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ABSTRACT

A cognitive map has long been the dominant metaphor for hippocampal function, embracing the idea that
place cells encode a geometric representation of space. However, evidence for predictive coding, reward
sensitivity, and policy dependence in place cells suggests that the representation is not purely spatial.
We approach this puzzle from a reinforcement learning perspective: what kind of spatial representation
is most useful for maximizing future reward? We show that the answer takes the form of a predictive
representation. This representation captures many aspects of place cell responses that fall outside
the traditional view of a cognitive map. Furthermore, we argue that entorhinal grid cells encode a
low-dimensional basis set for the predictive representation, useful for suppressing noise in predictions
and extracting multiscale structure for hierarchical planning.

Introduction1

Learning to predict long-term reward is fundamental to the survival of many animals. Some species may2

go days, weeks or even months before attaining primary reward, during which time aversive states must be3

endured. Evidence suggests that the brain has evolved multiple solutions to this reinforcement learning4

(RL) problem1. One solution is to learn a model or “cognitive map” of the environment2, which can then5

be used to generate long-term reward predictions through simulation of future states1. However, this6

solution is computationally intensive, especially in real-world environments where the space of future7

possibilities is virtually infinite. An alternative “model-free” solution is to learn, from trial-and-error, a8

value function mapping states to long-term reward predictions3. However, dynamic environments can9

be problematic for this approach, because changes in the distribution of rewards necessitates complete10

relearning of the value function.11

Here, we argue that the hippocampus supports a third solution: learning of a “predictive map” that12

represents each state in terms of its “successor states” (upcoming states)4, 5. This representation is sufficient13

for long-term reward prediction, is learnable using a simple, biologically plausible algorithm, and explains14

a wealth of data from studies of the hippocampus.15

Our primary focus is on understanding the computational function of hippocampal place cells, which16

respond selectively when an animal occupies a particular location in space6. A classic and still influential17

view of place cells is that they collectively furnish an explicit map of space7, 8. This map can then be18

employed as the input to a model-based9–11 or model-free12, 13 RL system for computing the value of the19

animal’s current state. In contrast, the predictive map theory views place cells as encoding predictions20

of future states, which can then be combined with reward predictions to compute values. This theory21

can account for why the firing of place cells is modulated by variables like obstacles, environment22

topology, and direction of travel. It also generalizes to hippocampal coding in non-spatial tasks. Beyond23
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the hippocampus, we argue that entorhinal grid cells14, which fire periodically over space, encode a24

low-dimensional decomposition of the predictive map, useful for stabilizing the map and discovering25

subgoals.26

Results27

The successor representation28

An animal’s optimal course of action will frequently depend on the location (or more generally, the “state”)29

that the animal is in. The hippocampus’ purported role of representing location is therefore considered30

to be a very important one. The traditional view of state representation in the hippocampus is that the31

place cells index the current location by firing when the animal visits the encoded location, remaining32

silent otherwise7. The main idea of the SR model, elaborated below, is that place cells do not encode33

place per se, but rather a predictive representation of future states given the current state. Two states34

that predict similar future states will have similar representations, and two physically adjacent states that35

predict divergent future states will have dissimilar representations.36

To motivate our use of the SR in the RL setting, we demonstrate that this representation emerges37

naturally as a term M in the definition of value (V ) often used in RL. We consider the problem of RL in a38

Markov decision process consisting of the following elements15: a set of states (e.g., spatial locations), a39

set of actions, a transition distribution P(s′|s,a) specifying the probability of transitioning to state s′ from40

state s after taking action a, a reward function R(s) specifying the expected immediate reward in state s,41

and a discount factor γ ∈ [0,1] that down-weights distal rewards. An agent chooses actions according to42

a policy π(a|s) and collects rewards as it moves through the state space. The value of a state is defined43

formally as the expected discounted cumulative future reward under policy π:44

V (s) = Eπ

[
∞

∑
t=0

γ
tR(st) | s0 = s

]
, (1)

where st is the state visited at time t. Our focus here is on policy evaluation (computing V ). In our45

simulations we feed the agent the optimal policy; in the Supplemental Methods we discuss algorithms46

for policy improvement. To simplify notation, we assume implicit dependence on π and define the state47

transition matrix T , where T (s,s′) = ∑a π(a|s)P(s′|s,a).48

The value function can be decomposed into the inner product of the reward function with a predictive49

state representation known as the successor representation (SR)4, denoted by M:50

V (s) = ∑
s′

M(s,s′)R(s′), (2)

The SR encodes the expected discounted future occupancy of state s′ along a trajectory initiated in state s:51

M(s,s′) = E [∑∞
t=0 γ tI(st = s′) | s0 = s] , (3)

where I(·) = 1 if its argument is true, and 0 otherwise.52

An estimate of the SR (denoted M̂) can be incrementally updated using a form of the temporal53

difference learning algorithm4, 16. After observing a transition st → st+1, the estimate is updated according54

to:55

M̂t+1(st ,s′) = M̂t(st ,s′)+η
[
I(st = s′)+ γM̂t(st+1,s′)− M̂t(st ,s′)

]
, (4)
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where η is a learning rate (unless specified otherwise, η = 0.1 in our simulations). The form of this56

update is identical to the temporal difference learning rule for value functions15, except that in this case57

the reward prediction error is replaced by a successor prediction error (the term in brackets). Note that58

these prediction errors are distinct from state prediction errors used to update an estimate of the transition59

function17; the SR predicts not just the next state but a superposition of future states over a possibly60

infinite horizon. The transition and SR functions only coincide when γ = 0. We assume the SR matrix61

M is initialized to the identity matrix, meaning M(s,s′) = 1 if s = s′, and M(s,s′) = 0 if s 6= s′. This62

initialization can be understood to mean that each state will necessarily predict only itself.63

The SR combines some of the advantages of model-free and model-based algorithms. Like model-64

free algorithms, policy evaluation is computationally efficient with the SR. However, factoring the65

value function into a state dynamics SR term and a reward term confers some of the flexibility usually66

associated with model-based methods. Having separate terms for state dynamics and reward permits67

rapid recomputation of new value functions when reward is changed independently of state dynamics,68

as demonstrated in Fig. 1. The SR can be learned before any reward has been seen, so that at the first69

introduction of reward, a value function can be computed immediately. When the reward function changes70

– such as when the animal becomes satiated, or when food is redistributed about the environment – the71

animal can immediately recompute a new value function based on its expected state transitions. A model-72

free agent would have to relearn value estimates for each location in order to make value predictions, and73

a model-based agent would need to aggregate the results of time-consuming searches through its model74

before it could produce an updated value prediction1, 4. In Fig. S2, we demonstrate that while changing75

the reward function completely disrupts model free learning of a value function in a 2-step tree maze, SR76

learning can quickly adjust. Thus, the SR combines the efficiency of model-free control with some of the77

flexibility of model-based control.78

For an agent trying to optimize expected discounted future reward, two states that predict similar79

successor states are necessarily similarly valuable, and can be safely grouped together18. This makes the80

SR a good metric space for generalizing value. Since adjacent states will frequently lead to each other, the81

SR will naturally represent adjacent states similarly and therefore be smooth over time and space in spatial82

tasks. Since the SR is well defined for any Markov decision process, we can use the same architecture for83

many kinds of tasks, not just spatial ones.84

Hippocampal encoding of the successor representation85

We now turn to our main theoretical claim: that the SR is encoded by the hippocampus. This hypothesis is86

based on the central role of the hippocampus in representing space and context19, as well as its contribution87

to sequential decision making20, 21. Although the SR can be applied to arbitrary state spaces, we focus on88

spatial domains where states index locations.89

Place cells in the hippocampus have traditionally been viewed as encoding an animal’s current location.90

In contrast, the predictive map theory views these cells as encoding an animal’s future locations. Crucially,91

an animal’s future locations depend on its policy, which is constrained by a variety of factors such as the92

environmental topology and the locations of rewards. We demonstrate that these factors shape place cell93

receptive field properties in a manner consistent with a predictive map.94

According to our model, the hippocampus represents the SR as a rate code across the population. Each95

neuron represents some possible future state (e.g., spatial position) in the environment. At any current state96

s, the population will encode a row of the SR matrix, M(s, :). The firing rate of a single neuron encoding97

state s′ in the population is proportional to the discounted expected number of times it will be visited98

under the present policy given the current position s. An SR place field refers to the firing rate of a single99

SR-encoding neuron at each state in the task and corresponds to a column of the SR matrix, M(:,s′). This100
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vector contains the expected number of times a single encoded state s′ will be visited under the current101

policy, starting from any state s. In general, we will refer to place fields simulated under our model as102

“SR receptive fields” or “SR place fields.” To summarize the relationship between the SR matrix M and103

simulated hippocampal cells: The firing of all the neurons at one state s is modeled by a row M(s, :) of104

the SR matrix M, and the firing of one neuron encoding s′ evaluated at all states is modeled by a column105

M(:,s′). This is illustrated in Fig. 1.106

We first try to build some intuition for this idea, and how it relates to a more traditional view of place107

cells. In an open, 2D environment, the canonical place has a gradually decaying, roughly circular firing108

field. These are often modeled as approximately Gaussian. In such an environment, the SR place fields109

look essentially the same, with peaks of high firing surrounded by a radius of gradually reduced firing.110

The SR model makes this prediction because under a random walk, the animal is likely to visit its current111

location and nearby locations immediately, and more distant locations later. Thus, the states closer to the112

encoded location of an SR place cell will predict a higher expected discounted number of visits to the113

encoded location, and will elicit higher firing of the encoding cell.114

Fig. 3 illustrates the experimental conditions in which the predictions of the SR model (Fig. 3C)115

depart from the predictions of two alternative models (Fig. 3A-B). As examples, we implement the three116

models for a 2D room containing an obstacle and for a 1D track with an established preferred direction117

of travel. The first alternative model is a Gaussian place field in which firing is related to the Euclidean118

distance from the field center (Fig. 3A), usually invoked for modeling place field activity in open spatial119

domains22, 23. The second alternative model is a topologically sensitive place field in which firing is related120

to the average path length from the field center, where paths cannot pass through obstacles13 (Fig. 3A).121

Like the topological place fields and unlike the Gaussian place fields, the SR place fields respect obstacles122

in the 2D environment. Since states on opposite sides of a barrier cannot occur nearby in time, SR place123

fields will tend to be active on only one side of a barrier.124

On the 1D track, the SR place fields skew opposite the direction of travel. This backward skewing125

arises because upcoming states can be reliably predicted further in advance when traveling repeatedly126

in a particular direction. Neither of the control models provide ways for a directed behavioral policy to127

interact with state representation, and therefore cannot show this effect. Evidence for predictive skewing128

comes from experiments in which animals traveled repeatedly in a particular direction along a linear129

track24, 25. The authors noted this as evidence for predictive coding in hippocampus24, 26. In Fig. 2, we130

explain how a future-oriented representation evokes a forward-skewing representation in the population at131

any given point in time but implies that receptive fields for any individual cell should skew backwards. In132

order for a given cell to fire predictively, it must begin firing before its encoded state is visited, causing a133

backward-skewed receptive field. Figure 4 compares the predicted and experimentally observed backward134

skewing, demonstrating that the model captures the qualitative pattern of skewing observed when the135

animal has a directional bias.136

Consistent with the SR model, experiments have shown that place fields become distorted around137

barriers27–29. In Figure 5, we explore the effect of placing obstacles in a Tolman detour maze on the SR138

place fields and compare to experimental results obtained by Alvernhe et al.29. When a barrier is placed in139

a maze such that the animal is forced to take a detour, the place fields engage in “local remapping.” Place140

fields near the barrier change their firing fields significantly more than those further from the barrier (Fig.141

5A-C). When barriers are inserted, SR place fields change their fields near the path blocked by the barrier142

and less so at more distal locations where the optimal policy is unaffected (Fig. 5D-F). This locality is143

imposed by the discount factor. The full set of place fields is included in the supplement (Fig. S3).144

The SR model can be used to explain how hippocampal place fields depend on behaviorally relevant145

features that alter an animal’s transition policy, such as reward. Using an annular watermaze, Hollup and146
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colleagues demonstrated that a hidden, stationary reward affects the distribution of place fields30. Animals147

were required to swim in some preferred direction around a ring-shaped maze filled with an opaque liquid148

until they reached a hidden platform where they could rest. Hollup and colleagues found that the segment149

containing the platform had more place fields centered within it than any other segment, and that the150

preceding segment consistently had the second-largest number of place fields centered within it (Fig. 6A).151

We simulated this task using a sequence of states connected in a ring. The transition policy was such152

that the animal lingered longer near the rewarded location and had a preferred direction of travel (right,153

or counterclockwise, in this case), matching behavioral predictions recorded by the authors30. We set154

the probability of transitioning left to 0 to illustrate the predictions of our model more clearly. As we155

show in Figure 6A-B, the SR model predicts elevated firing near the rewarded location and backward156

skewing of place fields. This creates an asymmetry, whereby the locations preceding the rewarded location157

will experience slightly higher firing rates as well. Furthermore, this asymmetric backward skew makes158

it likely that fields will overlap with the previous segment, not the upcoming segment. Figure 6C-D159

demonstrates how this backward skewing can equate to a backward shift in cell peak in the presence of160

noise or location uncertainty. This may explain the asymmetry found in the distribution of place field161

peaks about the rewarded segment.162

While Hollup and colleagues found an asymmetric distribution of place cells about the rewarded163

segment, they also found that place fields were roughly the same size at reward locations as at other164

locations. In contrast, the SR predicts that fields should get larger near reward locations (Fig. 6B), with165

the magnitude of this effect modulated by the discount factor (Fig. S6). Thus, the SR is still an incomplete166

account of reward-dependent place fields.167

Note that the SR model does not predict that place fields would be immediately affected by the168

introduction of a reward. Rather, the shape of the fields should change as the animal gradually adjusts its169

policy and experiences multiple transitions consistent with that policy. The SR is affected by the presence170

of the reward because rewards induce a change in the animal’s policy, which determines the predictive171

relationships between states.172

Under a sufficiently large discount, the SR model predicts that firing fields centered near rewarded173

locations will expand to include the surrounding locations and increase their firing rate under the optimal174

policy. The animal is likely to spend time in the vicinity of the reward, meaning that states with or near175

reward are likely to be common successors. SR place fields in and near the rewarded zone will cluster176

because it is likely that states near the reward were anticipated by other states near the reward (Fig. S7).177

For place fields centered further from the reward, the model predicts that fields will skew opposite the178

direction of travel toward the reward, due to the effect illustrated in Fig. 2: a state will only be predicted179

when the animal is approaching reward from some more distant state. Given a large potentially rewarded180

zone or a noisy policy, these somewhat contradictory effects are sufficient to produce clustering of place181

fields near the rewarded zone (Fig. S7). The punished locations will induce the opposite effect, causing182

fields near the punished location to spread away from the rarely-visited punished locations (Fig. S5F). The183

SR place fields for each of these environments are shown in Figure S5.184

In addition to the influence of experimental factors, changes in parameters of the model will have185

systematic effects on the structure of SR place fields. Motivated by data showing a gradient of increasing186

field sizes along the hippocampal longitudinal axis31, 32, we explored the consequences of modifying the187

discount factor γ in Figure S4 and Figure S6. Hosting a range of discount factors along the hippocampal188

longitudinal axis provides a multi-timescale representation of space. It also circumvents the problem of189

having to assume the same discount parameter for each problem or adaptively computing a new discount.190

Another consequence is that larger place fields reflect the community structure of the environment. In191

Figure S5, we show how the SR fields begin to expand their fields to cover all states with the same192
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compartment for a large enough discount. This overlap drives the clustering of states within the same193

community. A gradient of discount factors might therefore be useful for decision making at multiple levels194

of temporal abstraction18, 33, 34.195

An appealing property of the SR model is that it can be applied to non-spatial state spaces. Fig.196

7A-D shows the SR embedding of an abstract state space used in a study by Schapiro and colleagues18, 35.197

Human subjects viewed sequences of fractals drawn from random walks on the graph while brain activity198

was measured using fMRI. We compared the similarity between SR vectors for pairs of states with pattern199

similarity in the hippocampus. The key experimental finding was that hippocampal pattern similarity200

mirrored the community structure of the graph: states with similar successors were represented similarly35.201

The SR model recapitulates these findings, since states in the same community tend to be visited nearby in202

time, making them predictive of one another (Fig. 7E-G). A recent related fMRI result from Garvert and203

colleagues provides further support that the hippocampus represents upcoming successors in a non-spatial,204

relational task by showing that a successor model provided the best metric for explaining variance in205

recorded hippocampal adaptation36.206

To demonstrate further how the SR model can integrate spatial and temporal coding in the hippocampus,207

we simulated results from a recent study37 in which subjects were asked to navigate among pairs of208

locations to retrieve associated objects in a virtual city (8A). Since it was possible to “teleport” between209

certain location pairs, while others were joined only by long, winding paths, spatial Euclidean distance210

was decoupled from travel time. The authors found that objects associated with locations that were nearby211

in either space or time increased their hippocampal pattern similarity (Fig. 8B). Both factors (spatial and212

temporal distance) had a significant effect when the other was regressed out (Fig. 8C). The SR predicts213

this integrated representation of spatiotemporal distance: when a short path is introduced between distant214

states, such as by a teleportation hub, those states come predict one another.215

Dimensionality reduction of the predictive map by entorhinal grid cells216

Because the firing fields of entorhinal grid cells are spatially periodic, it was originally hypothesized that217

grid cells might represent a Euclidean spatial metric to enable dead reckoning8, 14. Other theories have218

suggested that these firing patterns might arise from a low-dimensional embedding of the hippocampal219

map5, 23, 38. Combining this idea with the SR hypothesis, we argue that grid fields reflect a low-dimensional220

eigendecomposition of the SR. A key implication of this hypothesis is that grid cells will respond differently221

in environments with different boundary conditions.222

The boundary sensitivity of grid cells was recently highlighted by a study that manipulated boundary223

geometry39. In square environments, different grid modules had the same alignment of the grid relative224

to the boundaries (modulo 60◦, likely due to hexagonal symmetry in grid fields), whereas in a circular225

environment grid field alignment was more variable, with a qualitatively different pattern of alignment226

(Fig. 9A-C). Krupic et al. performed a “split-halves” analysis, in which they compared grid fields in227

square versus trapezoidal mazes, to examine the effect of breaking an axis of symmetry in the environment228

(Fig 9D,E). They found that moving the animal to a trapezoidal environment, in which the left and right229

half of the environment had asymmetric boundaries, caused the grid parameters to be different on the230

two sides of the environment39. In particular, the spatial autocorrelegrams – which reveal the layout of231

spatial displacement at which the grid field repeats itself – were relatively dissimilar over both halves of232

the trapezoidal environment. The grid fields in the trapezoid could not be attributed to linearly warping233

the square grid field into a trapezoid, raising the question of how else boundaries could interact with grid234

fields.235

According to the SR eigenvector model, these effects arise because the underlying statistics of236

the transition policy changes with the geometry. We simulated grid fields in a variety of geometric237
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environments used by Krupic and colleagues (Fig. 9F-H; Fig. 9A-S9). In agreement with the empirical238

results, the orientation of eigenvectors in the circular environment tend to be highly variable, while those239

recorded in square environments are almost always aligned to either the horizontal or vertical boundary240

of the square (Fig. 9G,J). The variability in the circular environment arises because the eigenvectors are241

subject to the rotational symmetry of the circular task space. SR eigenvectors also emulate the finding that242

grids on either side of a square maze are more similar than those on either side of a trapezoid, because the243

eigenvectors capture the effect of these irregular boundary conditions on transition dynamics.244

Another main finding of Krupic et al.39 was that when a square environment is rotated, grids remain245

aligned to the boundaries as opposed to distal cues. SR eigenvectors inherently reproduce this effect, since246

a core assumption of the theory is that grid firing is anchored to state in a transition structure, which is247

itself constrained by boundaries. The complete set of the first 64 eigenvectors is shown in Figures S8A248

and S9. While many fields conform to the canonical grid cell, others have skewed or otherwise irregular249

waveforms. Our model predicts that such shapes would be included in the greater variety of firing fields250

found in MEC that do not match the standard grid-like criterion.251

A different manifestation of boundary effects is the fragmentation of grid fields in a hairpin maze40.252

Consistent with the empirical data, SR eigenvector fields tend to align with the arms of the maze, and253

frequently repeat across alternating arms (Figure 10)40. While patterns at many timescales can be found254

in the eigenvector population, those at alternating intervals are most common and therefore replicate the255

checkerboard pattern observed in the experimental data (Fig. S9).256

To further explore how compartmentalized environments could affect grid fields, we simulated a recent257

study41 that characterized how grid fields evolve over several days’ exposure to a multi-compartment258

environment (Fig. 11). While grid cells initially represented separate compartments with identical fields259

(repeated grids), several days of exploration caused fields to converge on a more globally coherent grid260

(Fig. 11D-F). With more experience, the grid regularity of the fields simultaneously decreased, as did the261

similarity between the grid fields recorded in the two rooms (Fig. 11C). The authors conclude that grid262

cells will tend to a regular, globally coherent grid to serve as a Euclidean metric over the full expanse of263

the enclosure.264

Our model suggests that the fields are tending not toward a globally regular grid, but to a predictive map265

of the task structure, which is shaped in part by the global boundaries but also by the multi-compartment266

structure. We simulated this experiment by initializing grid fields to a local eigenvector model, in which267

the animal has not yet learned how the compartments fit together. After the SR eigenvectors have been268

learned, we relax the constraint that representations be the same in both rooms and let eigenvectors and the269

SR be learned for the full environment. As the learned eigenvectors converge, they increasingly resemble270

a global grid and decreasingly match the predictions of the local fit (Fig. 11H-L; Fig. S10). As with the271

recorded grid cells, the similarity of the fields in the two rooms drops to an average value near zero (Fig.272

11I). They also have less regular grids compared to a single-compartment rectangular enclosure, explaining273

the drop in grid regularity observed by Carpenter et al. as the grid fields became more “global”41. Since274

separating barriers between compartments perturb the task topology from an uninterrupted 2D grid.275

The eigenvectors of the SR are invariant to the discount factor of an SR matrix. This is because any276

SR can be written as a weighted sum of transition policy matrices, as we explain in more detail in the277

Supplemental Methods. The same eigenvectors will therefore support multiple SR matrices learned for the278

same task but with different planning horizons. SR matrices with a large discount factor will place higher279

eigenvalues on the eigenvectors with large spatial scales and low spatial frequency, whereas those with280

smaller discounts and smaller place fields project more strongly onto higher spatial-frequency grid fields.281

As discount is increased, the eigenvalues gradually shift their weight from the smaller scale to the larger282

scale eigenvectors (Fig. S11). This mirrors data suggesting that hippocampal connections to and from283
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MEC vary gradually alongside place field spatial scale along the longitudinal axis31, 32, 42, 43. Grid fields,284

in contrast, cluster in discrete modules44. The SR eigenvectors are quantized as discrete modules as well,285

as we show in Figure S12.286

A normative motivation for invoking low-dimensional projections as a principle for grid cells is that287

they can be used to smooth or “regularize” noisy updates of the SR. When the projection is based on an288

eigendecomposition, this constitutes a form of spectral regularization45. A smoothed version of the SR289

can be obtained by reconstructing the SR from its eigendecomposition using only low-frequency (high290

eigenvalue) components, thereby filtering out high-frequency noise (see Methods). This smoothing will fill291

in the blanks in the successor representations, enabling faster convergence time and a better approximation292

of the SR while it is still being learned. Spectral regularization has a long history of improving the293

approximation of large, incomplete matrices in real-world domains, most commonly through matrix294

factorization45. The utility of a spectral basis for approximating value functions in spatial and other295

environments has been demonstrated in the computational RL literature46. In Figure S13A, we provide a296

demonstration of how this kind of spectral regularization can allow the SR to be more accurately estimated297

despite the presence of corrupting noise in a multi-compartment environment. In Figure S13B, we show298

that spectral regularization provides a better reconstruction basis than a globally uniform Fourier basis,299

because the former does not smooth over boundaries.300

We also demonstrate how reweighting eigenvalues so that more weight is placed on the low-frequency301

eigenvectors allows us to approximate the SR matrix for larger discounts with significantly less training302

time (Fig. S13C). TD learning can take a long time to converge when the discount factor is large. Spectral303

regularization can allow the SR to support planning over a longer timescale after significantly less training.304

We include our own modest demonstration of how spectral regularization can improve SR-based305

value function approximation in a noisy, multicompartment spatial task. Importantly, the regularization is306

topologically sensitive, meaning that smoothing respects boundaries of the environment. Regularization307

using a Fourier decomposition does not share this property, and will smooth over boundaries (Fig. S13).308

The regularization hypothesis is consistent with data suggesting that although grid cell input is not required309

for the emergence of place fields, place field stability and organization depends crucially on input from310

grid cells47–49. These eigenvectors also provide a useful partitioning of the task space, as discussed in the311

following section.312

Subgoal discovery using grid fields313

In structured environments, planning can be made more efficient by decomposing the task into subgoals,314

but the discovery of good subgoals is an open problem. The SR eigenvectors can be used for subgoal315

discovery by identifying “bottleneck states” that bridge large, relatively isolated clusters of states, and316

group together states that fall on opposite sides of the bottlenecks50, 51. Since these bottleneck states317

are likely to be traversed along many optimal trajectories, they are frequently convenient waypoints to318

visit. Navigational strategies that exploit bottleneck states as subgoals have been observed in human319

navigation52. It is also worth noting that accompanying the neural results displayed in Fig. 7, the authors320

found that when subjects were asked to parse sequences of stimuli into events, stimuli found at topological321

bottlenecks were frequent breakpoints18.322

The formal problem of identifying these bottlenecks is known as the k-way normalized min-cut323

problem. An approximate solution can be obtained using spectral graph theory53. First, the top logk324

eigenvectors of a matrix known as the graph Laplacian are thresholded such that negative elements of each325

eigenvector go to zero and positive elements go to one. Edges that connect between these two labeled326

groups of states are “cut” by the partition, and nodes adjacent to these edges are a kind of bottleneck327

subgoal. The first subgoals that emerge will be the cut from the lowest-frequency eigenvector, and these328
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subgoals will approximately lie between the two largest, most separable clusters in the partition (see329

Supplemental Methods for more detail). A prioritized sequence of subgoals is obtained by incorporating330

increasingly higher frequency eigenvectors that produce partition points nearer to the agent.331

The SR shares its eigenvectors with the graph Laplacian (see Supplemental Methods)5, making SR332

eigenvectors equally suitable for this process of subgoal discovery. We show in Figure S14 that the333

subgoals that emerge in a 2-step decision task and in a multi-compartment environment tend to fall near334

doorways and decision points: natural subgoals for high-level planning. It is worth noting that SR matrices335

parameterized by larger discount factors γ will project predominantly on the large-spatial-scale grid336

components (Fig. S11). The relationship between more temporally diffuse, abstract SRs, in which states in337

the same room are all encoded similarly (Fig. S4), and the subgoals that join those clusters can therefore338

be captured by which eigenvalues are large enough to consider.339

It has also been shown experimentally that entorhinal lesions impair performance on navigation tasks340

and disrupt the temporal ordering of sequential activations in hippocampus while leaving performance on341

location recognition tasks intact48, 54. This suggests a role of grid cells in spatial planning, and encourages342

us to speculate about a more general role for grid cells in hierarchical planning.343

Discussion344

The hippocampus has long been thought to encode a cognitive map, but the precise nature of this map345

is elusive. The traditional view that the map is essentially spatial7, 8 is not sufficient to explain some of346

the most striking aspects of hippocampal representation, such as the dependence of place fields on an347

animal’s behavioral policy and the environment’s topology. We argue instead that the map is essentially348

predictive, encoding expectations about an animal’s future state. This view resonates with earlier ideas349

about the predictive function of the hippocampus20, 24, 55–58. Our main contribution is a formalization of350

this predictive function in a reinforcement learning framework, offering a new perspective on how the351

hippocampus supports adaptive behavior.352

Our theory is connected to earlier work by Gustafson and Daw13 showing how topologically-sensitive353

spatial representations recapitulate many aspects of place cells and grid cells that are difficult to rec-354

oncile with a purely Euclidean representation of space. They also showed how encoding topological355

structure greatly aids reinforcement learning in complex spatial environments. Earlier work by Foster356

and colleagues12 also used place cells as features for RL, although the spatial representation did not357

explicitly encode topological structure. While these theoretical precedents highlight the importance of358

spatial representation, they leave open the deeper question of why particular representations are better than359

others. We showed that the SR naturally encodes topological structure in a format that enables efficient360

RL.361

The work is also related to work done by Dordek et al.23, who demonstrated that gridlike activity362

patterns from principal components of the population activity of simulated Gaussian place cells. As we363

mentioned in the Results, one point of departure between empirically observed grid cell data and SR364

eigenvector account is that in rectangular environments, SR eigenvector grid fields can have different365

spatial scales aligned to the horizontal and vertical axis (see Fig. S8)14. In grid cells, the spatial scales366

tend to be approximately constant in all directions unless the environment changes59. The principal367

components of Gaussian place fields are mathematically related to the SR eigenvectors, and naturally368

also have grid fields that scale independently along the perpendicular boundaries of a rectangular room.369

However, Dordek et al. found that when the components were constrained to have non-negative values370

and the constraint that components be orthogonal was relaxed, the scaling became uniform in all directions371

and the lattices became more hexagonal23. This suggests that the difference between SR eigenvectors372
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and recorded grid cells is not fundamental to the idea that grid cells are doing spectral dimensionality373

reduction. Rather, additional constraints such as non-negativity are required.374

The SR can be viewed as occupying a middle ground between model-free and model-based learning.375

Model-free learning requires storing a look-up table of cached values estimated from the reward history1, 60.376

Should the reward structure of the environment change, the entire look-up table must be re-estimated.377

By decomposing the value function into a predictive representation and a reward representation, the SR378

allows an agent to flexibly recompute values when rewards change, without sacrificing the computational379

efficiency of model-free methods4. Model-based learning is robust to changes in the reward structure, but380

requires inefficient algorithms like tree search to compute values1, 15.381

Certain behaviors often attributed to a model-based system can be explained by a model in which382

predictions based on state dynamics and the reward function are learned separately. For instance, the383

context preexposure facilitation effect refers to the finding that contextual fear conditioning is acquired384

more rapidly if the animal has the chance to explore the environment for several minutes before the first385

shock61. The facilitation effect is classically believed to arise from the development of a conjunctive386

representation of the context in the hippocampus, though areas outside the hippocampus may also develop387

a conjunctive representation in the absence of the hippocampus, albeit less efficiently62. The SR provides a388

somewhat different interpretation: over the course of preexposure, the hippocampus develops a predictive389

representation of the context, such that subsequent learning is rapidly propagated across space. Figure S15390

shows a simulation of this process and how it accounts for the facilitation effect.391

Many models of prospective coding in the hippocampus have drawn inspiration from the well-392

documented ordered temporal structure of firing in hippocampus relative to the theta phase20, 63, 64, and393

considered the many ways in which replaying hippocampal sweeps during sharp wave ripple events might394

be used for planning65–70. The firing of cells in hippocampus is aligned to theta such that cells encoding395

more distant places fire later during a theta cycle than immediately upcoming states (a phenomenon396

referred to as theta precession). States fire in a sequence ordered according to when they will next appear,397

suggesting a likely mechanism for forward sequential planning64, 71.398

However, precession alone is probably not sufficient to enact backward expansion of place fields in399

CA1, since NMDA antagonists that disrupt the persistent, backward expansion of place fields leave theta400

precession intact72. Furthermore, precession in CA1 likely originates outside of the hippocampus, as it401

arises in MEC independently73, and depends crucially on input from surrounding areas such as MEC and402

CA354, 74. Thus, we think that it is worthwhile to consider the possible contributions of this backward403

expansion to planning in addition to the contributions of the hippocampal temporal code examined by this404

prior work.405

The type of prospective coding implemented by theta precession and sharp wave ripple events is406

reminiscent of model-based, sequential forward planning20; many experiments and theoretical proposals407

have looked at how replaying these sequences at decision points and at rest can underlie planning65–67, 69, 70.408

By integrating the reward reactivated at each state along a sweep through upcoming states, the value of a409

specific upcoming trajectory can be predicted.410

The SR is a different type of prospective code, with different tradeoffs. The SR marginalizes over all411

possible sequences of actions, making predictions over an arbitrarily long timescale in constant time. This412

results in a loss of flexibility relative to model-based planning, but greater computational efficiency. Thus,413

the SR cannot replace the full functionality of model-based sweeps. However, it might provide a useful414

adjunct to this functionality.415

One way to combine the strengths of model-based planning with the SR would be to use the SR to416

extend the range of forward sweeps. In Fig. S19, we illustrate how performing sweeps in the successor417

representation space (Fig. S19F) or performing sweeps that terminate on a successor representation418
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of the terminal state (Fig. S19G) can extend the range of these predictions, making the hippocampal419

representations a more powerful substrate for planning. This is tantamount to a “bootstrapped search”420

algorithm, variants of which have been successful in a range of applications75, 76.421

The SR model we describe is trained on the policy the animal has experienced. This means that when422

the reward is changed, the new value function computed from the existing SR will initially be based on the423

old policy. The new optimal policy is unlikely to be the same as the old one, which means that the new424

value function is not correct, and must be refined as the animal optimizes its behavior. This problem is425

encountered with all learning algorithms that learn cached statistics under the current policy dynamics.426

In some cases, the old SR will be a reasonable initialization. In many environments, certain aspects of427

the dynamics are not subject to the animal’s control, and the underlying adjacency structure is unlikely to428

change. Furthermore, if rewards tend to be distributed in the same general area of a task, many policy429

components will generalize. It is hard to make comprehensive claims about whether or not the space of430

naturalistic tasks adheres to these properties in general. Recent computational work has demonstrated that431

deep successor features (a more powerful generalization of the successor representation model) generalize432

well across changing goals and environments in the domain of navigation77.433

To give an intuition of how the flexibility of the SR-based value computation depends on task hierarchy434

and simulation parameters, we look at generalization using a simple tree-structured maze. Figure S16435

illustrates how the quality of SR generalization depends on the policy stochasticity (parameterized by436

β ) and how similar the optimal paths are for the old and new rewarded location. When there is greater437

stochasticity (closer to the random walk policy), the SR’s generalization to highly dissimilar locations is438

less impaired, but there is also a reduced generalization advantage when the reward ends up nearby. The439

random walk SR is used as a baseline. By diffusing value through the graph in accordance with the task’s440

underlying adjacency structure, this representation always generalizes better than re-initializing to a state441

index representation. The animal should maintain support for random actions until it is very certain of the442

optimal path. Spectral regularization can promote this by smoothing the SR.443

When the SR fails to support value computation given the new reward, there are other mechanisms444

that can compensate. Models such as Dyna update cached statistics using sweeps through a model,445

revising them flexibly75. The original form of Dyna demonstrated how model-based and model-free446

mechanisms could collaboratively update a value function. However, the value function can be replaced447

with any statistic learnable through temporal differences, including the SR, as demonstrated by recent448

work78. Furthermore, there is evidence from humans that when reward is changed, revaluation occurs in a449

policy-dependent manner, consistent with the kind of partial flexibility conferred by the SR79.450

Recent work has elucidated connections between models of episodic memory and the SR. Specifically,451

Gershman et al. demonstrated that the SR is closely related to the Temporal Context Model (TCM) of452

episodic memory16, 19. The core idea of TCM is that items are bound to their temporal context (a running453

average of recently experienced items), and the currently active temporal context is used to cue retrieval of454

other items, which in turn cause their temporal context to be retrieved. The SR can be seen as encoding a455

set of item-context associations. The connection to episodic memory is especially interesting given the456

crucial mnemonic role played by the hippocampus and entorhinal cortex in episodic memory. Howard457

and colleagues80 have laid out a detailed mapping between TCM and the medial temporal lobe (including458

entorhinal and hippocampal regions).459

Spectral graph theory provides insight into the topological structure encoded by the SR. We showed460

specifically that eigenvectors of the SR can be used to discover a hierarchical decomposition of the461

environment for use in hierarchical RL. Spectral analysis has also frequently been invoked as a compu-462

tational motivation for entorhinal grid cells (e.g.,81). The fact that any function can be reconstructed by463

sums of sinusoids suggests that the entorhinal cortex implements a kind of Fourier transform of space.464
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However, Fourier analysis is not the right mathematical tool when dealing with spatial representations in465

a topologically structured environment, since we do not expect functions to be smooth over boundaries466

in the environment. This is precisely the purpose of spectral graph theory: Instead of being maximally467

smooth over Euclidean space, the eigenvectors of the graph Laplacian embed the smoothest approximation468

of a function that respects the graph topology46.469

In conclusion, the SR provides a unifying framework for a wide range of observations about the470

hippocampus and entorhinal cortex. The multifaceted functions of these brain regions can be understood471

as serving a superordinate goal of prediction.472

Methods473

Task simulation474

Environments were simulated by discretizing the plane into points, and connecting these points along a475

triangular lattice (Fig. S1A). The adjacency matrix A was constructed such that A(s,s′) = 1 wherever it is476

possible to transition between states s and s′, and 0 otherwise.477

The transition probability matrix T was defined such that T (s,s′) is the probability of transitioning478

from state s to s′. Under a random walk policy, where the agent chooses randomly among all available479

transitions, the transition probability distribution is uniform over allowable transitions. This amounts to480

simply normalizing A so that each row of A sums to 1 to meet the constraint that the possible transition481

from s must sum to 1. When reward or punishment was included as part of the simulated task, we482

computed the optimal policy using value iteration and a softmax value function parameterized by β 15.483

SR computation484

The successor representation is a matrix, M where M(s,s′) is equal to the discounted expected number485

of times the agent visits state s′ starting from s (see Equation 3 for the mathematical definition and Fig.486

S1B for an illustration). When the transition probability matrix is known, we can compute the SR as a487

discounted sum over transition matrices raised to the exponent t. The matrix T t is the t-step transition488

matrix, where T t(s,s′) is the probability of transitioning from s to s′ in exactly t steps.489

M =
∞

∑
t=0

γ
tT t

π (5)

This sum is a geometric matrix series, and for γ < 1, it converges to the following finite analytical solution:490

M =
∞

∑
t=0

γ
tT t

π = (I− γTπ)
−1 (6)

In most of our simulations, the SR was computed analytically from the transition matrix using this491

expression.492

The SR can be learned on-line using the temporal differences update rule of Equation 44 (also see15
493

for background on TD learning) (Fig. 11, Fig. S1, Fig. S3). When noise was injected into the location494

signal (Fig. S3). Noise was injected into the location signal by adding uniform random noise with mean 0495

to the state indicator vector.496

Eigenvector computation and Spectral Regularization497

In generating the grid cells shown, we assume random walk policy, which is the maximum entropy prior498

for policies (see82 for why maximum entropy priors can be good priors for regularization). However, since499
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the learned eigenvectors are sensitive to the sampling statistics, our model predicts that regions of the500

task space more frequently visited would come to be over-represented in the grid space (see Figure S8 for501

examples). For most figures, we compute the eigenvectors of the SR using the built-in MATLAB eig502

function (Fig. S1C). We then thresholded the eigenvectors at 0 so that firing rates are not negative (Fig.503

S1D).504

For Figure 11, eigenvectors were computed incrementally using a Candid Covariance-free Incremental505

PCA (CCIPCA), an algorithm that efficiently implements stochastic gradient descent to compute principal506

components83 (eigenvectors and principal components are equivalent in this and many domains). Spectral507

regularization was implemented by reconstructing the SR from the truncated eigendecomposition (Fig.508

S13). Spectral reconstruction for Figure S13 was implemented by shifting the eigenvalues so that more509

weight was placed on low-frequency eigenvectors, rather than imposing a hard cutoff on high-frequency510

eigenvectors, and reconstructing an SR that corresponded to a larger discount factor. This allowed larger-511

discount SRs to be more exactly approximated. The reconstructed SR matrices Mrecon were compared to512

the ground truth matrix Mgt by taking the correlation between Mrecon and Mgt (Fig. S13). This measure513

indicates whether policies based on SR-based value functions for different reward functions will to tend514

send the animal in the right direction. Details can be found in the Supplemental Methods.515

Plotting receptive fields516

To visualize place fields under the SR model, we showed heat maps of how active each SR-encoding517

neuron would be at each state in the environment (Fig. S1E-F). This shows the discounted expected518

number of times the neuron’s encoded state s will be visited from each other state in the environment,519

and corresponds to taking a column M(s, :) from the SR matrix and reshaping it so that each element520

appears at the x,y location of its corresponding state. We use the same reshaping and plotting procedure to521

visualize eigenvector grid cells, using the columns of the thresholded eigenvector matrix U in place of M.522

Quantifying place and grid fields523

To quantify place field clustering, center of mass (CoM) of SR place fields was computed by summing the524

locations of firing, weighted by the firing rate at that location (normalized so that the total firing summed525

to 1):526

CoM(s) =
∑s′M(s,s′)p(s′)

∑s′M(s,s′)
, (7)

where p(s′) is the (X ,Y ) coordinate of the place field centered at state s′.527

In Fig. 5, spatial similarity was computed by taking the Fisher z transform of spatial correlation between528

fields. Statistics were computed in this z space.529

Grid field quantifications paralleled the analyses of Krupic et al.39: an ellipse was fit to the 6 peaks530

closest to the central peak, “orientation” refers to the orientation of the main axes (a,b). “Correlation”531

always refers to the Pearson correlation, “spatial correlation” refers to the Pearson correlation computed532

over points in space (as opposed to points in a vector), and spatial autocorrelation refers to the 2D533

auto-convolution.534

To measure similarity between halves of the environment in Figure 9, we 1) computed the spatial535

autocorrelation for each half, 2) selected a circular window in the center of the autocorrelation, and 3)536

computed the correlation between autocorrelations of the two halves in the window. This paralleled the537

analysis taken by Krupic et al.39 and provides a measure of grid similarity across halves of the environment.538

The circular window is used to control for the fact that the boundaries of the square and trapezoid in539

the two halves of the respective environments differ. The mean similarity was not computed in Fisher540
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z-transformed space, as one would normally do, but rather in correlation space. This was because the541

similarity for many of the square eigenvectors and at least one trapezoidal eigenvector was exactly 1, for542

which z = ∞. A dot plot is superimposed over this plot so the statistics of the distribution can be visualized.543

In evaluating our simulations of the grid fields reported by Carpenter et al.41 (Fig. 11), the local model544

consisted of the set of 2D Fourier components bounded by the size of the compartment and the global545

model consisted of the set of 2D Fourier components bounded by the size of the environment. “Model fit”546

was measured for each eigenvector by finding maximum correlation over all model components between547

the eigenvector and model component.548

Code availability549

These results were generated using code written in MATLAB. If you are interested in accessing the code,550

you can email the corresponding author and we will be happy to make it available.551
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Figure 1. Updating value with the SR following change in reward. Since the representations of state and
reward are decoupled, value functions can be rapidly recomputed for new reward functions without
changing the SR. As formally defined in Equation 3, M(s,s′) gives the expected number of visits to state
s′ given a current location of s. Panel A shows the successor representation of state s4, which corresponds
to a row M(s4, :) of the SR matrix. Panels B-D show how the value of s4 changes under different reward
functions.
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Figure 2. Illustration of SR encoding population and individual SR place fields. Under a prospective
representation such as the SR, the population vector will be assymetrically expand in the direction of
travel toward upcoming states. The place fields for individual cells will skew backwards. (A) A neural
population encodes a prospective representation such that the firing rate of each cell is proportional to the
discounted expected number of times its preferred state will be visited in the future. This population code
is skewed toward upcoming states. Each colored bump represents the firing rate of a different place field
located along the track. The value M(s,s′) is formally defined in Equation 3 as the expected number of
visits to state s′ given a current location of s, and the population vectors M(s, :) illustrated here correspond
to rows of the SR matrix. (B) The place field for a single SR-encoding cell skews backward toward past
states that predict the cell’s preferred state. When the blue state s5 is visited, it becomes associated with
all past states that predicted it. This automatically assigns credit for upcoming reward to preceding states.
The receptive field M(:,s′) illustrated here corresponds to a column of the SR matrix.
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Figure 3. Comparison of place cell models. (Top) 1D track with left-to-right preferred direction of travel,
red line marking field center; (bottom) 2D environment with a barrier indicated by gray line. (A)
Gaussian place field. Firing of place cells decays with Euclidean distance from the center of the field
regardless of experience and environmental topology. (B) Topological place field. Firing rate decays with
geodesic distance from the center of the field, which respects boundaries in the environment but is
invariant to the direction of travel13. (C) SR place field. Firing rate is proportional to the discounted
expected number of visits to other states under the current policy. On the directed track, fields will skew
opposite the direction of motion to anticipate the upcoming successor state. Since the policy will not
permit traversing walls, successor fields warp around obstacles.
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Figure 4. Predictive skewing of place fields. (A) As a rat is trained to run repeatedly in a preferred
direction along a narrow track, initially symmetric place cells (red) begin to skew (blue) opposite the
direction of travel25. (B) When transitions in either direction are equally probable, SR place fields are
symmetric (red). Under a policy in which transitions to the right are more probable than to the left,
simulated SR place fields skew opposite the direction of travel toward states predicting the preferred state
(blue).

22/29

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2017. ; https://doi.org/10.1101/097170doi: bioRxiv preprint 

https://doi.org/10.1101/097170
http://creativecommons.org/licenses/by-nd/4.0/


0

1

2

Near Far

S
p

a
ti

a
l c

o
rr

e
la

ti
o

n

0

1

A

Alvernhe et al. (2011) recordings from Tolman detour maze

D

SR simulations

far

far

near

reward

2

1

Far

Near

Spatial similarity to 
no-detour conditionCA1 Place fields

Far

Near
Spatial similarity to 
no-detour condition

Place fields

N
orm

 firing rate

B

E

C

F

Tolman detour 
maze

Simulated
maze

1

2

Sp
at

ia
l s

im
ila

rit
y

Near Far

Figure 5. Place fields near detour. (A) Maze used by Alvernhe and colleagues29 for studying how place
cell firing is affected by the insertion of barriers in a Tolman detour maze. Reward is delivered at location
B. “Near” and “Far” zones are defined. In “early” and “late” detour conditions, a clear barrier blocks the
shortest path, forcing the animal to take the short detour to the left or the longer detour to the right. (B)
Example CA1 place fields recorded from a rat navigating the maze. (C) Over the population, place fields
near the barrier changed their shape, while the rest remained unperturbed. This is shown by computing the
Fisher z transformed spatial correlation between place field activity maps with and without barriers
present. (D) The environment used to simulate the experimental results. (E) Example SR place fields near
to and far from the barrier, before and after barrier insertion. More fields are shown in Fig. S6. (F) When
barriers are inserted, SR place fields change their fields near the path blocked by the barrier and less so at
more distal locations where policy is unaffected. The effect is more pronounced in the early detour
condition because the detour appears closer to the start.
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Figure 6. Distribution of place fields in annular maze with reward. (A) Simulated SR raster for annular
watermaze. The transition model assumes that the animal spends more time near the rewarded platform
and that the animal must move counter-clockwise (shown above as right-to-left) to get the reward. For this
simulation, the probability of moving clockwise is 0. (B) The average SR place field in the rewarded and
unrewarded segments. The states near the reward are visited more, so the SR model predicts more firing
near these rewarded locations and the states that precede them. This difference is smaller when the
discount factor is smaller. (C) When location is uncertain, the SR becomes smoother and the peak shifts
toward the center of mass. For this reason, an asymmetric firing field may be accompanied by a backward
migration of the firing field. (D) The magnitude of the shifts become more pronounced as the uncertainty
distribution over possible locations of the animal becomes wider. For a given discount, the magnitude of
the shift is bounded by distance between the SR field’s center of mass and the encoded state.
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Figure 7. Hippocampal representations in non-spatial task. (A) Schapiro et al.35 showed subjects
sequences of fractal stimuli drawn from the task graph shown, which has clusters of interconnected nodes
(or “communities”). Nodes of the same color fall within the same community, with the lighter colored
nodes connecting to adjacent communities. (B) A searchlight within hippocampus showed a stronger
within-community similarity effect in anterior hippocampus. (C, D) States within the same cluster had a
higher degree of representational similarity in hippocampus, and multidimensional scaling (MDS) of the
hippocampal BOLD dissimilarity matrix captured the community structure of the task graph35. (E) The
SR matrix learned on the task. The block diagonal structure means that states in the same cluster predict
each other with higher probability. (F) Multidimensional scaling of dissimilarity between rows of the SR
matrix reveals the community structure of the task graph. (G) Consistent with this, the average
within-community SR state similarity is consistently higher than the average between-community SR state
similarity.
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Figure 8. Hippocampal representations in spatio-temporal task. (A) Deuker et al.37 trained subjects on
a spatio-temporal navigation task. Subjects were told to objects scattered about the map. It is possible to
take a “teleportation” shortcut between certain pairs of states (pink and purple), and other pairs of states
are sometimes joined only by a long, winding path. Nearness in time is therefore partially decoupled from
nearness in space. (B) The authors find significant increase in hippocampal representational similarity
between nearby states and a decrease for distant states. This effect holds when states are nearby in space,
time, or both. (C) Since spatial and temporal proximity are correlated, the authors controlled for the each
factor and measured the effect of the remaining factor on the residual. (D-F) Simulation of experimental
results in panels A-C.
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Figure 9. Grid fields in geometric environments. (A) Grid fields recorded in a variety of geometric
environments39. Grid fields in trapezoid and square environments are split at the dividing line shown for
split-halves analysis. (B,C) Grid fields in the square environment had more consistent orientations with
respect to boundaries and distal cues than in the square environment. (D) While grid fields tend to be
similar on both halves of a square (sq) environment, they tend to be less similar across halves of the
irregular trapezoidal (tr) environment. (E) Autocorrelograms for different halves of trapezoidal and square
environments in circular windows used for split-halves anal. (F-H) Simulations of experimental results in
panels A-E.
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Figure 10. Grid fragmentation in compartmentalized maze. (A) Barriers in the hairpin maze cause grid
fields to fragment repetitively across arms40. (B) Spatial correlation between activity in different arms.
The checkerboard pattern emerges because grid fields frequently repeat themselves in alternating arms.
(C-D) Simulations of the experimental results in panels A-B.
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Carpenter et al. (2015) Grid fields in multi-compartment environment
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Figure 11. Grid fields in multi-compartment environment. (A) Multi-compartment environment
employed by Carpenter and colleagues41. (B) Example grid fields early and late in training. (C) Spatial
correlation between grid fields in compartments A and B across sessions. (D-F) To explain this decline in
inter-compartment similarity, Carpenter and colleagues fit a local model (grid constrained to replicate
between the two compartments) and a global model (single continuous grid spanning both compartments).
They found that the local fit decreased across sessions, while the global fit increased, and correspondingly
the difference between the two models increased. (G-L) Simulation of experimental results in panels A-F.
In I-J, the blue circles indicate individual samples, the thick red line denotes the mean, the thin red lines
denote one standard deviation from the mean, and the thick gray lines are lines of best fit.
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