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Abstract 

Incongruence, or topological conflict, is prevalent in genome-scale data sets but 

relatively few measures have been developed to quantify it. Internode Certainty (IC) 

and related measures were recently introduced to explicitly quantify the level of 

incongruence of a given internode (or internal branch) among a set of phylogenetic 

trees and complement regular branch support statistics in assessing the confidence of 

the inferred phylogenetic relationships. Since most phylogenomic studies contain data 

partitions (e.g., genes) with missing taxa and IC scores stem from the frequencies of 

bipartitions (or splits) on a set of trees, the calculation of IC scores requires adjusting 

the frequencies of bipartitions from these partial gene trees. However, when the 

proportion of missing data is high, current approaches that adjust bipartition 

frequencies in partial gene trees tend to overestimate IC scores and alternative 

adjustment approaches differ substantially from each other in their scores. To 

overcome these issues, we developed three new measures for calculating internode 

certainty that are based on the frequencies of quartets, which naturally apply to both 

comprehensive and partial trees. Our comparison of these new quartet-based measures 

to previous bipartition-based measures on simulated data shows that: 1) on 

comprehensive trees, both types of measures yield highly similar IC scores; 2) on 

partial trees, quartet-based measures generate more accurate IC scores; and 3) quartet-

based measures are more robust to the absence of phylogenetic signal and errors in the 

phylogenetic relationships to be assessed. Additionally, analysis of 15 empirical 

phylogenomic data sets using our quartet-based measures suggests that numerous 

relationships remain unresolved despite the availability of genome-scale data. Finally, 

we provide an efficient open-source implementation of these quartet-based measures 

in the program QuartetScores, which is freely available at 

https://github.com/algomaus/QuartetScores. 
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Introduction 

Recent advances in DNA sequencing technologies have greatly facilitated the 

generation of genome-scale data for phylogenetic inference in diverse groups of 

organisms, including fungi (e.g., Nagy et al. 2014; Shen et al. 2016), plants (e.g., 

Wickett et al. 2014; Yang et al. 2015), and animals (e.g., Jarvis et al. 2014; Misof et 

al. 2014). Incongruence (i.e., the presence of topological conflict) between individual 

gene trees in each one of these phylogenomic data matrices is the rule rather than the 

exception. The hundreds or thousands of genes examined in a study each yield their 

own distinct topologies (e.g., Song et al. 2012; Salichos and Rokas 2013; Zhong et al. 

2013). The observed incongruence can be partly attributed to gene tree estimation 

errors caused by analytical reasons including insufficient information in the data, 

misspecification of evolutionary models, or inadequate tree search (Jeffroy et al. 

2006; Kumar et al. 2012). On the other hand, the evolutionary histories of genes can 

also be genuinely different from each other and from the underlying species 

phylogeny due to biological processes such as incomplete lineage sorting, 

introgression, hybridization, and horizontal gene transfer (Maddison 1997; Slowinski 

and Page 1999; Degnan and Rosenberg 2009). 

Given the prevalence of phylogenetic incongruence, its unequal distribution 

across branches of a phylogeny, and its key role in assessing the reliability of species 

tree inference (Salichos and Rokas 2013), it is important that our measures of 

incongruence are accurate. Salichos and colleagues recently developed several novel 

information theory-based measures to quantify incongruence among a set of 

“evaluation” trees (e.g., gene trees) with respect to the internodes (or internal 

branches) in a “reference” tree (e.g., the species tree) (Salichos and Rokas 2013; 

Salichos et al. 2014). In brief, for the bipartition defined by a given internode in the 

reference tree, its conflicting bipartitions are initially extracted from the evaluation 

tree set. Then, Shannon’s entropy (Shannon 1948) is calculated from the frequencies 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 27, 2017. ; https://doi.org/10.1101/168526doi: bioRxiv preprint 

https://doi.org/10.1101/168526
http://creativecommons.org/licenses/by-nc-nd/4.0/


of occurrence (in the evaluation trees) of both the reference bipartition and the 

conflicting ones. In this way, the diversity and strengths of conflicting signals are 

integrated altogether as the degree of certainty (or uncertainty) about the phylogenetic 

relationship defined by the internode in the reference tree. The measures come in two 

flavors; the Internode Certainty (IC) score only takes into account the reference 

bipartition and the most prevalent conflicting bipartition, while the IC All (ICA) score 

also considers all other conflicting bipartitions that are sufficiently frequent. 

The original IC/ICA scores are applicable only if all evaluation trees contain 

exactly the same taxa as the reference tree (Salichos et al. 2014). However, in 

phylogenomic studies, it is common that the sequences of many (or even most) genes 

are only available from taxon subsets. To meet the need to quantify incongruence in 

evaluation tree sets that contain partial trees, Kobert et al. (2016) developed 

mathematical approaches to adjust the frequencies of bipartitions from partial trees in 

the calculation of IC/ICA scores. Specifically, Kobert et al. (2016) developed three 

adjustment schemes that differ on how the frequency of a bipartition with missing 

taxa is corrected: 1) Probabilistic – the frequency of the incomplete bipartition is 

distributed equally to all possible comprehensive bipartitions (i.e., containing all taxa) 

that are compatible with it; 2) Observed – the frequency of the incomplete bipartition 

is distributed equally to only those compatible, comprehensive bipartitions observed 

in the reference and evaluation trees; and 3) Lossless – similar to Observed, but with 

the restriction that the comprehensive bipartitions also have to be mutually 

conflicting. Another approach similar to the Lossless adjustment scheme was also 

developed independently by (Smith et al. 2015). 

IC and related measures are valuable and effective tools in revealing phylogenetic 

incongruence and have been quickly adopted in phylogenomic studies (e.g., Chen et 

al. 2015; Wang et al. 2015; Li et al. 2016; Shen et al. 2016; Chesters 2017; Krabberod 

et al. 2017; Leveille-Bourret et al. 2017), yet they still exhibit several practical and 
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theoretical limitations. On the practical side, for data sets with high proportions of 

missing data (e.g., all genes trees are partial), the aforementioned adjustment schemes 

can considerably overestimate IC/ICA scores (Kobert et al. 2016). Additionally, 

alternative adjustment schemes might generate substantially different scores (Kobert 

et al. 2016) and it is often unclear which scheme is better. On the theoretical side, for 

the ICA measure, the exact number of conflicting bipartitions to be considered can 

only be determined post hoc from the evaluation trees (Salichos et al. 2014; Kobert et 

al. 2016), which might lead to unexpected behavior. To illustrate this point, consider 

the following example with one reference bipartition and two conflicting bipartitions. 

If we set their frequencies to 80%:10%:10%, 80%:15%:5%, and 80%:19%:1%, the 

ICA scores would be 0.42, 0.44, and 0.51, respectively. That is, the ICA score of the 

internode increases as one of the conflicting bipartitions appears more frequently. 

However, if all 20% of the conflicting signal stems entirely from one bipartition (i.e., 

80%:20%), then the ICA score drops again to 0.28. This is because the ICA score 

calculation now involves only two bipartitions instead of three, which changes the 

base of logarithm in Shannon’s entropy equation (Shannon 1948) from 3 to 2, thereby 

drastically lowering the score. 

One potential solution to these practical and theoretical issues is to base the 

quantification of phylogenetic incongruence on quartets instead of bipartitions (see 

also (Pease et al. 2017)). Quartets (i.e., sets of four taxa) are the most basic unit of 

information in unrooted phylogenetic trees and have long been used in molecular 

phylogenetics for a wide range of purposes, including tree reconstruction (Strimmer 

and von Haeseler 1996; Chifman and Kubatko 2014; Avni et al. 2015; Mirarab and 

Warnow 2015), phylogenetic signal assessment (Strimmer and von Haeseler 1997; 

Nieselt-Struwe and von Haeseler 2001), and rogue taxon identification (Wilkinson 

2006; Aberer and Stamatakis 2011). Several properties make quartets particularly 

attractive for quantifying IC. First, both the reference and evaluation trees can be 

decomposed into sets of induced quartets. Second, the quartet set of the reference tree 
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is a superset of the quartet set of every evaluation tree. Therefore, both comprehensive 

and partial evaluation trees can be naturally compared with the reference tree at the 

quartet level without any further need for adjustment. In addition, evaluation trees 

with more missing taxa will contribute fewer quartets to the quantification (since the 

number of quartets contained in a tree is proportional to its number of taxa), providing 

a natural way to weigh evaluation trees of different sizes. Moreover, every quartet tree 

has a fixed number of three alternative topologies, hence two conflicting topologies 

will always be expected for every quartet topology in the reference tree regardless of 

the taxa present in the evaluation trees. 

Here, we introduce three new quartet-based measures for quantifying 

incongruence among phylogenetic trees. Much like existing bipartition-based IC 

measures (Salichos et al. 2014; Kobert et al. 2016), the output of all three new 

measures are IC scores for all internodes in the reference tree, which reflect the 

degree of certainty of the bipartition defined by each internode. Using both simulated 

and biological data sets, we show that quartet-based and bipartition-based IC 

measures perform equally well in comprehensive trees and that quartet-based 

measures outperform bipartition-based ones on partial trees. Additionally, we 

establish the sensitivity of quartet-based IC measures to specific analytic challenges, 

such as the lack of phylogenetic signal and errors in reference trees. Finally, we 

applied our new measures on a comprehensive collection of empirical phylogenomic 

data sets and revealed prevalent phylogenetic incongruence in the eukaryotic tree of 

life. Overall, our results suggest that our newly developed quartet-based measures are 

useful for more accurately quantifying phylogenetic incongruence.
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Three New Quartet-Based Measures for Estimating Internode Certainty 

All three quartet-based measures require as input a reference tree T and a set of 

evaluation trees T
^

; only unrooted trees are considered. The taxon set of the reference 

tree S(T) should be equal to the union of the taxon sets of all evaluation trees S(T
^

). All 

evaluation trees may have the same taxon set as S(T) (e.g., T and T
^

 are the bootstrap 

consensus tree and bootstrap replicate trees, respectively, from a single-gene 

phylogenetic analysis). Alternatively, the taxon sets of some or all evaluation trees 

may be subsets of S(T) (e.g., T and T
^

 are the coalescent-based species tree and single-

gene trees, respectively, from a phylogenomic analysis where some genes are missing 

from some taxa). 

All three measures require the generation of a list of quartets induced by T and 

the occurrences of their alternative topologies in T
^

 (fig. 1A). Unresolved quartet 

topologies in polytomous evaluation trees are discarded. The three measures differ in 

whether all (or only a small fraction of all) possible quartets are used and how they 

are used, which in turn influences how the IC is calculated for each internode in T 

(fig. 1B-E). 

Measure 1: Lowest Quartet Internode Certainty (LQ-IC) 

We define the LQ-IC of an internode as the lowest IC score among all of its 

relevant quartets (fig. 1B). Briefly, in a given unrooted tree, every internode defines a 

non-trivial bipartition, i.e., it divides the taxon set into two non-trivial subsets of taxa. 

We say a quartet q is relevant to an internode i if q consists of exactly two taxa from 

each of the two taxon subsets associated with i. For each internode i in T, we first 

identify the collection of all quartets (Q) that are relevant to i, and then calculate the 

IC score for each quartet q in Q based on the occurrences of its three possible 
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topologies in T
^

 (c1, c2, and c3 for the alternative topologies q1, q2, and q3, 

respectively): 

Q-IC (Quartet-IC) score = 1 + 𝑃𝑃(𝑞𝑞1) 𝑙𝑙𝑙𝑙𝑙𝑙3(𝑃𝑃(𝑞𝑞1)) + 𝑃𝑃(𝑞𝑞2) 𝑙𝑙𝑙𝑙𝑙𝑙3(𝑃𝑃(𝑞𝑞2)) +

𝑃𝑃(𝑞𝑞3) 𝑙𝑙𝑙𝑙𝑙𝑙3(𝑃𝑃(𝑞𝑞3))  (1) 

where 𝑃𝑃(𝑞𝑞1) = 𝑐𝑐1 (𝑐𝑐1 + 𝑐𝑐2 + 𝑐𝑐3)⁄ , 𝑃𝑃(𝑞𝑞2) = 𝑐𝑐2 (𝑐𝑐1 + 𝑐𝑐2 + 𝑐𝑐3)⁄ , 𝑃𝑃(𝑞𝑞3) =

𝑐𝑐3 (𝑐𝑐1 + 𝑐𝑐2 + 𝑐𝑐3)⁄ , and 𝑃𝑃(𝑞𝑞1) + 𝑃𝑃(𝑞𝑞2) + 𝑃𝑃(𝑞𝑞3) = 1. This score equals 0 if q does 

not appear in any evaluation tree (i.e., 𝑐𝑐1 = 𝑐𝑐2 = 𝑐𝑐3 = 0). Also, we reverse the sign 

of the score if the topology of q induced by T is less frequent than any of the two 

alternative topologies. 

Similar to IC/ICA scores, the Q-IC score can take values between -1 and 1: it 

approaches 1 when the reference quartet tree topology is much more prevalent than 

the other two alternatives, reflecting strong confidence in the reference internode; it 

becomes close to 0 when the three alternative topologies have similar frequencies, 

suggesting a high level of incongruence; and it gets near -1 when one of the 

conflicting topologies has a high frequency, indicating that the evaluation trees 

strongly contradict the internode present in the reference topology. A visualization of 

the Q-IC score against possible combinations of P(q1), P(q2), and P(q3) values is 

provided in supplementary fig. S1. 

To obtain the LQ-IC score, we simply assign the lowest Q-IC score from Q to i: 

LQ-IC (Lowest Quartet-IC) score = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞 ∈ 𝑄𝑄

(Q-IC(q))  (2) 

Since the calculation of the LQ-IC score for a given internode does not make any 

assumption about the topology on either side of i, LQ-IC can also be calculated for a 

reference tree T that contains polytomies (multifurcations); trees in the set of 

evaluation trees T
^

 may also contain polytomies. 
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Measure 2: Quadripartition Internode Certainty (QP-IC) 

We define the QP-IC of an internode as the IC score of its induced quadripartition 

(fig. 1C). In a given unrooted binary tree, each internode connects two internal nodes 

(hereafter referred to as nodes) and divides the taxon set into four subsets 

(quadripartition). To determine the IC score of an internode, we assume that the four 

subsets have been correctly resolved and only consider the three possible topologies 

of the quadripartition. In other words, we consider the quadripartition as a “meta-

quartet” whose leaves are the four subsets, and use the IC score of the “meta-quartet” 

tree as that of the internode. 

For the quadripartition p induced by a given internode i in T, we calculate its IC 

score based on the occurrences of its three possible topologies in T
^

 (c1, c2, and c3 for 

the alternative topologies p1, p2, and p3, respectively). We first identify the collection 

of all quartets (Q) that are relevant to p; we say a quartet q is relevant to a 

quadripartition p if q consists of exactly one taxon from each of the four taxon subsets 

associated with p. Each given quadripartition tree topology tp, induces a specific 

quartet tree topology tq for each q in Q, and the occurrence of tp is simply the sum of 

the occurrence of tq for all q in Q. We can then calculate the quadripartition IC score 

as: 

QP-IC (Quadripartition-IC) score = 1 + 𝑃𝑃(𝑝𝑝1) 𝑙𝑙𝑙𝑙𝑙𝑙3(𝑃𝑃(𝑝𝑝1)) +

𝑃𝑃(𝑝𝑝2) 𝑙𝑙𝑙𝑙𝑙𝑙3(𝑃𝑃(𝑝𝑝2)) + 𝑃𝑃(𝑝𝑝3) 𝑙𝑙𝑙𝑙𝑙𝑙3(𝑃𝑃(𝑝𝑝3))  (3) 

where 𝑃𝑃(𝑝𝑝1) = 𝑐𝑐1 (𝑐𝑐1 + 𝑐𝑐2 + 𝑐𝑐3)⁄ , 𝑃𝑃(𝑝𝑝2) = 𝑐𝑐2 (𝑐𝑐1 + 𝑐𝑐2 + 𝑐𝑐3)⁄ , 𝑃𝑃(𝑝𝑝3) =

𝑐𝑐3 (𝑐𝑐1 + 𝑐𝑐2 + 𝑐𝑐3)⁄ , and 𝑃𝑃(𝑝𝑝1) + 𝑃𝑃(𝑝𝑝2) + 𝑃𝑃(𝑝𝑝3) = 1. The equations (1) and (3) are 

almost the same, except that the former is calculated from a single quartet whereas the 

latter from a quadripartition. If the quadripartition tree topology induced by T is less 

frequent than any other alternative topologies, we reverse the sign of the QP-IC score. 

Unlike the LQ-IC score, the QP-IC can only be calculated for a binary reference tree 
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T. The evaluation trees however may contain polytomies. 

Measure 3: Extended Quadripartition internode certainty (EQP-IC) 

In measure 2, we only consider quadripartitions induced by individual internodes, 

which means that only the quartets corresponding to neighboring nodes contribute to 

the IC score calculation. An alternative approach is to extend measure 2 to evaluate all 

possible pairs of nodes that include a given internode. Here, we define the EQP-IC 

score of an internode as the lowest IC score among all of its relevant node pairs (N) 

(fig. 1D); we say a pair of nodes n is relevant to an internode i if i is part of the path 

connecting n. Apparently, N includes both neighboring and non-neighboring node 

pairs. The IC score of a pair of neighboring nodes is simply its QP-IC score (see 

measure 2). In a given unrooted binary tree, every pair of non-neighboring nodes 

divides the taxon set into five subsets, four of which are directly associated with either 

node. We can therefore construct a “meta-quartet” from these four subsets and 

determine its QP-IC score also using measure 2. To obtain the EQP-IC score, we 

simply assign the lowest QP-IC score from N to i: 

EQP-IC (Extended Quadripartition-IC) score = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛 ∈ 𝑁𝑁

(QP-IC(n))  (4) 

To calculate the EQP-IC score, the reference tree T must be binary, but the evaluation 

trees may be polytomous. 

Example 

To illustrate the calculation of our three quartet-based IC scores, we used an 

example data set consisting of a six-species reference tree T and an evaluation tree set 

𝑇𝑇�  that includes one comprehensive and three partial trees, each with a given 

occurrence (shown along the respective tree topology; fig. 1A). In this example, we 

focus on the internode separating (A, B) from (C, D, E, F). In the first step, we 

decompose the reference tree into 15 quartets and, for each quartet, calculate the 
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occurrences of the three possible topologies in the evaluation tree set (fig. 1B). 

LQ-IC score. The IC score of each quartet can be determined from the occurrences of 

its alternative topologies by equation (1) (fig. 1B). For instance, for the quartet (A, B, 

C, E), the reference topology (AB|CE) and the two alternative topologies (AC|BE) 

and (AE|BC) are respectively observed 3, 12, and 0 times in the evaluation trees. 

Thus, for this quartet: 

Q-IC = −1 ∗ �
3

3 + 12 + 0
𝑙𝑙𝑙𝑙𝑙𝑙3 �

3
3 + 12 + 0�

+
12

3 + 12 + 0
𝑙𝑙𝑙𝑙𝑙𝑙3 �

12
3 + 12 + 0�

+
0

3 + 12 + 0
𝑙𝑙𝑙𝑙𝑙𝑙3 �

0
3 + 12 + 0��

 

Q-IC = −0.545 

Note that the Q-IC score is negative since the reference quartet tree topology is less 

frequent than one of the conflicting topologies. Six of the 15 quartets are relevant to 

the internode of interest; therefore, the lowest Q-IC score among them (-0.545) is the 

LQ-IC score of the internode (fig. 1C). 

QP-IC score. The quadripartition induced by this internode is (A, B, CD, EF). The 

occurrence of each alternative quadripartition tree topology equals the sum of the 

occurrences of its induced quartet tree topologies (fig. 1D). For instance, the reference 

quadripartition tree topology, (A,B|CD,EF), induces four quartet trees: (AB|CE), 

(AB|CF), (AB|DE), and (AB|DF). Each quartet tree is observed three times in the 

evaluation trees, therefore the quadripartition tree has a total occurrence of 12. In the 

same way, the occurrences of the two conflicting topologies, (A,CD|B,EF) and 

(A,EF|B,CD), are found to be 24 and 0, respectively. Thus, for this quadripartition: 

QP-IC = −1 ∗ �
12

12 + 24 + 0
𝑙𝑙𝑙𝑙𝑙𝑙3 �

12
12 + 24 + 0�

+
24

12 + 24 + 0
𝑙𝑙𝑙𝑙𝑙𝑙3 �

24
12 + 24 + 0�

+
0

12 + 24 + 0
𝑙𝑙𝑙𝑙𝑙𝑙3 �

0
12 + 24 + 0��

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 27, 2017. ; https://doi.org/10.1101/168526doi: bioRxiv preprint 

https://doi.org/10.1101/168526
http://creativecommons.org/licenses/by-nc-nd/4.0/


QP-IC = −0.421 

Note that the QP-IC score is negative since the reference quadripartition tree topology 

is less frequent than one of the conflicting topologies.  

EQP-IC score. The reference tree contains three node pairs that are relevant to the 

internode of interest (fig. 1E). The first one is the neighboring node pair that defines 

this internode itself, hence its QP-IC score equals that of the internode. The other two 

non-neighboring node pairs induce the quadripartitions (A, B, C, D) and (A, B, E, F), 

respectively, and their QP-IC scores are found to be 1 and 0.387 by following the 

same procedure described in the above section. Consequently, the lowest QP-IC score 

among the three node pairs (-0.421) is assigned to be the EQP-IC score of the 

internode. 
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Results and Discussion 

Quartet-based and bipartition-based measures yield similar IC scores on 

comprehensive trees 

We compared the performances of the quartet-based and bipartition-based 

measures on a simulated data set consisting of 50 101-taxon reference trees, each 

associated with 1,000 comprehensive evaluation trees (hereafter referred to as the 

“Original” data set; see Materials and Methods). The relative Robinson-Foulds (rRF) 

distance between the reference and evaluation trees range from 0.194 to 1 with a 

median value of 0.429. The three quartet-based IC scores are almost perfectly 

correlated with each other and the same is true for the bipartition-based IC/ICA scores 

(Spearman’s correlation coefficients ≥ 0.99 and p-values < 2.2×10-16 in all cases; 

supplementary fig. S2). Comparison of quartet-based IC scores with branch support 

values (measured by Gene Support Frequency (GSF); (Gadagkar et al. 2005)) and 

bipartition-based IC/ICA scores showed that quartet-based IC scores are strongly 

correlated with branch support values and bipartition-based IC/ICA scores 

(Spearman’s correlation coefficients ≥ 0.93 and p-values < 2.2×10-16 in all cases; fig. 

2). At the same time, quartet-based IC scores tend to be more conservative than 

bipartition-based ones (fig. 2). Overall, the results suggest that the IC scores generated 

by quartet-based and bipartition-based measures are generally in agreement on data 

sets with only comprehensive trees. 

Quartet-based IC measures are more accurate on partial trees 

Next, we compared the performance of quartet-based and bipartition-based IC 

measures on data sets with missing taxa. To that end, we constructed five additional 

data sets with partial trees – named L1, L2, L3, E1, and E2 – by pruning taxa from 

evaluation trees in the Original data set (see Materials and Methods for details). We 

note that: 1) the pruned taxa were randomly selected in L1, L2, and L3, while the 

patterns of missing taxa in E1 and E2 were sampled from empirical data sets; and 2) 
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the degree of missing taxa increases in sequential order in L1, L2, and L3, while the 

degrees of missing taxa in E1 and E2 are comparable to those in L2 and L3, 

respectively (supplementary fig. S3). To examine the accuracy of each measure, we 

followed Kobert et al.'s (2016) suggestion that, on data sets with missing data, a more 

accurate measure should give scores that are closer to the ground truth. Here, we 

measured the accuracy by the Euclidean distance between the IC scores calculated on 

the Original data set (which we consider as the “truth”) and the pruned data sets. A 

smaller Euclidean distance indicates higher accuracy, and vice versa. 

The results show that both quartet-based and bipartition-based measures exhibit 

similar accuracy when the proportion of missing data is low (data set L1; fig. 3A). 

However, while quartet-based measures remain highly accurate at medium to high 

proportions of missing data, the accuracy of bipartition-based measures decreases 

substantially (data sets L2, L3, E1, and E2; fig. 3A). One exception is the quartet-

based LQ-IC measure, which also exhibits low accuracy on data set E2 (fig. 3A). 

Among the four bipartition-based measures, PIC and PICA – the two IC scores 

adjusted under the Probabilistic scheme – are consistently more accurate than LIC 

and LICA, which are adjusted under the Lossless scheme (fig. 3A). The same pattern 

is also apparent from the scatter plots of IC scores calculated on the Original and the 

pruned data sets (supplementary fig. S4). 

For each measure, we also calculated the fractions of internodes for which the IC 

scores were overestimated on the pruned data sets. We observed a trend very similar 

to that found in the accuracy assessment. While quartet-based measures exhibit very 

low levels of overestimation, bipartition-based measures tend to overestimate IC 

scores on pruned data sets (fig. 3B). In particular, bipartition-based IC scores are 

overestimated for most of the internodes at high proportions of missing data (data set 

L3 and E2; fig. 3B). Altogether, these results suggest that quartet-based IC measures 

are more accurate than bipartition-based measures on partial evaluation trees. 

We further compared the quartet-based and bipartition-based IC measures on two 
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empirical data sets previously analyzed in Kobert et al. (2016), namely a 23-taxon 

yeast data set containing 1,275 comprehensive gene trees and 1,219 partial gene trees, 

and an avian data set containing 500 comprehensive gene trees and 1,500 partial gene 

trees. IC scores calculated from all gene trees were compared with the scores 

calculated from either only the comprehensive trees or only the partial trees. Here 

again, we found that the Euclidean distances for quartet-based measures are 

considerably lower than the distances for bipartition-based measures in all 

comparisons (fig. 4; see supplementary fig. S5 for detailed scatter plots of IC scores), 

suggesting that quartet-based IC scores are more consistent with the IC obtained from 

the comprehensive trees. 

The robustness and vulnerability of IC measures to specific analytical challenges 

To investigate the potential strengths and/or limitations of different IC measures, 

we next assessed their performance under three analytical challenges, namely lack of 

phylogenetic signal, high proportions of missing data, and errors in reference trees. 

Lack of phylogenetic signal. In the aforementioned analysis of the empirical avian 

data set, we observed that, for some internodes, the quartet-based IC scores are around 

0, a value indicative of two nearly equally supported conflicting resolutions, whereas 

the bipartition-based IC scores are near or at -1, a value indicative of the presence of a 

strongly supported conflicting bipartition (supplementary fig. S5). Closer examination 

of the underlying bipartition frequencies at these internodes revealed that none of the 

conflicting bipartitions is supported (supplementary table S1). For instance, for 

multiple internodes, the reference bipartition and the most prevalent conflicting 

bipartition have frequencies of 0 and 0.034, respectively. This suggests that 

bipartition-based IC measures might report strong support for a conflicting bipartition 

when in reality there is little phylogenetic signal. 

To test this behavior of bipartition-based IC scores further, we devised a “random 

evaluation tree” test where we used completely random evaluation tree topologies in 
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the Original, E1, and E2 data sets (see Materials and Methods). Thus, in principle, the 

evaluation tree sets should provide no support to any particular relationship and the IC 

scores for all internodes should be near or at 0. The results of this test show that 

bipartition-based IC scores (except for PICA scores) are indeed heavily skewed 

toward -1 (fig. 5). Interestingly, LIC and LICA scores show much less bias on data set 

E2 (high proportion of missing data) than on E1 (medium proportion of missing data) 

(fig. 5B and C.). In contrast, quartet-based measures in general show a more robust 

performance; the only exception is LQ-IC, which generates artificially low scores at 

high proportion of missing data (data set E2; fig. 5C). 

High proportion of missing data. In the accuracy assessment on simulated data, we 

noted that many internodes have positive LQ-IC scores in the Original data set, but 

exhibit scores of -1 on E2 (supplementary fig. S3). One possible explanation for the 

impaired performance of LQ-IC on data set E2 is that, due to the high proportion of 

missing data, some quartets are present in but a few evaluation trees. Consequently, 

the IC scores of these quartets resemble random noise rather than reflecting the level 

of incongruence, and the LQ-IC scores of some internodes might be driven by the 

quartets that get low IC scores by chance. We investigated the IC scores of individual 

quartets in the six simulated data sets and found that, indeed, the quartets that have Q-

IC scores near -1 in E2 all occur infrequently (supplementary table S2). In addition, 

the Q-IC scores of E2 deviate from the Original data set much more than in other data 

sets (supplementary fig. S6). 

Errors in reference tree. One important assumption underlying the design of the QP-

IC and EQP-IC scores is that the four subsets of taxa around a given internode are 

correctly resolved (referred to as the “locality assumption” in (Sayyari and Mirarab 

2016)). To test the performance of QP-IC and EQP-IC when the locality assumption is 

violated and also the performance of other IC measures on reference trees containing 

incorrect relationships, we devised an “altered reference tree” test. In this test, varying 

degrees of errors were introduced into the reference trees in the Original, E1, and E2 
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data sets; the corresponding rRF distances between original and altered reference trees 

range between 0.1 and 1 (see Materials and Methods). 

We examined the IC scores of the bipartitions that are only present in the altered 

reference trees but not in the original ones. Since the vast majority of internodes in the 

original reference trees have positive IC scores, the bipartitions introduced by the 

alterations are expected to be contested by other, higher-frequency bipartitions 

(supplementary fig. S3). Indeed, most of the introduced internodes have negative LQ-

IC and EQP-IC scores as well as negative bipartition-based IC scores in the absence 

of missing data (data set Original; fig. 6A). Conversely, the QP-IC scores are positive 

for a considerable fraction of these introduced internodes (fig. 6A). Interestingly, all 

the IC measures generate lower scores on altered reference trees that are more 

dissimilar to the original trees than on altered reference trees that are more similar to 

the original trees (fig. 6A). The same patterns are also observed on data set E1, which 

has a medium proportion of missing data (fig. 6B). However, at high proportion of 

missing data (data set E2), bipartition-based measures produce positive scores for 

even more incongruent internodes than QP-IC (fig. 6C). In contrast, the performances 

of LQ-IC and EQP-IC are consistent at all different proportions of missing data (fig. 

6).  

These results suggest that the violation of the locality assumption can often lead 

to inflated QP-IC scores. The related EQP-IC measure seems robust to such 

violations; the locality assumption might be relaxed due to the consideration of other 

non-neighboring node pairs in the EQP-IC measure. Bipartition-based IC measures 

perform generally well except at high proportion of missing data. The reason might be 

that, as has been shown earlier in this study, bipartition-based measures tend to 

overestimate IC scores when the proportion of missing data is high (fig. 3B). 

Analysis of empirical phylogenomic data sets 

Having validated their performance, we applied our quartet-based IC measures 
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along with previous bipartition-based measures to a comprehensive collection of 15 

empirical data sets from recent phylogenomic studies of fungi (Nagy et al. 2014; Shen 

et al. 2016), plants (Wickett et al. 2014; Xi et al. 2014; Yang et al. 2015), and animals 

(Song et al. 2012; Jarvis et al. 2014; Misof et al. 2014; Borowiec et al. 2015; Chen et 

al. 2015; Prum et al. 2015; Struck et al. 2015; Whelan et al. 2015; Tarver et al. 2016) 

(supplementary table S3). We calculated IC scores for each data set using the 

coalescent-based species tree as the reference tree and the single-gene trees (from 

which the species tree was estimated) as evaluation trees (see Materials and Methods). 

We first describe the results from quartet-based IC measures. The data sets 

display varying degrees of phylogenetic incongruence (fig. 7); the average LQ-IC 

score of each data set ranges between -0.709 and 0.494, while the average QP-IC and 

EQP-IC scores range between 0.131 and 0.532. For most data sets, the average IC 

scores are higher than the median values, suggesting that many internodes may have 

low IC scores. In fact, more than one third of all internodes in the 15 data sets have 

LQ-IC, QP-IC, and EQP-IC scores between -0.1 and 0.1 (fig. 7; supplementary table 

S4); quartet-based IC scores in this range correspond to very weak support for the 

corresponding internodes in the reference topologies and are suggestive of highly 

uncertain relationships (supplementary fig. S1). At the level of individual data sets, 9 

of the 15 data sets show the same pattern (fig. 7; supplementary table S4). 

Notably, the quartet-based IC scores almost never show values near -1; the 

minimum QP-IC and EQP-IC scores among all internodes in the 15 data sets are -

0.004 and -0.128, respectively (fig. 7; supplementary table S4), suggesting that there 

are no strongly supported conflicting relationships. The more conservative LQ-IC 

measure also generates minimum scores in the range between -0.316 to -0.012 except 

for four data sets (Struck_2015, Whelan_2015, Wickett_2014, and Xi_2015) in which 

some internodes have scores of -1 (fig. 7; supplementary table S4). However, the LQ-

IC scores are likely biased in these four data sets due to high proportions of missing 

data (supplementary table S4). Overall, our results on these empirical data sets 
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suggest that certain relationships may remain unresolved even though genome-scale 

data amounts have been analyzed (see also (Shen et al. 2017)). 

Bipartition-based measures give rise to similar median IC scores as quartet-based 

ones for most data sets (fig. 7). However, the scores at the level of individual 

internodes often differ considerably between the two types of measures 

(supplementary fig. 7). Additionally, bipartition-based measures also produce scores 

near or at -1 for several data sets, which is – as discussed above – likely an artifact 

observed due to the lack of phylogenetic signal (supplementary table S5). 

Furthermore, the scores generated by alternative adjustment schemes (PIC/PICA 

versus LIC/LICA) show substantial discrepancies on the four data sets where all 

evaluation trees are partial (Struck_2015, Whelan_2015, Wickett_2014, and Xi_2015; 

fig. 7), consistent with the observation of Kobert et al. (2016) that the inclusion of 

comprehensive evaluation trees is critical to the performance of bipartition-based 

measures. 

Related measures of branch support or phylogenetic incongruence 

Besides the IC scores discussed above, there also exist other related measures of 

branch support or phylogenetic incongruence. Importantly, our QP-IC measure is 

based on the idea of comparing alternative arrangements of the four clades around a 

given internode. The same concept has been previously applied in three fast 

likelihood-based branch support tests, including the approximate likelihood-ratio 

(aLRT) test (Anisimova and Gascuel 2006), the Shimodaira–Hasegawa variant of 

aLRT (Guindon et al. 2010), and the Bayesian variant of aLRT (Anisimova et al. 

2011). All three tests evaluate the likelihood scores of the three possible topologies for 

each internode by applying the two possible NNI (nearest neighbor interchange) 

moves without changing the subtrees defined by the internode. The measures can 

therefore be computed efficiently. 

The local posterior probability (LPP) is another fast method for local branch 
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support (Sayyari and Mirarab 2016). Similar to QP-IC, it first calculates the quartet-

based frequencies of alternative quadripartition topologies around a given internode in 

the species tree from a set of gene trees. The probability that the quadripartition is 

present in the true species tree (i.e., the LPP), is then estimated under the multi-

species coalescent (MSC) model. By invoking the MSC model, LPP explicitly 

accounts for incomplete lineage sorting which is an important source of species tree-

gene tree discordance. In comparison, neither our quartet-based nor the original 

bipartition-based IC measures make any assumption on the underlying causes of 

incongruence. Therefore, these measures are broadly applicable to measuring the level 

of incongruence in any data type (e.g., a maximum-likelihood gene tree as the 

reference tree and the corresponding bootstrap replicate trees as evaluation trees).  

In parallel to this work, Pease et al. (2017) developed the Quartet Sampling (QS) 

measure, which integrates several features of the above mentioned methods; it is a 

likelihood-based (like aLRT tests), quartet-based (like LPP), and entropy-based 

measure of phylogenetic incongruence (like IC measures). The major distinction 

between QS and our QP-IC measure is that, in QS, quartets are randomly sampled and 

the three alternative topologies for each quartet are evaluated independently under the 

ML criterion, whereas in QP-IC, all quartet tree topologies are extracted from already 

estimated evaluation trees. Accordingly, QS requires only the reference tree but can 

only be applied to a single data matrix; on the other hand, our quartet-based measures 

require pre-estimated evaluation trees, but can be used for both single data matrix 

analysis (on bootstrap replicate trees) and for coalescent analysis (on single-gene 

trees). 

Further studies are needed to compare the performances of QS and our quartet-

based IC measures on phylogenomic data sets. On one hand, the evaluation of quartet 

tree topologies in the QS measure might be sensitive to phylogenetic artefacts such as 

long-branch attraction (Ranwez and Gascuel 2001). On the other hand, the 

performance of quartet-based IC measures can be impaired by inaccurate gene tree 
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estimation when the numbers of taxa become high and the lengths of single-gene 

alignments become short.  Nevertheless, the two types of measures can complement 

each other and their joint usage in phylogenomic studies will likely yield a more 

comprehensive understanding of phylogenetic incongruence in genome-scale data 

sets. 

Implementation 

We have implemented the three quartet-based IC measures in the program 

QuartetScores, which is freely available as open source code at 

https://github.com/algomaus/QuartetScores (last accessed July 24, 2017). The 

calculation of quartet-based IC scores requires counting the occurrences of all quartet 

tree topologies in the evaluation tree set, a challenging task since the number of 

possible quartets grows exponentially with the number of taxa. Therefore, we devised 

two algorithms for quartet counting: one is more time-efficient by storing each quartet 

topology separately in a lookup table; the other is more memory-efficient by grouping 

different topologies of a quartet together and using a more complicated indexing 

function. The program will automatically decide which algorithm to use based on the 

data set size. A full description of the algorithms for counting quartets and computing 

quartet-based IC scores is provided in the supplementary text. 
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Materials and Methods 

Simulated data sets 

We used a simulated data set from Mirarab and Warnow (2015) (referred to as the 

“Original” data set in our study) to evaluate the performance of our quartet-based IC 

scores. This Original data set contains 50 sets of trees, each of which has one species 

tree and 1,000 estimated gene trees. In brief, for each set, a 101-taxon species tree was 

first simulated according to the Yule process with a speciation rate of 10-6 per 

generation and a tree length of 2 million generations. Then, 1,000 gene trees were 

simulated on the species tree under the multiple-species coalescent model. For each 

simulated gene tree, a gap-free nucleotide alignment was simulated under the 

GTR+GAMMA model, and FastTree 2 was used to infer a maximum-likelihood gene 

tree. The simulated species trees and their corresponding estimated gene trees were 

downloaded from https://www.cs.utexas.edu/~phylo/datasets/astral2 and used in this 

study (last accessed July 24, 2017). 

All gene trees in the Original data set are comprehensive. To further examine the 

performance of quartet-based IC scores on partial trees, we generated five additional 

data sets by pruning taxa from gene trees in the Original data set. The taxon-pruning 

was conducted in two different ways. For three of the five data sets (P1, P2, and P3), 

taxa were pruned randomly and, for each gene tree, the number of taxa to prune was 

drawn from a log-normal distribution (truncated on the right at 97 to ensure that 

pruned trees have at least four taxa). The three data sets were generated by using log-

normal distributions with mean values of ln 1, ln 10, and ln 100, respectively, 

corresponding to low, medium, and high proportions of missing data. 

For the other two data sets (E1 and E2), the patterns of missing taxa were 

sampled from empirical data sets to better approximate real data conditions. For 

instance, E1 was generated by using the 144-taxon, 1478-gene empirical data set from 
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Misof et al. (2014) as template as follows: first, 101 taxa and 1,000 gene trees were 

randomly selected from the empirical data set and randomly paired with the taxa and 

gene trees in the Original data set; then, for each taxon t and gene tree g selected from 

the empirical data set, if t is missing from g, the paired taxon t’ was pruned from the 

paired gene tree g’ in the simulated Original data set. This procedure was performed 

independently for each of the 50 sets of trees in the Original data set. The data set E2 

was constructed in the same way based on the 103-taxon, 844-gene empirical data set 

from Wickett et al. (2014) (note that some genes were sampled twice from the 

empirical data set, since it has less than 1,000 genes). All reference and evaluation 

trees used in this study, as well as the results of IC analyses are available from the 

figshare repository (https://figshare.com/s/2e44121d0c3ff60004e3; last accessed July 

24, 2017). 

Empirical data sets 

Two collections of empirical data sets were analyzed in this study. We first 

compared the performance of quartet-based and bipartitions-based IC scores on the 

23-taxon yeast data set and the 48-taxon avian data set, which were used in Kobert et 

al. (2016) to evaluate various adjustment schemes of the original IC/ICA scores. The 

two data sets were originally published in Salichos and Rokas (2013) and Jarvis et al. 

(2014), respectively. Gene trees and species trees in these two data sets were 

downloaded from https://github.com/Kobert/ICTC (last accessed July 24, 2017). We 

also calculated various IC scores for 15 data sets from 14 recently published 

phylogenomic studies (see the details of the data sets in supplementary table S3) to 

investigate the pattern of phylogenetic incongruence across the eukaryotic tree of life. 

These data sets have been re-analyzed systematically in a recent study using several 

fast maximum likelihood-based phylogenetic inference programs (Zhou et al. 2017). 

The resulting best-scoring gene trees and coalescent-based species trees (estimated 

from the gene trees using ASTRAL) were downloaded from https://goo.gl/VkMTa4 
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(last accessed July 24, 2017). 

Calculation of branch support and IC scores 

For a given reference tree and evaluation tree set, the gene support frequencies 

for internodes in the reference tree were calculated using RAxML v8.2.10 with the “-f 

b” option. Similarly, the bipartition-based IC scores were calculated by using RAxML 

with the “-f i” option. The original IC/ICA scores were reported if all evaluation trees 

were comprehensive, whereas the PIC/PICA and LIC/LICA scores (IC/ICA scores 

adjusted under the “Probabilistic” and “Lossless” schemes, respectively) were 

reported if some evaluation trees were partial. The underlying bipartition frequencies 

for calculating the IC/ICA scores were obtained by turning on the “-C” option in 

RAxML. The quartet-based IC scores were calculated using the program 

QuartetScores, and the LQ-IC/QP-IC/EQP-IC scores were always reported regardless 

of the status of missing taxa in the evaluation tree set. 

Comparing the performance of quartet-based and bipartition-based IC measures 

Accuracy. We followed Kobert et al. (2016) to define the accuracy of an IC measure 

as the distance between the IC scores calculated from evaluation tree sets before and 

after taxon-pruning. The quartet-based and bipartition-based IC scores were first 

calculated for each of the Original, L1, L2, L3, E1, and E2 data sets. Then, for each 

type of IC scores and each reference tree, pairwise distances were calculated between 

the Original data set and each of the five pruned data sets. The accuracy was 

measured by pairwise distance instead of Spearman’s (or Pearson’s) correlation 

coefficient because two sets of very different scores can still have very high 

correlation coefficient (e.g., scores in one set are one tenth of the corresponding 

scores in the other set). However, unlike in Kobert et al. (2016), here we used the 

Euclidean distance: 
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𝐷𝐷 = ��(𝐼𝐼𝐼𝐼𝑖𝑖

𝑛𝑛

𝑖𝑖=1

− 𝐼𝐼𝐶𝐶′𝑖𝑖)2 

where n is the number of internodes in the reference tree (n = 98 for these simulated 

data sets), ICi and IC’i refer to the IC scores based on the Original and the pruned data 

sets, respectively, for the same internode i. In addition, in each pairwise comparison, 

we also calculated the fraction of internodes for which the IC scores were 

overestimated (by more than 0.05) on the pruned data set compared to the Original 

data set. 

Random evaluation tree test. In this test, the topologies of all evaluation trees in the 

Original, E1, and E2 data sets were randomized. Since the randomized evaluation 

trees have the same sets of taxa as the original trees, the pattern of missing taxa in 

each data set was kept the same. The quartet-based and bipartition-based IC scores 

were then calculated from the original reference trees and randomized evaluation 

trees. 

Altered reference tree test. Here, the topologies of the reference trees were altered, 

whereas the evaluation tree topologies remained unchanged. First, we calculated the 

relative Robinson-Foulds (rRF) distance (Robinson 1971) between each evaluation 

tree in the Original data set and its corresponding reference tree. Polytomous 

evaluation trees were randomly resolved before calculating rRF distances. Second, we 

classified the evaluation trees in to five categories based on their rRF distances; the 

ranges of rRF distances of the five categories were: [0.1, 0.3), [0.3, 0.5), [0.5, 0.7), 

[0.7, 0.9), and [0.9, 1]. Finally, we randomly selected 10 evaluation trees from each 

category to be the new reference trees. The evaluation tree sets to which the new 

reference trees belonged were also selected as the new evaluation tree sets. Similarly, 

for data sets E1 and E2, the evaluation tree sets that match with the new reference 

trees were selected for this test. The quartet-based and bipartition-based IC scores 
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were then calculated from the new, altered reference trees and their corresponding 

evaluation trees. 
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Figure legends 

Figure 1. An example data set to illustrate the design and calculation of quartet-

based IC scores. (A) The data set consists of a six-species reference tree T and an 

evaluation tree set 𝑇𝑇� , each with a given frequency (shown along the respective tree 

topology). (B) The reference tree is decomposed into 15 quartets and the occurrences 

of their quartet tree topologies in the evaluation tree set are counted. This example 

focuses on the internode that separates (A, B) from (C, D, E, F). (C) The LQ-IC 

(Lowest Quartet IC) score of the internode is defined as the lowest IC score among all 

of its relevant quartets. (D) The QP-IC (Quadripartition IC) score of the internode is 

defined as the IC score of the quadripartition induced by it. (E) The EQP-IC 

(Extended Quadripartition IC) score of an internode is defined as the lowest QP-IC 

score among all of its relevant internal node pairs. 

Figure 2. Strong positive correlations between IC scores generated by quartet-

based measures and that generated by bipartition-based measures as well as the 

gene support frequency (GSF) values. The values shown were calculated on the 

Original data set containing only comprehensive evaluation trees. The spearman’s 

correlation coefficients range between 0.934 and 0.963. 

Figure 3. Quartet-based measures are more accurate on partial evaluation trees. 

(A) Euclidean distances between IC scores calculated from the Original data set 

which contain only comprehensive evaluation trees and those calculated from data 

sets L1-3 and E1-2 which contain partial evaluation trees. (B) Fractions of internodes 

for which the IC scores were overestimated (0.05 unit higher) on data sets L1-3 and 

E1-2 compared with the Original data set. The boxplots depict, for each measure, 

distribution of Euclidean distance (A) or overestimated fraction (B) values from 50 

replicates. 

Figure 4. Euclidean distances between IC scores calculated on only 

comprehensive evaluation trees or only partial evaluation trees versus the scores 
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calculated on all trees. The results of the (A) yeast and (B) avian empirical data sets 

are shown. 

Figure 5. Bipartition-based IC scores tend to generate artificially low scores in 

the lack of phylogenetic signal. The results of the “random evaluation tree” test on 

data sets (A) Original, (B) E1, and (C) E2 are shown. The histograms indicate, for 

each measure, the distribution of IC scores calculated using randomized evaluation 

trees. 

Figure 6. The robustness of quartet-based and bipartition-based IC measures to 

errors in reference trees. The results of the “altered reference tree” test on data sets 

(A) Original, (B) E1, and (C) E2 are shown. The boxplots indicate, for each measure, 

the distribution of IC scores for bipartitions that are only present in the altered 

reference trees. 

Figure 7. Analysis of 15 empirical phylogenomic data sets using quartet-based 

and bipartition-based IC measures. The boxplots indicate, for each measure, the 

distribution of IC scores for all internodes in each data set. The horizontal line and 

diamond in each boxplot indicate the median and mean of the IC scores, respectively. 
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