSD at 132 

sub-amplicon scales. For length � greater than the largest amplicon, ��  and ����  are necessarily 133 

independent, resulting in a higher amplitude PSD at supra-amplicon scales, reflecting the unevenness of 134 

the amplification. The PSD will smoothly transition from the sub- to supra-amplicon variances precisely 135 

following the cumulative distribution of amplicon sizes. These patterns are apparent in Figure 2A. The 136 

MDA curve rises from ~5-100 kb and the MALBAC curve rises from ~1-5 kb, consistent with expected 137 

amplicon sizes for these protocols. Additionally, the supra-amplicon variance of the MALBAC library is 138 

lower than the supra-amplicon variance of the MDA library while the opposite is true of the sub-amplicon 139 

variances, reflecting that MALBAC provides more consistent amplification at positions far apart but that 140 

MDA is locally more uniform since two positions close together are likely to be spanned by a single 141 

amplicon.  142 

We are not the first to propose power spectral density estimation as a uniformity measure. 143 

However, prior estimation procedures [5, 13] require binning the data into 1 kb bins and do not take steps 144 
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to reduce background noise. This results in an inferior PSD estimate where resolution is limited to a 145 

minimum genomic scale of 2 kb (since the Nyquist frequency is 5 x 10-4), and fine scale differences 146 

between samples are obscured by the high level of background noise (Figure 2B). Additionally, the PSD 147 

was criticized as lacking reproducibility since a Fourier transform may not be stable in regions of zero 148 

read depth and of low mappability [15]. As stated before, PaSD-qc corrects for these regions, resulting in 149 

highly reproducible estimates (Figure S2).  150 

Estimating the distribution of amplicon sizes in scWGS data 151 

Since the dynamic region of the scWGS PSD curve reflects the cumulative distribution of amplicon sizes, 152 

this distribution can be estimated by fitting a properly scaled probability function to the PSD. The error 153 

function (erf) provides a particularly good fit (Figure 3A) and defines a density over the log amplicon 154 

sizes of the form �	
, ��
 (Figure 3B) where 
 and � are parameters estimated from the erf curve. In 155 

standard coordinates, the distributions are skewed with heavy tails extending into larger genomic ranges 156 

(Figure 3C). To confirm the accuracy of this estimation, we simulated an idealized amplification process 157 

on the p-arm of chromosome 3 using the amplicon size distribution estimated from the MDA curve as the 158 

generative model (see Methods). The resulting read depth signal was then analyzed using the PaSD-qc 159 

algorithm. Figure 3D shows the results of the simulation (red curve) along with the true estimate (green 160 

curve); Figure S3 shows the simulated curve for the MALBAC sample. In theory, any properly scaled and 161 

shifted sigmoidal cumulative distribution function can be used for this density estimation. We 162 

additionally tested the logistic distribution and gamma distribution as possible candidates, but found that 163 

the erf function produced the most consistent estimates (Figure S3). 164 

 The median and percentiles of the amplicon sizes per sample are inferred using Monte Carlo 165 

simulation (see Methods). For the MDA sample, the median amplicon size is 16.7 kb and 95% of all 166 

amplicons fall between 3.3 and 89.0 kb in size; for the MALBAC sample, the median amplicon size is 2.5 167 

kb and 95% of all amplicons fall between 1.1 and 5.6 kb in size (Figure 3C). We additionally profiled the 168 

amplicon distribution of 35 samples from [4] and 14 samples from [20] and found that while distributions 169 
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are consistent between samples amplified with the same protocol, they are divergent between different 170 

protocols (Figure 3E); samples using the Qiagen REPLI-g Single Cell Kit with heat lysis [20] have a 171 

smaller median amplicon size than samples using Epicenter RepliPHI Phi-29 with alkaline lysis [4] (17.5 172 

± 1.3 kb vs. 5.9 ± 0.5 kb, p-value: 1.2e-9 by Kolmogorov-Smirnov test). We profiled 4 samples also 173 

profiled in that study and found that our estimated median amplicon size was consistent with their 174 

characteristic length scale estimate (Table S1). Although the characteristic length scale of correlation has 175 

been calculated before [10], no other method estimates the full distribution of amplicon sizes in scWGS 176 

data. 177 

Comparison to existing scWGS quality control metrics 178 

The autocovariance function (ACF) of scWGS data has previously been proposed as a quality metric. 179 

While the ACF can be calculated directly from unevenly spaced time series data in theory, no 180 

computationally efficient algorithm exists to perform the estimation, and implementations are either time 181 

intensive, memory intensive, or both. Additionally, the statistical power at each lag varies and no 182 

theoretical results exist on the consistency of the unevenly spaced ACF estimator. However, it is possible 183 

and theoretically justified to calculate the ACF from the PSD (see SI). PaSD-qc implements an efficient 184 

algorithm based on this principle (see Methods). 185 

 To compare the performance of the PaSD-qc ACF against the directly calculated estimate, we 186 

analyzed all 16 single cell samples from the “1465” individual in [4] using both methods (Figure 4A). 187 

These samples were pair-end sequenced with an average insert size of 350 bp. The PaSD-qc ACF 188 

estimate consistently identifies the peak in correlation expected at this scale; the direct estimation fails to 189 

capture this feature. Additionally, the autocorrelation should oscillate around zero beyond the largest 190 

amplicon size. While this behavior is present in the PaSD-qc ACF, the direct estimation remains positive 191 

beyond 1 mb, a genomic scale far larger than the upper amplicon size limit of the Phi-29 polymerase used 192 

in MDA. This empirically demonstrates the potential inaccuracy of directly calculating the ACF from 193 

highly unevenly spaced observations and illustrates how PaSD-qc surmounts this limitation. 194 
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 Additionally, the ACF at lag zero (equivalently the integral of the PSD) provides an estimate of 195 

the overall variance. This dispersion estimate outperforms the other commonly used dispersion estimate, 196 

median absolute pairwise difference (MAPD) [16, 21]. MAPD is calculated by binning the read depth 197 

signal into fixed-width bins, calculating the normalized copy number in each bin, and taking the median 198 

of the pair-wise differences between all neighboring bins. We calculated MAPD scores at a range of bin 199 

sizes (Figure 4B) and the PaSD-qc PSD estimates (Figure 4C) for all “1465” and “4643” samples from 200 

[4]. Both reveal “1465” samples have higher supra-amplicon variance than “4643” samples. However, 201 

calculating MAPD even at a single bin size is computationally intensive; as such, it is usually calculated 202 

only for a single bin size, often 50 kb. At this scale, MAPD fails to distinguish a difference between the 203 

sets of samples (Figure 4D, p-value: 0.11 by Kolmogorov-Smirnov test). However, the PaSD-qc variance 204 

readily discriminates the two sets (Figure 4E, p-value: 1.7e-6 by Kolmogorov-Smirnov test). 205 

Identification of chromosomes with copy number altered due to aberrant amplification  206 

The close relationship between a power spectral density estimate and a normal distribution [22] permits 207 

the calculation of a statistical distance measure, the symmetric Kullback-Leibler (KL) divergence, 208 

between two spectra (see Methods). For a given sample, PaSD-qc identifies chromosomes with aberrant 209 

amplification patterns by calculating the distance of each chromosome’s PSD from the sample-average 210 

PSD. A chromosome is considered aberrant if it’s KL-divergence is two standard deviations beyond the 211 

sample median across all chromosomes.  212 

We demonstrate how this method can identify false-positive chromosomal copy alterations by 213 

analyzing the “1465” neurons from [4]. This set of samples is informative as it includes a high coverage 214 

bulk sample from the same tissue to establish a true copy profile. PaSD-qc identifies chromosomes 15-17 215 

and 19-22 as inconsistently amplified in at least half of the samples (Figure 5A, Table S2); sex 216 

chromosomes are ignored in this analysis. Except for chromosome 15, each of these chromosomes is 217 

called as significantly copy-altered in at least 25% of samples (Figure 5B, Table S2) by the BICseq2 218 

algorithm [23]. If a whole chromosome deletion is present in at least 25% of cells, that deletion should be 219 
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apparent in bulk sequencing; however, bulk analysis of the tissue reveals all chromosomes to be copy 220 

neutral, indicating that the single cell copy alterations are artifacts. Different scWGS protocols show 221 

different patterns of aberrantly amplified chromosomes (Figure S4). 222 

Discriminating high- and low-quality samples 223 

We additionally profiled three newly amplified samples from the “1465” individual. Prior analysis 224 

showed these samples to be of low quality (Figure S5). Comparing them to high-quality samples from 225 

“1465” and “4638” provide an illustrative example of how PaSD-qc distinguishes high- and low-quality 226 

samples. Not only are the PSDs distinguishable by eye (Figure 6A), but the poor-quality samples also 227 

have a wider distribution of amplicon sizes and smaller median amplicon size (Figure 6B). Additionally, 228 

using the symmetric KL-divergence, PaSD-qc clusters the libraries based on amplification behavior 229 

(Figure 6C). The clustering correctly groups samples by high- and low-quality and further by biological 230 

origin. Finally, PaSD-qc can use the symmetric KL-divergence to probabilistically assign samples to 231 

different categories (e.g., high- and low-quality) using pre-computed gold-standard spectra. The toolbox 232 

includes methods which allow users to generate these gold-standard spectra from their own data. PaSD-qc 233 

can fully and accurately profile samples with coverage as low as 0.5X, and it provides accurate sample 234 

clustering and category assignment with coverage as low as 0.1X (Figure S6). 235 

 236 

Discussion: 237 

Here we have demonstrated the effectiveness of PaSD-qc to comprehensively evaluate the quality and 238 

amplification properties of scWGS data. Although several studies have recently compared the uniformity 239 

of different scWGS protocols [21, 24, 25], each study uses its own collection of statistics, making the task 240 

of determining the superior protocol difficult. We believe PaSD-qc represents an important step forward 241 

for the field as it provides a standardized suite of analyses that researchers can easily insert into any 242 

pipeline. In particular, PaSD-qc introduces novel methods to estimate the full distribution of amplicon 243 
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sizes in a sample, identify individual chromosomes which were poorly amplified, and compare samples 244 

based on amplification behavior.  245 

These analyses not only allow comparisons across amplification protocols but also provide an 246 

important starting point for variant analysis. For example, it was recently demonstrated that the 247 

correlation in allelic balance induced by the large amplicons of MDA can be exploited to increase the 248 

accuracy of single cell single nucleotide variant (SNV) calling [11]. Dong et al. proposed a method 249 

employing a kernel smoothing algorithm that requires a user-defined bandwidth to compute the expected 250 

balance at a given genomic locus. The length of the bandwidth reflects the user’s belief about the 251 

maximum distance at which informative correlation exists, and the authors suggest using a fixed 252 

bandwidth of 10 kb for all samples. However, PaSD-qc provides a principled, data-driven strategy to 253 

assign a tailored bandwidth to each individual sample as the 95% upper bound on amplicon sizes 254 

naturally defines a maximum correlation distance.  255 

Additionally, our results address the question of whether in vitro amplification of the human 256 

genome by the Phi-29 MDA polymerase [26] produces amplicons of 10-100 kb as documented in 257 

bacterial genomes [27]. We found that some protocols approach the upper bound while others produce far 258 

smaller amplicons, with the lower bound in the 1-5 kb range. This has important consequences for PacBio 259 

or 10X Genomics sequencing on single cells in which fragments many kilobases in length are required. In 260 

particular, only some protocols may consistently produce large enough amplicons to make long-insert or 261 

haplotype-based sequencing possible. 262 

 Our results demonstrate that single cell amplification methods can artifactually induce whole 263 

chromosome copy alterations due to systematic under-amplification. Patterns of under amplification 264 

appear to be consistent across the same protocol but to vary between different protocols. As scWGS is 265 

becoming an increasingly popular choice to characterize copy number alterations in both research and 266 

clinical settings [6, 16, 20], the ability to identify false-positive copy changes is important. In addition, 267 

our results suggest that high-quality MDA data are likely yield accurate calls for small CNVs (smaller 268 
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than its amplicon sizes), as its sub-amplicon variance approaches that of bulk sequencing. Prior studies 269 

have focused on the detection of large copy alterations; none have specifically examined suitability for 270 

very small CNV calling. 271 

 Lastly, full mutational analysis at the single cell level requires high-coverage (>30X) sequencing, 272 

but the uneven quality of scWGS data, primarily due to the variable quality of cells, has often resulted in 273 

only a portion of the data generated being usable. The ability to accurately characterize data quality from 274 

low-coverage data suggests that a cost-effective approach in scWGS data generation is to screen a large 275 

number of cells at very low coverage (e.g., <0.1X) and select only a small number of high-quality 276 

candidates for additional sequencing. PaSD-qc provides an efficient computational framework to perform 277 

this evaluation. 278 

 279 

Conclusion: 280 

High-coverage scWGS enables identification of single nucleotide variants and other mutations at the 281 

single cell level, but mitigating the biases arising from whole-genome amplification remains a challenge. 282 

The proposed statistical method allows a detailed characterization of the data quality for scWGS datasets, 283 

aiding in selection of appropriate protocols and ensuring the fidelity of downstream analysis. 284 

  285 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 21, 2017. ; https://doi.org/10.1101/166637doi: bioRxiv preprint 

https://doi.org/10.1101/166637
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

Methods: 286 

Data: 287 

MDA data for “4638” (Brain A), “1465” (Brain B), and “4643” (Brain C) were previously obtained by 288 

our group [4]. Additionally, three muscles cells from the “1465” individual were isolated, amplified, and 289 

sequenced as in that study. Fourteen additional MDA samples (C1a/b, C2a/b, C3a, N1a/b, N2a/b, N3a, 290 

N4a/b) were obtained from [20] (Short Read Archive accession number SRP052954). MALBAC samples 291 

were obtained from [5]. In Figure 2, the bulk sample is bulk cortex from “1465”, the MDA sample is cell 292 

30 from “1465”, and the MALBAC sample has the SRA accession number SRX204745. All data were 293 

downsampled to 1X using SAMtools prior to analysis. 294 

Power spectral density estimation 295 

Starting with a BAM file, read depth for each arm of each chromosome is extracted as the time series 296 

���
	�
 � 	��� , ��� , … , ���
 where � is the chromosome, � is the chromosome arm and ��  is the start 297 

position of a uniquely mappable read. Uniquely mappable positions for the hg19 genome were download 298 

from the UCSC genome browser. By default, PaSD-qc uses mappability tracks calculated for 100 bp 299 

reads. Any series with fewer than 10 million observations is removed from further analysis. Each series 300 

���
	�
 is then divided into � windows of length � overlapping by � positions. By default, � � 1 � 10� 301 

and � � 5 � 10�. The Lomb-Scargle algorithm [17, 18] is used to calculate the power spectral density, 302 

���,
, for each ���,

	�
 at eight thousand frequencies, �, evenly spaced from 1e-6 to 5e-3. The PSD for 303 

each chromosome is then estimated as 304 

��	�
 � ∑ ���,
	�
�

�
 � ∑ ��	�
�

��


� � �   
where � and � are the number of windows on the   and ! arms of chromosome �, respectively. The 305 

average PSD for an individual sample is then calculated as �	�
 � median(��	�
).  306 
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The mathematical details of Lomb-Scargle PSD estimation are described in SI. The theoretical 307 

justification for the power spectral density as a measure of variance in an aperiodic signal is also given in 308 

SI. 309 

Normalizing and plotting power spectral densities 310 

To remove edge effects and effects arising purely from sequencing, we take an idealized bulk sample as 311 

the baseline for the read depth power spectral density. The idealized bulk PSD, ��, was derived by fitting 312 

a lowess curve to the bulk PSD shown in Figure 2A. The spectral density for each single cell sample is 313 

then normalized using the decibel transform as 314 

*+	�
 � 10 � log
� �	�

��	�
 . 

This transform is standard in digital signal processing to remove a background signal. 315 

 Traditionally, power spectral densities are plotted as a function of frequency. However, for the 316 

genomic read depth signal, frequency takes on the unintuitive units of inverse genomic scale (1/bp). We 317 

instead choose to plot the PSD as a function of period, 1/�. This results in the familiar units of genomic 318 

scale (bp) on the x-axis. We believe this eases interpretation, especially for those unfamiliar with power 319 

spectral densities. 320 

Estimating the distribution of amplicon sizes from the power spectral density 321 

As motivated in “Results”, the dynamic portion of the scWGS PSD curve reflects the cumulative 322 

distribution of the amplicon sizes in that sample. This distribution can thus be estimated by fitting a 323 

linearly scaled cumulative distribution function to this dynamic region. In practice, which distribution 324 

function should be fit is governed by two principles: 1) how tractable is fitting the curve using modern 325 

gradient descent algorithms, and 2) how well does the estimated distribution reproduce the original data. 326 

The first problem is one purely of computation and amounts to whether the distribution function has a 327 

closed-form solution or easily approximated integral solution. We tested three distributions which fit this 328 
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criterion: the normal (erf), logistic, and gamma distributions. To solve the second problem, we used the 329 

estimated density to simulate an idealized amplification process and compared the PSD of the idealized 330 

process to that of the original sample. The simulation procedure is described in the section below. We 331 

found the normal (erf) distribution best reproduced the data.  332 

Let 1 � 10 � log
� ����

�����
  and � � 2log
��. The dynamic region of the curve is fit as 333 

y 4 5 � +
√7 8 e���������� *�.�

��

 

The log-transformed density of the amplicon sizes is then estimated as �	
, ��
. To estimate the median 334 

and 95% bounds, we draw 100,000 observations from the above distribution and calculate the median and 335 

percentiles of 910�:
��



��
, where ; is a simulated observation. 336 

Simulating an idealized amplification process 337 

Let  	· |Θ
 be the log-distribution of amplicon sizes estimated using the above method. For a given 338 

chromosome arm, an idealized amplification process is simulated using the following algorithm: 339 

1. Initialize a vector, ?, of length equal to the length of chromosome arm with all entries zero. 340 

2. Randomly simulate an amplicon size as @ � 10� where ;~ 	· |Θ
. 341 

3. Randomly choose a starting position B, where B~Unif	�, E
 where � and E are the start and end 342 

coordinates of the chromosome arm 343 

4. Increase the values of the entries of ? overlapped by the amplicon by one 344 

a. Note: if B � @ F E, the simulated amplicon is discarded 345 

5.  Repeat 2-5 until the desired average depth of coverage is reached.  346 

a. Depth of coverage is calculated as ∑ ?����
��� /	E 2 �
.  347 

6. Randomly choose G non-zero observations from ? where G is the number of non-zero 348 

observations from the chromosome arm in the original data. 349 
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The PSD of the resulting simulated read depth signal is then estimated and normalized as described 350 

above. To account for total power differences and mean shifts between the simulated data and the true 351 

data due to the idealized nature of the above algorithm, we normalize each curve by the maximum 352 

observed power and mean shift each curve such that �	10��
 � 0. We chose to use the p arm of 353 

chromosome 3 for simulation purposes as in our experience it is a large arm with highly consistent 354 

amplification across samples. 355 

Estimating the autocovariance function 356 

The autocovariance function, H, estimates the covariance of a time series against itself at lags �. As 357 

derived in SI, the real-valued sample autocovariance can be estimated from the PSD as 358 

H	�
 �  8 cos	27��
�	�
 d�


�

�


�

. 

This integral can be quickly and accurately estimated numerically using any modern quadrature 359 

technique. We use Simpson’s rule. 360 

 To directly calculate the ACF from unevenly space time series data, we define the “observation” 361 

function as 362 

L	�
 �  M1, if ��  observed0, otherwise . T 
For lag � we construct the set U� � (��  | L	� � �
 � 1), which is the set of all observations such that an 363 

observation at a distance of � is also present. The sample autocovariance is then calculated as 364 

HV	�
 � 1
|U�| W 	�� 2 �X
	���� 2 �X


��� �

 

where �X is the sample mean of the time series and |U�| denotes the size of U� . 365 

Comparing the behavior of different spectra 366 

Given two probability densities,  
 and  � and a vector of observations, Y, the Kullback-Leibler 367 

divergence is an informatic dissimilarity measure between the two densities and is defined as  368 
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G�	 
,  �
 � Z!
 [ln p
	]

p�	]
^ . 

It can be shown (see SI) that the Kullback-Leibler (KL) divergence between two PSDs is 369 

G�	�
, ��
 � W 2ln |�
	��
|
|��	��
| � ��	��
�
�
	��
 2 1

�"�	"


�

. 

The KL-divergence is not a true distance metric as G�	�
, ��
 _ G�	��, �

. Following [22], we define the 370 

symmetric divergence between to spectra as 371 

*	�
, ��
 ` 1
� aG�	�
, ��
 � G�	��, �

b 

� 1
� W �
	��
��	��
 � ��	��
�
	��
 2 2

�"�	"


�

 

where � is the total number of frequencies in the sum. This value is reflexive and always non-negative 372 

(see SI); thus * is a principled statistical distance metric between two spectra. 373 

 To identify aberrantly amplified chromosomes, we calculate *	�, ��
 for each chromosome of a 374 

sample. We then calculate the median divergence and the median absolute difference of the divergences. 375 

A chromosome is considered aberrant if its divergence is greater than the sum of the median and two 376 

times the median absolute difference. To cluster samples by behavior, the pairwise divergence is 377 

calculated between each pair of sample PSDs. The resulting symmetric distance matrix is then used to 378 

perform hierarchical clustering. 379 

Estimating median absolute pairwise difference 380 

The BICseq2 algorithm [23] was used to calculate the copy number in bins of 1 kb, 5kb, 10 kb, 50 kb, 381 

100 kb, 500 kb, and 1 mb for all “1465” samples. Estimates were corrected for mappability and GC 382 

content. For each bin size, MAPD is calculated as median(|c�� 2 c���
|)���� , where c�� is the copy 383 

number in the ith bin and d is the total number of bins. 384 

Estimating chromosome-level copy number 385 
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The BICseq2 algorithm was used to calculate the copy number in bins of 500 kb normalized for 386 

mappability and GC content. The copy number for each chromosome was taken to be the median copy 387 

number over all bins overlapping that chromosome. Additionally, BICseq2 automatically assigns a p-388 

value to the significance of the copy change, and a chromosome was considered significantly copy altered 389 

if the assigned p-value was less than 0.05. 390 

Implementation 391 

PaSD-qc is implemented in python. It uses SAMtools to extract coverage from bam files and the astropy 392 

package [28] to implement an e	d · log d
 Lomb-Scargle algorithm. The function curve_fit in the 393 

scipy module is used to fit the modified erf function to the scWGS PSD. Clustering of samples is 394 

performed by the linkage function also in the scipy module. PaSD-qc parallelizes across samples for 395 

efficient multi-sample analysis. Source code, documentation, and examples – including all data and code 396 

to reproduce the figures in this manuscript – are available at https://github.com/parklab/PaSD-qc. 397 

 398 

Abbreviations: 399 

scWGS: single cell whole-genome sequencing 400 

PSD: power spectral density 401 

ACF: autocovariance function 402 

MDA: multiple displacement amplification 403 

MALBAC: multiple looping and annealing based amplification cycles 404 

KL-divergence: Kullback-Leibler divergence 405 

CNV: copy number variation 406 
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SNV: single nucleotide variation 407 

Erf: error function 408 
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Figure legends: 538 

Figure 1: Overview of single cell whole-genome sequencing and sources of artifacts, and the PaSD-539 

qc pipeline. A. Schematic overview of single-cell whole genome sequencing and the artifacts created by 540 

whole-genome amplification. The extent and patterns of the biases depend on the cell condition (high- or 541 

low-integrity) and on the scWGS protocol used (protocol A or protocol B). The pink triangles in the 542 

“Large-Scale Feature Correlation” represent genomic events (e.g., single nucleotide variants) which are 543 

spanned by a single amplicon and are thus correlated. The only correlation pattern present in bulk 544 

sequencing is due to paired-end sequencing, represented by positions marked “A” and “T” spanned by the 545 

mate pair. B. Schematic overview of the PaSD-qc pipeline. Read depth is extracted from bam files at 546 

uniquely mappable positions. Red rectangles represent regions where the true read depth is unknown due 547 

to low mappability, locus dropout, or sequencing bias. PaSD-qc uses a custom power spectral density 548 

estimation procedure to accurately estimate the correlation patterns in the data, and these patterns are then 549 

used to assess amplification properties and quality control measures. By default, the results are 550 

summarized in an interactive HTML report. 551 

Figure 2: Using power spectral density to infer sample-specific amplification properties of scWGS 552 

data. A. PaSD-qc power spectral densities for a bulk sample (blue), MDA sample (green), and MALBAC 553 

sample (purple). The very low noise of the estimates allows amplification properties of the three samples 554 

to be inferred, including the paired-end insert size distributions (Figure S1), the range of amplicon sizes 555 

for MDA (~5-100 kb) and MALBAC (~1-5 kb), and the sub- and supra-amplicon variances of the two 556 

amplification protocols. Interestingly, whereas MDA has a higher supra-amplicon variance than 557 

MALBAC, its sub-amplicon variance is considerably lower.  B. Power spectral density estimates using 558 

the algorithm from Leung et al, 2016 [13]. A similar algorithm is used in Zong et al, 2012 [5]. 559 

Background noise dominates the estimates making feature extraction infeasible. Resolution was limited to 560 

2 kb because the data were binned into 1 kb bins as suggested per those algorithms. 561 
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Figure 3: The distribution of amplicon sizes can be directly estimated from the power spectral 562 

density. A. MDA (green) and MALBAC (purple) curves as in Figure 2 along with the inferred error 563 

function (erf) fit of the dynamic region (red), the median amplicon size (pink stars), and 95% bounds on 564 

amplicon sizes (yellow stars). B,C. Distributions of inferred amplicon sizes in the MDA and MALBAC 565 

sample. Densities are normally distributed in a log scale (B), but highly skewed in standard coordinates 566 

(C). D. The average power spectral density (red) resulting from ten simulated amplification processes 567 

using the MDA density shown in C as the generative distribution. The shaded region represents the 95% 568 

confidence interval and the green curve corresponds to the original data. The MALBAC fit and fits using 569 

other distributions are shown in Figure S3. E. The average amplicon size distributions for 35 samples 570 

from Lodato et al, 2015 [4] (green) and 14 samples from Zhang et al, 2015 [20] (blue) reveal that 571 

different MDA protocols produce different amplicon size distributions, but a single protocol produces 572 

consistent amplicon size distributions across samples (shaded regions represent 95% confidence intervals 573 

around the average). 574 

Figure 4: The PaSD-qc variance measure outperforms prior dispersion estimates. A. Average 575 

sample autocovariance with 95% confidence intervals for the 16 “1465” samples from Lodato et al, 2015 576 

[4] as calculated by PaSD-qc (blue) and by direct estimation (gold). See text for a comparison. B. 577 

Average MAPD scores with 95% confidence intervals calculated for seven bin sizes ranging from 1 kb to 578 

1 mb for 16 “1465” samples and 11 “4638” samples from Lodato et al, 2015. C. The average power 579 

spectral density with 95% confidence intervals for the same samples. D. Densities for the MAPD scores 580 

of the two sets of samples at 50 kb, the standard bin size at which the score is calculated. At this bin size, 581 

MAPD cannot distinguish behavior of the two sets of samples. E. Densities of PaSD-qc variance for the 582 

two sets of samples are significantly different.  583 

Figure 5: Identification of false-positive chromosomal copy changes due to poor amplification.  A. 584 

boxplots of the KL divergence of each autosome from the sample-average PSD for the 16 “1465” 585 

samples. Chromosomes are labeled as failed (red) if PaSD-qc identifies the chromosome as aberrantly 586 
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amplified in at least half of the samples (Table S2). B. the average copy number across all samples as 587 

inferred by the BICseq2 algorithm. Errorbars represent standard deviation across all samples. 588 

Chromosomes are considered copy aberrant if BICseq2 identifies a significant (p-value < 0.05) alteration 589 

in at least 25% of samples (Table S2). A chromosomal deletion in at least 25% of cells should be 590 

identifiable in bulk sequencing. C. chromosome copy profile of a bulk sample from the same tissue as the 591 

single cell samples. All chromosomes are copy neutral. 592 

Figure 6: PaSD-qc separates high-quality from low-quality samples and groups similarly behaving 593 

libraries. A. power spectral densities for three low-quality (red) and six high-quality libraries (green). B. 594 

Amplicon size density plots for the nine samples. C. Hierarchical clustering using the symmetric KL-595 

divergence correctly groups the samples based on both quality and biological origin. 596 
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