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Abstract	33 

Background	34 

Very	low	depth	sequencing	is	a	cost-effective	approach	to	capture	low-frequency	and	rare	35 

variation	in	complex	trait	association	studies.	Here,	we	perform	cohort-wide	whole	genome	36 

sequencing	 (WGS)	 at	 1x	 depth	 coupled	 to	 genome-wide	 association	 analysis	 in	 2,347	37 

individuals	from	two	isolated	populations.	38 

Results	39 

We	establish	a	 robust	pipeline	 for	 calling	1x	WGS	data,	 achieving	an	average	minor	allele	40 

concordance	of	97%	when	compared	to	genotyping	chip	data.	9.5%	of	variants	called	using	41 

1x	WGS	are	variants	with	a	high	predicted	quality	not	captured	by	genome-wide	association	42 

study	(GWAS)	data	in	the	same	individuals	 imputed	to	a	dense	haplotype	reference	panel.	43 

Of	 the	 54	 association	 signals	 arising	 from	 genome-wide	 association	 analysis	 of	 1x	 WGS	44 

variants	 with	 25	 haematological	 traits	 (at	 p<5x10-7),	 only	 57%	 are	 recapitulated	 by	 the	45 

imputed	 GWAS	 results	 in	 the	 same	 samples.	 Differences	 in	 strength	 of	 evidence	 for	46 

association	 are	 smaller	 for	 common	 than	 for	 low-frequency	 and	 rare	 variant	 signals.	We	47 

further	 exemplify	 power	 gains	 by	 establishing	 robust	 evidence	 for	 a	 novel	 association	48 

between	 rs6489858,	 an	 intronic	 variant	 in	 RPH3A	 and	 increased	 lymphocyte	 count	49 

(beta=0.13,	 SE=0.11,	 p=8x10-12),	 which	 replicates	 in	 an	 independent	 dataset	 comprising	50 

173,480	samples.		51 

Conclusions	52 

We	 show	 that	 1x	 WGS	 is	 an	 efficient	 alternative	 to	 imputed	 GWAS	 chip	 designs	 for	53 

empowering	 next-generation	 association	 studies	 in	 complex	 traits.	 We	 demonstrate	 that	54 

population-scale	1x	WGS	allows	the	 interrogation	of	a	 large	number	of	 low-frequency	and	55 
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rare	 variants	 missed	 by	 classical	 GWAS	 array	 imputation,	 resulting	 in	 potential	 higher	56 

association	power.	57 

	58 

Keywords	59 

Whole-genome	sequencing,	association	studies,	population	isolates	60 

	61 

Introduction	62 

Characterisation	of	the	genetic	determinants	underpinning	complex	human	traits	of	medical	63 

relevance	 can	 help	 improve	 our	 understanding	 of	 aetiopathology	 and	 point	 to	 biological	64 

processes	 amenable	 to	 intervention.	 Despite	 great	 progress	 in	 identifying	 common-65 

frequency	 variants	 with	 small	 to	 modest	 effect	 sizes,	 the	 allelic	 architecture	 of	 low-66 

frequency	and	rare	variants	for	complex	traits	remains	largely	unchartered.	Power	to	detect	67 

association	 is	 central	 to	 genetic	 studies	examining	 sequence	 variants	 across	 the	 full	 allele	68 

frequency	spectrum.	Whole	genome	sequencing	(WGS)-based	association	studies	hold	the	69 

promise	 of	 probing	 a	 larger	 proportion	 of	 sequence	 variation	 compared	 to	 genome-wide	70 

genotyping	 arrays.	 However,	 high-depth	 WGS	 costs	 do	 not	 yet	 allow	 application	 of	 the	71 

GWAS	 paradigm	 to	 large-scale	 sequencing	 of	 hundreds	 of	 thousands	 of	 individuals.	 As	72 

sample	 size	 and	 haplotype	 diversity	 are	 more	 important	 than	 sequencing	 depth	 in	73 

determining	 power	 for	 association	 studies	 [1],	 low-depth	 WGS	 has	 emerged	 as	 an	74 

alternative,	 cost-efficient	 approach	 to	 capture	 low-frequency	 variation	 in	 large	 studies.	75 

Improvements	 in	 calling	 algorithms	 have	 enabled	 robust	 genotyping	 using	 WGS	 at	 low	76 

depth	(4x-8x),	leading	to	the	creation	of	large	reference	haplotype	panels	[2,	3],	and	to	the	77 

start	 of	WGS-based	 association	 studies	 [4,	 5].	 Very	 low	 depth	 (<2x)	 sequencing	 has	 been	78 
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proposed	 as	 an	 efficient	 way	 to	 further	 improve	 the	 cost	 efficiency	 of	 sequencing-based	79 

association	 studies.	 Simulations	 have	 shown	 that	 in	 whole-exome	 studies,	 extremely	 low	80 

sequencing	depths	(0.1-0.5x)	are	effective	 in	capturing	single-nucleotide	variants	 (SNVs)	 in	81 

the	 common	 (MAF>5%)	 and	 low-frequency	 (MAF	 1-5%)	 categories	 compared	 to	 imputed	82 

GWAS	 arrays	 [6].	 The	 CONVERGE	 consortium	 demonstrated	 the	 feasibility	 of	 such	83 

approaches	through	the	 first	successful	case-control	study	of	major	depressive	disorder	 in	84 

4,509	cases	and	5,337	controls	[7].	85 

	86 

Studying	 founder	 populations	 can	 further	 empower	 the	 search	 for	 association	 signals	 by	87 

allowing	the	detection	of	population-specific	variants,	and	of	association	signals	at	variants	88 

that	 have	 drifted	 up	 in	 frequency	 compared	 to	 cosmopolitan	 populations,	 against	 the	89 

backdrop	of	a	homogeneous	environment	[8]	[9]	[10]	[11].	Here,	we	perform	very	low	depth	90 

(1x),	 cohort-wide	WGS	 in	 two	 isolated	populations	 from	Greece.	We	establish	a	 robust	1x	91 

WGS	calling	pipeline	and	compare	the	complement	of	variants	captured	to	imputed	GWAS	92 

in	 the	 same	 samples.	 As	 a	 proof-of-principle,	 we	 perform	 association	 analysis	 across	93 

medically-relevant	 haematological	 traits	 and	 identify	 a	 robustly-replicating	 novel	 locus	94 

implicated	in	lymphocyte	counts.	95 

	96 

Results	97 

As	 part	 of	 the	Hellenic	 Isolated	 Cohorts	 (HELIC)	 study,	we	whole	 genome	 sequenced	 990	98 

individuals	 from	 the	Minoan	 Isolates	 (HELIC-MANOLIS)	 cohort,	 and	 1108	 individuals	 from	99 

the	 Pomak	 villages	 (HELIC-Pomak)	 at	 1x	 depth,	 on	 the	 Illumina	 HiSeq2000	 platform.	 In	100 

addition,	 249	 samples	 from	 the	 MANOLIS	 cohort	 were	 sequenced	 at	 4x	 depth	 [12].	101 
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Imputation-based	 genotype	 refinement	 was	 performed	 on	 the	 two	 cohort-wide	 datasets	102 

using	a	combined	reference	panel	of	10,422	haplotypes	 from	MANOLIS	4x	WGS,	 the	1000	103 

Genomes	[2]	and	UK10K	[4]	projects.	104 

	105 

Variant	calling	pipeline	106 

We	established	a	variant	calling,	quality	control	(QC)	and	genotype	refinement	pipeline	for	107 

very	 low	 depth	 WGS	 by	 benchmarking	 nine	 pipelines	 that	 make	 use	 of	 state	 of	 the	 art	108 

bioinformatics	tools	(Methods).	Our	optimised	approach	allowed	the	capture	of	80%	of	true	109 

low-frequency	 (MAF	1-5%)	variants	and	100%	of	 true	common-frequency	 (MAF>5%)	SNVs	110 

prior	to	 imputation-based	refinement,	when	compared	to	variants	present	on	the	Illumina	111 

OmniExpress	 and	HumanExome	 chips	 genotyped	 in	 the	 same	 samples.	 In	 order	 to	 assess	112 

sensitivity	 and	 specificity	 of	 SNV	 calls	 pre-imputation,	we	 estimate	 the	 false	 positive	 and	113 

false	 negative	 rate	 by	 comparing	 1x	 WGS	 variant	 calls	 with	 high-depth	 WGS	 data	 (see	114 

Methods).	We	estimate	 that	 12%	of	 1x	 sites	with	 at	 least	 one	heterozygote	 call	 are	 false	115 

positives,	 whereas	 24.6%	 of	 the	 sites	 called	 with	 high-depth	 WGS	 are	 not	 recapitulated	116 

using	1x	data.		117 

	118 

In	order	to	improve	the	false	negative	rate	and	genotype	accuracy,	we	performed	genotype	119 

refinement	and	imputation	using	a	large	reference	panel	containing	haplotypes	from	4,873	120 

cosmopolitan	 samples	 as	well	 as	 the	 phased	 haplotypes	 from	 the	 249	MANOLIS	 samples	121 

sequenced	at	4x	depth.	After	 imputation	and	QC,	we	captured	95%	of	rare,	99.7%	of	 low-122 

frequency	 and	 99.9%	 of	 common	 variants	 compared	 to	 the	 Illumina	 OmniExpress	 and	123 

HumanExome	 GWAS	 chips,	 with	 an	 average	minor	 allele	 concordance	 of	 97%	 across	 the	124 

allele	 frequency	 spectrum	 (Methods	 and	 Figure	 1).	 By	 comparing	 1x	 calls	 with	 those	125 
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produced	by	whole-exome	sequencing	in	10	individuals	across	both	cohorts,	we	estimate	a	126 

false-positive	rate	of	2.4%	post-imputation	in	the	coding	parts	of	the	genome	(Methods).	127 

	128 

	129 

Comparison	of	variant	call	sets	with	an	imputed	GWAS	130 

The	 genotype	 refinement	 and	 imputation	 step	 yielded	 30,483,136	 and	 29,740,259	 non-131 

monomorphic	 SNVs	 in	 1,239	 MANOLIS	 and	 1,108	 Pomak	 individuals,	 respectively.	 The	132 

number	of	variants	discovered	using	1x	WGS	is	nearly	twice	as	high	as	that	from	array-based	133 

approaches.	 In	 a	 subset	 of	 982	MANOLIS	 individuals	 with	 1x	WGS,	 we	 called	 25,673,116	134 

non-monomorphic	 SNVs	 using	 1x	WGS	 data,	 compared	 to	 13,078,518	 non-monomorphic	135 

SNVs	in	the	same	samples	with	OmniExpress	and	ExomeChip	data	imputed	up	to	the	same	136 

panel	 [9].	The	main	differences	are	among	rare	variants	 (MAF<1%)	(Figure	2):	 	13,671,225	137 

(53.2%)	variants	called	 in	the	refined	1x	WGS	are	absent	from	the	imputed	GWAS,	98%	of	138 

which	are	rare.	82%	of	these	rare	unique	SNVs	are	singletons	or	doubletons,	and	therefore	139 

9.5%	of	all	variants	called	in	the	1x	WGS	dataset	were	unique	variants	with	MAC>2.		140 

	141 

Experimental	validation	of	genotypes	142 

We	performed	experimental	genotyping	of	65	variants	(23	common,	18	low-frequency	and	143 

24	 rare)	 in	 a	 subset	 of	 1087	 and	 859	 samples	 in	 the	 MANOLIS	 and	 Pomak	 cohorts,	144 

respectively,	using	the	Agena	Biosciences	MassARRAY	technology.	On	average,	minor	allele	145 

concordance	 was	 76%	 and	 positive	 predictive	 value	 was	 82%.	 As	 expected,	 these	 values	146 

differ	 between	 MAF	 categories	 (Additional	 File	 1:	 Table	 S1).	 Minor	 allele	 and	 genotype	147 

concordance	between	1x	calls	and	this	set	of	directly	assayed	genotypes	were	 in	 line	with	148 

those	computed	genome-wide	between	1x	calls	and	GWAS	data	(Figure	1).		149 
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	150 

Association	analysis	151 

As	 a	 proof	 of	 principle,	 we	 performed	 single-point	 association	 analysis	 across	 25	152 

haematological	traits	with	14,948,665	and	15,564,905	variants	with	MAC>2	in	MANOLIS	and	153 

Pomak,	respectively	(Methods).	We	used	an	empirical	genetic	relatedness	matrix	calculated	154 

on	high-confidence	genotypes	to	account	for	relatedness	within	the	two	isolated	cohorts.	155 

	156 

Genome-wide	significance	was	set	at	p<1.0x10-9	based	on	the	effective	number	of	traits	and	157 

tested	variants	(see	Methods).	In	the	discovery	sample,	one	association	met	this	threshold	158 

in	the	Pomak	dataset.	rs35004220,	 located	 in	an	 intron	of	the	haemoglobin	B	(HBB)	gene,	159 

was	associated	with	six	red	blood	cell	traits	(haemoglobin,	mean	corpuscular	haemoglobin,	160 

mean	 corpuscular	 volume,	 red	 cell	 distribution	 width	 in	 volume	 	 and	 percent,	 red	 blood	161 

cells)	 (Additional	 File	 1	 and	 2:	 Figure	 S1	 and	 Table	 S2).	 A	 total	 of	 5,090	 variants	 with	162 

association	 p<1.0x10-5	 in	 the	 discovery	 stage	 corresponding	 to	 556	 and	 465	 independent	163 

signals	in	the	MANOLIS	and	Pomak	cohorts,	respectively	(Additional	File	1:	Table	S2	and	S3),	164 

were	carried	forward	to	in	silico	replication	using	data	from	a	large	meta-analysis	of	173,480	165 

samples	from	the	UK	Biobank	and	INTERVAL	studies	[5].	Out	of	the	3,336	variants	for	which	166 

replication	data	were	available,	52.4%	had	a	concordant	direction	of	effect	compared	to	the	167 

discovery	stage	(p=2.9x10-3,	one-sided	binomial	 test).	Upon	meta-analysis	of	the	discovery	168 

and	 replication	 data,	 we	 identify	 a	 previously	 unreported,	 genome-wide	 significantly	169 

associated	signal	(Figure	3).	The	G-allele	of	rs6489858	(EAF=0.40)	at	12q24.13	is	associated	170 

with	 increased	 lymphocyte	 count	 in	 MANOLIS	 (beta=0.022,	 SE=0.004,	 p=2.29x10-9	 in	 the	171 

discovery	and	replication	meta-analysis).	We	found	evidence	of	heterogeneity	(I2=95.4%,	Q-172 

statistic	 p=2x10-6)	 and	 therefore	 applied	 a	 random	 effects	 meta-analysis	 model	 [13]	173 
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(beta=0.13,	SE=0.11,	p=8x10-12).	 rs6489858	 is	 located	 in	an	 intronic	region	of	the	rabphilin	174 

3A	 (RPH3A)	 gene,	 which	 encodes	 a	 peripheral	 membrane	 protein	 involved	 in	 protein	175 

transport	and	synaptic	vesicle	traffic.		176 

	177 

Comparison	of	association	summary	statistics	with	imputed	GWAS	178 

1x	WGS	 calls	 a	 larger	 number	 of	 variants	 than	 imputed	 GWAS	 of	 the	 same	 samples.	 To	179 

evaluate	how	this	difference	affects	association	study	power,	we	compared	the	association	180 

results	of	all	independent	suggestive	signals	at	p<5x10-7	from	the	1x	WGS	with	the	imputed	181 

GWAS	 results	 for	 the	 same	 variants	 (Figure	 4).	 Among	 the	 54	 variants	 significantly	182 

associated	 at	 this	 threshold	 in	 the	 1x	WGS,	 17	 (31%)	were	 not	 observed	 in	 the	 imputed	183 

GWAS	 study.	 Rare	 (MAF<1%)	 variant	 signals	 are	 more	 poorly	 captured	 by	 the	 imputed	184 

GWAS,	with	10	out	of	16	signals	(62.5%)	being	missed,	however,	for	12	(70%)	of	the	missed	185 

variants,	a	tagging	SNV	at	r2>0.8	was	available	in	the	imputed	GWAS.	For	the	signals	where	186 

imputed	 GWAS	 results	 are	 indeed	 present,	 the	 majority	 (62.2%)	 do	 not	 meet	 our	187 

significance	 threshold,	 an	 effect	 which	 is	 more	 marked	 in	 the	 rare	 and	 low-frequency	188 

(16/23,	 69%)	 than	 in	 the	 common	 (7/14,	 50%)	 signals.	 This	 observation	 persists	 when	189 

considering	tagging	variants	at	 r2>0.8:	 twenty-seven	 (55%)	out	of	 the	49	 taggable	1x	WGS	190 

signals	 have	a	p-value	 above	 the	 significance	 threshold.	Generally,	 differences	 in	p-values	191 

between	the	two	studies	were	smaller	for	common	than	for	low-frequency	and	rare	variant	192 

signals	(5.5	and	2.0	on	the	log-scale,	p=6x10-3,	two-sample	t-test).	193 

	194 

	195 

Discussion	196 
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In	this	work,	we	empirically	demonstrate	the	relative	merits	of	very	low	depth	WGS	both	in	197 

terms	 of	 variant	 discovery	 and	 association	 study	 power	 for	 complex	 quantitative	 traits	198 

compared	to	GWAS	approaches.	However,	the	advantages	of	1x	WGS	have	to	be	weighed	199 

against	compute	and	financial	cost	considerations.	As	of	January	2017,	1x	WGS	on	the	HiSeq	200 

4000	 platform	 was	 approximately	 half	 of	 the	 cost	 of	 a	 dense	 GWAS	 array	 (e.g.	 Illumina	201 

Infinium	Omni	2.5Exome-8	array),	1.5	times	the	cost	of	a	sparser	chip	such	as	the	Illumina	202 

HumanCoreExome	array,	and	a	third	of	the	cost	of	WES	at	50x	depth.	By	comparison,	30x	203 

WGS	was	21	or	16	times	more	costly	depending	on	the	sequencing	platform	(Illumina	HiSeq	204 

4000	or	HiSeqX,	respectively).	The	number	of	variants	called	by	1x	WGS	is	lower	than	high-205 

depth	WGS,	 but	 is	 in	 the	 same	 order	 of	 magnitude,	 suggesting	 comparable	 disk	 storage	206 

requirements	 for	variant	calls.	However,	 storage	of	 the	 reads	 required	an	average	650Mb	207 

per	sample	for	CRAMs,	and	1.3Gb	per	sample	for	BAMs.		208 

	209 

Genome-wide	 refinement	 and	 imputation	 of	 very	 low	 depth	WGS	 generates	 close	 to	 50	210 

times	 more	 variants	 than	 a	 GWAS	 chip.	 The	 complexity	 of	 the	 imputation	 and	 phasing	211 

algorithms	used	 in	 this	 study	 is	 linear	 in	 the	 number	 of	markers,	 linear	 in	 the	 number	 of	212 

target	samples	and	quadratic	in	the	number	of	reference	samples	[14],	which	results	in	a	50-213 

fold	increase	in	total	processing	time	compared	to	an	imputed	GWAS	study	of	equal	sample	214 

size.	 Therefore,	 parallelisation	 plays	 a	 crucial	 role	 in	 managing	 computational	 load.	 For	215 

example,	in	MANOLIS	the	genome	was	divided	in	13,276	chunks	containing	equal	number	of	216 

SNVs,	which	 took	an	average	of	31	hours	each	 to	 refine	and	 impute.	The	 total	processing	217 

time	was	47	core-years	 (Methods	and	Additional	File	2:	Figure	S2).	Parallelisation	allowed	218 

processing	the	1,239	MANOLIS	samples	in	under	a	month.	219 

	220 
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As	a	proof	of	principle,	we	used	1x	WGS	in	samples	from	isolated	populations	and	identified	221 

a	 novel	 association	 with	 lymphocyte	 count,	 previously	 missed	 by	 large-scale	 GWAS	 in	222 

cosmopolitan	populations	 [15-17].	The	signal	had	a	much	 larger	effect	 size	 in	 the	 isolated	223 

population	 discovery	 cohort	 (beta=0.25	 standard	 deviation	 increase	 in	 the	 discovery	224 

samples,	 beta=0.02	 in	 the	 replication	 cohorts	 for	 rs6489858).	 In	 the	 subsample	 of	 1,225	225 

individuals	 with	 both	 1x	 and	 GWAS	 data,	 minor	 allele	 concordance	 was	 99.5%	 for	226 

rs6489858,	 and	 the	 association	 p-value	 with	 LYM	 was	 in	 the	 same	 order	 of	 magnitude	227 

(p=7.5x10-7	 in	 the	 imputed	 GWAS,	 p=3.2x10-7	 in	 the	 1x	WGS	 data).	 rs6489858	 is	 located	228 

260kb	 from	 PTPN11.	 In	 juvenile	 myelomonocytic	 leukemia,	 the	 RAS/MAPK	 pathway	 is	229 

frequently	deregulated	due	to	somatic	mutations	in	PTPN11	[18].	PTPN11	is	also	involved	in	230 

LEOPARD	 syndrome,	 metachondromatosis	 and	 Noonan	 syndrome.	 Animal	 models	 of	 this	231 

gene	 show	diverse	 and	 severe	phenotypes	 including	hematopoietic	 abnormalities	 such	 as	232 

abnormal	 leukopoiesis	 [19].	DTX1	 is	 located	280kb	away	 from	the	 index	variant.	Deltex-1,	233 

the	cytoplasmic	protein	product	of	this	gene,	is	a	regulator	of	the	Notch	pathway	and	plays	234 

an	 important	role	 in	the	development	of	B	and	T	 lymphocytes	[20].	Animal	models	of	this	235 

gene	show	various	hematopoietic	and	immune	related	abnormalities	[21]	due	to	interfering	236 

with	T	cell	development.	237 

	238 

	239 

Conclusions	240 

We	show	that	very	low	depth	whole-genome	sequencing	allows	the	accurate	assessment	of	241 

most	common	and	low-frequency	variants	captured	by	imputed	GWAS	designs	and	achieves	242 

denser	 coverage	 of	 the	 low-frequency	 and	 rare	 end	 of	 the	 allelic	 spectrum,	 albeit	 at	 an	243 

increased	 computational	 cost.	 This	 allows	 very	 low	 depth	 sequencing	 studies	 to	 identify	244 
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signals	 also	 discoverable	 by	 imputed	 chip-based	 efforts,	 and	 to	 discover	 significantly	245 

associated	variants	missed	by	GWAS	imputation	[22].	As	sequencing	technologies	continue	246 

to	evolve,	higher	sequencing	depths	will	provide	accurate	genotyping	across	the	full	range	247 

of	 the	 allelic	 spectrum,	 enabling	 comprehensive	 exploration	 of	 human	 phenotype	248 

associations	through	rare	variant	aggregation	tests.	249 

	250 

Materials	and	methods	251 

Cohort	details	252 

The	HELIC	(Hellenic	Isolated	Cohorts;	www.helic.org)	MANOLIS	(Minoan	Isolates)	collection	253 

focuses	on	Anogia	and	surrounding	Mylopotamos	villages	on	the	Greek	island	of	Crete.	All	254 

individuals	were	required	to	have	at	least	one	parent	from	the	Mylopotamos	area	to	enter	255 

the	 study.	 The	 HELIC	 Pomak	 collection	 focuses	 on	 the	 Pomak	 villages,	 a	 set	 of	 isolated	256 

mountainous	 villages	 in	 the	 North	 of	 Greece.	 Recruitment	 of	 both	 population-based	257 

samples	 was	 primarily	 carried	 out	 at	 the	 village	 medical	 centres.	 The	 study	 includes	258 

biological	 sample	 collection	 for	 DNA	 extraction	 and	 lab-based	 blood	measurements,	 and	259 

interview-based	questionnaire	filling.	The	phenotypes	collected	include	anthropometric	and	260 

biometric	measurements,	clinical	evaluation	data,	biochemical	and	haematological	profiles,	261 

self-reported	medical	history,	demographic,	socioeconomic	and	lifestyle	information.		262 

	263 

Sequencing		264 

Sequencing	 and	mapping	 for	 the	 995	MANOLIS	 samples	 at	 1x	 depth	 has	 been	 described	265 

before	[22],	as	well	as	 for	250	MANOLIS	samples	at	4x	[9].	1166	samples	 from	the	Pomak	266 

were	sequenced	at	1x	depth	using	the	same	protocol	using	Illumina	HiSeq	2000	and	Illumina	267 
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HiSeq	 2500	 sequencers.	 For	 comparison,	 5	 samples	 from	each	 cohort	were	whole-exome	268 

sequenced	at	an	average	depth	of	75x.		269 

	270 

Read	mapping	and	variant	calling	271 

Following	generation	of	raw	reads	on	the	Illumina	HiSeq	2000	and	HiSeq	2500	sequencing	272 

machines,	 reads	were	converted	from	BCL	format	to	BAM	format	using	the	 Illumina2BAM	273 

(https://github.com/wtsi-npg/illumina2bam)	software.		Illumina2BAM	was	again	used	to	de-274 

multiplex	 lanes	 that	had	been	sequenced	so	that	 the	tags	were	 isolated	 from	the	body	of	275 

the	 read,	 decoded,	 and	 could	 be	 used	 to	 separate	 out	 each	 lane	 into	 lanelets	 containing	276 

individual	samples	from	the	multiplex	library	and	the	PhiX	control.		The	quality	scores	were	277 

then	 recalibrated	 using	 the	 purity	 recalibration	 algorithm	 [23]	 using	 the	 PhiX	 data	 for	278 

reference.	Read	mapping	was	then	carried	out	using	the	BWA	backtrack	algorithm	version	279 

0.5.10	using	 the	GRCh37	1000	Genomes	phase	 III	 reference	 (also	 known	as	 hs37d5).	 PCR	280 

and	 optically	 duplicated	 reads	 were	 marked	 using	 Picard	 MarkDuplicates	281 

(http://broadinstitute.github.io/picard).		282 

	283 

In	order	 to	ensure	 the	quality	of	 the	 large	quantity	of	BAMs	produced	 for	 the	project,	an	284 

automatic	quality	control	system	was	used	to	reduce	the	number	of	data	files	that	required	285 

manual	 intervention.	 This	 system	 was	 derived	 from	 the	 one	 originally	 designed	 for	 the	286 

UK10K	project	 (http://www.uk10k.org)	and	used	a	series	of	empirically	derived	thresholds	287 

to	 assess	 summary	 metrics	 calculated	 from	 the	 input	 BAMs.	 These	 thresholds	 included:	288 

percentage	 of	 reads	 mapped;	 percentage	 of	 duplicate	 reads	 marked;	 various	 statistics	289 

measuring	INDEL	distribution	against	read	cycle	and	an	insert	size	overlap	percentage.	Any	290 

lane	that	fell	below	the	“fail”	threshold	for	any	of	the	metrics	were	excluded;	and	any	lane	291 
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that	did	not	fall	below	these	thresholds	for	any	of	the	metrics	was	given	a	status	of	“pass”	292 

and	allowed	to	proceed	into	the	later	stages	of	the	pipeline.	293 

	294 

Passed	lanelets	were	then	merged	into	BAMs	corresponding	to	the	libraries	for	each	sample	295 

and	duplicates	were	marked	again	with	Picard	MarkDuplicates	after	which	they	were	then	296 

merged	 into	 BAMs	 on	 a	 per	 sample	 basis.	 	 Finally	 sample	 level	 bam	 improvement	 was	297 

carried	 out	 using	 GATK	 1.6[24,	 25]	 and	 samtools[26]	 	 from	 git	 commit	298 

72d6457f7f361c323f62bd2d3170980132ba2113.	 This	 consisted	 of	 re-alignment	 of	 reads	299 

around	 known	 and	 discovered	 INDELs	 followed	 by	 base	 quality	 score	 recalibration	 both	300 

using	 the	 GATK,	 lastly	 samtools	 calmd	 was	 applied	 and	 indexes	 were	 created.	 	 Known	301 

INDELs	 for	 realignment	were	 taken	 from	Mill	 Devine	 and	 1000G	Gold	 set	 and	 the	 1000G	302 

phase	low	coverage	set	both	part	of	the	Broad’s	GATK	resource	bundle	version	2.2.		Known	303 

variants	for	BQSR	were	taken	from	dbSNP	137	also	part	of	the	Broad’s	resource	bundle.		304 

	305 

The	 input	BAM	 files	 are	 fed	 into	 samtools	mpileup	 to	 create	 all-sites	BCF	 files,	which	 are	306 

piped	into	bcftools	view	to	create	variant-only	VCF	files	containing	genotype	calls.	We	split	307 

the	 genome	 into	 chunks	 of	 100,000	 base	 pairs,	 and	 separate	 these	 chunks	 into	 SNV	 and	308 

INDEL	files.		We	run	GATK	UnifiedGenotyper	to	calculate	site-level	annotations.			309 

	310 

Variant	filtering	311 

Variant	quality	score	recalibration	was	performed	using	GATK	VQSR	v.3.1.1.	However,	using	312 

the	default	parameters	for	the	VQSR	mixture	model	yields	poor	filtering,	with	a	Ti/Tv	ratio	313 

dropoff	 at	 83%	 percent	 sensitivity	 and	 a	 Ti/Tv	 ratio	 of	 1.8	 for	 high-quality	 tranches	314 

(Additional	File	2:	Figure	S3.a).	We	therefore	ran	exploratory	runs	of	VQSR	across	a	range	of	315 
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values	 for	 the	 model	 parameters,	 using	 the	 dropoff	 point	 of	 the	 transition/transversion	316 

(Ti/Tv)	 ratio	 below	 2.0	 as	 an	 indicator	 of	 good	 fit	 (Additional	 File	 2:	 Figure	 S4).	 A	 small	317 

number	of	configurations	outperformed	all	others,	which	allowed	us	to	select	an	optimal	set	318 

of	parameters.	For	the	chosen	set	of	parameters,	false	positive	rate	is	estimated	at	10%±5%	319 

(Additional	File	2:	Figure	S3.b).	 Indels	were	excluded	from	the	dataset	out	of	concerns	 for	320 

genotype	quality.	We	 found	 that	 the	version	of	VQSR,	as	well	 as	 the	annotations	used	 to	321 

train	the	model,	had	a	strong	influence	on	the	quality	of	the	recalibration	(Additional	File	2:	322 

Figure	S4	and	Supplementary	Text).	323 

	324 

Comparison	with	Platinum	genomes	325 

For	 quality	 control	 purposes,	 reads	 from	 17	 of	 the	well-characterised	 Platinum	Genomes	326 

sequenced	by	Illumina	at	50x	depth	[3],	and	downsampled	to	1x	depth	using	samtools	[26]	327 

were	included	in	the	merged	BAM	file.	VQSR-filtered	calls	were	then	compared	to	the	high-328 

confidence	call	sets	made	available	by	Illumina	for	those	samples.	524,331	of	the	4,348,092	329 

non-monomorphic	 variant	 sites	 were	 not	 present	 in	 the	 high-confidence	 calls,	 whereas	330 

1,246,403	 of	 the	 5,070,164	 non-monomorphic	 high-confidence	 were	 not	 recapitulated	 in	331 

the	1x	data.	This	corresponds	to	an	estimated	false	positive	rate	of	12%	and	false	negative	332 

rate	of	24.6%.	Both	unique	sets	had	a	much	higher	proportion	of	singletons	(corresponding	333 

to	MAF	<	2.9%)	than	the	entire	sets	(57.9%	vs	19.9%	of	singletons	among	1x	calls	and	51%	vs	334 

18.1%	among	high-confidence	calls),	which	suggests	that	a	 large	fraction	of	the	erroneous	335 

sites	 lies	 in	 the	 low-frequency	 and	 rare	 part	 of	 the	 allelic	 spectrum.	 However,	 genotype	336 

accuracy	 is	 poor,	 to	 the	 point	 where	 it	 obscures	 peculiarities	 in	 the	 distribution	 of	 allele	337 

counts	 (Additional	 File	 2:	 Figure	 S5).	 Due	 to	 them	 being	 present	 in	 the	 1000	 genomes	338 

reference	panel,	we	remove	the	17	Platinum	Genomes	prior	to	imputation. 339 
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	340 

	341 

Genotype	refinement	and	imputation	342 

Reference	Panel	343 

Phased	haplotypes	from	1092	samples	from	the	1000	Genomes	Project	Phase	1	study	were	344 

merged	 with	 3781	 7x	 WGS	 samples	 from	 the	 UK10K	 [4]	 TwinsUK	 [27]	 and	 ALSPAC	 [28]	345 

studies,	and	with	249	MANOLIS	samples	sequenced	at	4x	depth	 [9]	using	SHAPEIT	v2	 [29]	346 

and	 converted	 to	 VCF	 format.	 Alleles	 in	 the	 reference	 panel	 were	 flipped	 so	 as	 to	347 

correspond	to	the	reference	allele	in	the	called	dataset.	Positions	where	the	alleles	differed	348 

between	the	called	and	reference	datasets	were	removed	from	both	sources.	 Indels	were	349 

filtered	out	due	to	poor	calling	quality.		350 

	351 

Pipeline	352 

As	described	previously	[22],	we	used	Beagle	v.4	[30]	to	perform	a	first	round	of	imputation-353 

based	 genotype	 refinement	 on	 1,239	 HELIC	MANOLIS	 variant	 callsets,	 using	 a	 previously	354 

described	 [9]	 reference	 panel	 composed	 of	 10,244	 haplotypes	 from	 the	 1000	 Genomes,	355 

UK10K	 and	 MANOLIS	 4x	 reference	 sequences.	 This	 was	 followed	 by	 a	 second	 round	 of	356 

reference-free	imputation,	using	the	same	software.	The	same	pipeline	was	applied	to	1166	357 

individuals	from	the	Pomak	cohort.	358 

	359 

Evaluation	of	pipelines	360 

The	 authors	 of	 SHAPEIT	 [29]	 advise	 to	 phase	 whole	 chromosome	 when	 performing	 pre-361 

phasing	 in	 order	 to	 preserve	 downstream	 imputation	 quality.	 	 This	 approach	 is	362 
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computationally	 intractable	 for	 the	1x	datasets,	where	 the	smallest	chromosomes	contain	363 

almost	7	times	more	variants	than	the	largest	chromosomes	in	a	GWAS	dataset.		364 

	365 

For	benchmarking	purposes,	we	tested	13	genotype	refinement	pipelines	 involving	Beagle	366 

v4.0	 [30]	 and	 SHAPEIT2	 [29]	 using	 a	 1000	 Genomes	 phase	 1	 reference	 panel,	 which	 we	367 

evaluated	 against	 minor	 allele	 concordance.	 All	 pipelines	 were	 run	 using	 the	 vr-runner	368 

scripts	 (https://github.com/VertebrateResequencing/vr-runner).	 Pipelines	 involving	 Beagle	369 

with	the	use	of	a	reference	panel	 ranked	consistently	better	 (Additional	File	2:	Figure	S6),	370 

with	a	single	run	of	reference-based	refinement	using	Beagle	outperforming	all	other	runs.	371 

IMPUTE2	performed	worst	on	its	own,	whether	with	or	without	reference	panel;	in	fact	the	372 

addition	 of	 a	 reference	 panel	 did	 not	 improve	 genotype	 quality	 massively.	 Phasing	 with	373 

Beagle	without	an	imputation	panel	improved	genotype	quality,	before	or	after	IMPUTE2.	374 

	375 

Halving	 the	 number	 of	 SNVs	 per	 refinement	 chunk	 to	 2,000	 (including	 500	 flanking	376 

positions)	 resulted	 in	only	a	modest	 loss	of	genotype	quality	 in	 the	rare	part	of	 the	allelic	377 

spectrum	(Additional	File	2:	Figure	S7),	while	allowing	for	a	twofold	increase	in	refinement	378 

speed.	Genotype	quality	dropped	noticeably	for	rare	variants	when	imputation	was	turned	379 

on	(Additional	File	2:	Figure	S7),	but	remained	high	for	low-frequency	and	common	ones.	A	380 

reference-free	 run	 of	 Beagle	 allowed	 to	 phase	 all	 positions	 and	 remove	 genotype	381 

missingness	with	no	major	impact	on	quality	and	a	low	computational	cost.	We	also	tested	382 

thunderVCF	[31]	for	phasing	sites,	however,	the	program	took	more	than	2	days	to	run	on	383 

5,000	SNV	chunks	and	was	abandoned.	384 

	385 

Variant-level	QC	386 
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Beagle	 provides	 two	 position	 level	 imputation	 metrics,	 allelic	 R-squared	 and	 dosage	 R-387 

squared.	 Both	 measures	 are	 highly	 correlated	 (Additional	 File	 2:	 Figure	 S8.a).	 Values	388 

between	0.3	and	0.8	are	typically	used	for	filtering	[32].	In	both	1x	datasets	59%	and	91%	of	389 

imputed	 variants	 lie	 below	 those	 two	 thresholds,	 respectively.	 The	 distribution	 of	 scores	390 

does	 not	 provide	 an	 obvious	 filtering	 threshold	 (Additional	 File	 2:	 Figure	 S8.b)	 due	 to	 its	391 

concavity.	 Since	 most	 imputed	 variants	 are	 rare	 and	 R-squared	 measures	 are	 highly	392 

correlated	 with	 MAF,	 filtering	 by	 AR2	 and	 DR2	 would	 be	 similar	 to	 imposing	 a	 MAF	393 

threshold	(Additional	File	2:	Figure	S8.c	and	d.).	Moreover,	due	to	a	technical	 limitation	of	394 

the	 vr-runner	 pipelines,	 imputation	 quality	 measures	 were	 not	 available	 for	 refined	395 

positions	 at	 the	 time,	 only	 imputed	 ones.	 Therefore,	 we	 did	 not	 apply	 any	 prior	 filter	 in	396 

downstream	 analyses,	 but	 used	 imputation	 metrics	 as	 well	 as	 variant	 quality	 scores	 to	397 

prioritise	variants	post-association.	398 

	399 

Sample	QC	400 

Due	to	the	sparseness	of	the	1x	datasets,	sample-level	QC	was	performed	after	imputation.	401 

58	 individuals	 were	 removed	 from	 the	 Pomak	 cohort	 due	 to	 contamination	 and	 sample	402 

swap	issues.	5	samples	were	excluded	from	the	MANOLIS	1x	cohort	and	1	sample	from	the	403 

4x	cohort	following	PCA-based	ethnicity	checks.		404 

	405 

Comparison	with	WES	406 

A	set	of	high	confidence	genotypes	was	generated	for	the	5	exomes	in	MANOLIS	using	filters	407 

for	 variant	 quality	 (>200),	 call	 rate	 (AN=10,	 100%)	 and	 depth	 (250).	 These	 filters	 were	408 

derived	from	the	respective	distributions	of	quality	metrics	(Additional	File	2:	Figure	S9).		409 
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When	 compared	 to	 5	 whole-exome	 sequences	 from	 each	 cohort,	 imputed	 1x	 calls	410 

recapitulated	 77.2%	 of	 non-monomorphic,	 high-quality	 exome	 sequencing	 calls.	411 

Concordance	was	high,	with	only	3.5%	of	the	overlapping	positions	exhibiting	some	form	of	412 

allelic	mismatch.	When	restricting	the	analysis	to	singletons,	9105	(58%)	of	the	15,626	high-413 

quality	 singletons	 in	 the	 10	 exomes	 were	 captured,	 with	 21%	 of	 the	 captured	 positions	414 

exhibiting	false	positive	genotypes	(AC>1).	To	assess	false	positive	call	rate,	we	extracted	1x	415 

variants	 falling	 within	 the	 71,627	 regions	 targeted	 by	 the	 Agilent	 design	 file	 for	 WES	 in	416 

overlapping	samples,	and	compared	them	to	those	present	 in	the	unfiltered	WES	dataset.	417 

103,717	 variants	were	 called	 in	 these	 regions	 from	WES	 sequences,	 compared	 to	 58,666	418 

non-monomorphic	positions	in	the	1x	calls.	1,419	(2.4%)	of	these	positions	were	unique	to	419 

the	1x	dataset,	indicating	a	low	false-positive	rate	in	exonic	regions	post-imputation.		420 

	421 

Genetic	relatedness	matrix	422 

In	order	to	correct	for	genetics	relatedness	within	the	two	isolated	cohorts,	we	calculated	a	423 

genetic	relatedness	matrix	using	GEMMA	[33].	Given	the	isolated	nature	of	the	population	424 

and	the	specificities	of	 the	sequencing	dataset,	we	used	different	variant	sets	 to	calculate	425 

kinship	coefficients.	Using	the	unfiltered	1x	variant	dataset	produced	the	lowest	coefficients	426 

(Figure	10.a),	whereas	well-behaved	set	of	common	SNVs	[34]	produced	the	highest,	with	427 

an	 average	 difference	 of	 3.67x10-3.	 Filtering	 for	 MAF	 lowered	 the	 inferred	 kinship	428 

coefficients.	Generally,	the	more	a	variant	set	was	sparse	and	enriched	in	common	variants,	429 

the	higher	the	coefficients	were.	However,	these	differences	only	had	a	marginal	impact	on	430 

association	statistics,	as	evidenced	by	a	lambda	median	statistic	difference	of	0.02	between	431 

the	two	most	extreme	estimates	of	relatedness	when	used	for	a	genome-wide	association	432 

of	triglycerides	in	Pomak	(Additional	File	2:	Figure	S9.b).	For	our	association	study,	we	used	433 
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LD-pruned	 1x	 variants	 filtered	 for	MAF<1%	 and	 Hardy	Weinberg	 equilibrium	 p<1x10-5	 to	434 

calculate	the	relatedness	matrix.	435 

	436 

Phenotype	preparation	437 

Twenty-five	haematological	phenotypes	were	prepared,	with	certain	traits	measured	only	in	438 

one	cohort	or	the	other	(Additional	File	2:	Table	S4),	and	high	levels	of	correlation	for	some	439 

traits(Additional	 File	 2:	 Figure	 S11).	 Full	 details	 of	 the	 trait	 transformation,	 filters	 and	440 

exclusions	 are	 described	 in	 Additional	 File	 2:	 Table	 S4.	 The	 ‘transformPhenotype’	441 

(https://github.com/gmelloni/transformPhenotype)	 R	 script	 was	 used	 to	 apply	 a	442 

standardised	 preparation	 for	 all	 phenotypes.	 If	 gender	 differences	 were	 significant	443 

(Wilcoxon	 rank	 sum	 P	 <	 0.05),	 the	 phenotype	 was	 stratified	 accordingly.	 Following	 trait-444 

specific	 exclusions	 and	 adjustments,	 outliers	 were	 filtered	 out	 based	 on	 3	 standard	445 

deviations	(SD)	away	from	the	mean	where	necessary.	Traits	not	normally	distributed	were	446 

transformed	 to	 normality	 using	 an	 inverse	 normal	 transformation,	 after	 testing	 for	 a	447 

number	 of	 power	 transformation	 including	 logarithmic.	 For	 all	 traits	 age	 and	 age2	 were	448 

added	as	covariates	as	necessary	and	standardised	residuals	were	used.	If	male	and	female	449 

phenotypes	 were	 prepared	 separately	 these	 were	 standardised	 before	 combining	 the	450 

residuals.	Summary	statistics	for	all	of	the	traits	are	provided	in	Additional	File	2:		Table	S5.	451 

	452 

Single-point	association	453 

Pipeline	454 

Association	analysis	was	performed	on	each	cohort	separately	using	the	linear	mixed	model	455 

implemented	 in	GEMMA	[33]	on	all	variants	with	minor	allele	count	(MAC)	greater	than	2	456 

(14,948,665	out	of	30,483,158	variants	 in	MANOLIS	and	15,564,905	out	of	29,740,281	 for	457 
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Pomak).	We	used	the	aforementioned	centered	kinship	matrix.	GC-corrected	p-values	from	458 

the	likelihood	ratio	test	(p_lrt)	are	reported.	Singletons	and	doubletons	are	removed	due	to	459 

overall	low	minor	allele	concordance.	460 

	461 

Estimating	the	significance	threshold	462 

We	determine	the	significance	threshold	by	calculating	𝛼"#$ =
&.&(

)*++×-*++
,	where	𝑁/00	is	the	463 

effective	number	of	SNVs	after	correcting	for	LD	and	𝑘/00	 is	the	effective	number	of	traits	464 

tested	after	correcting	for	correlation.	We	estimated	𝑘/00	using	two	different	methods.	The	465 

first	method	 selects	 the	 number	 of	 principal	 components	 (PCs)	 in	 a	 principal	 component	466 

analysis	(PCA)	of	standardised,	normalised	traits	that	explain	95%	of	total	trait	variance.	This	467 

yielded	𝑘/00 = 8	 for	both	MANOLIS	and	Pomak	(𝑀	 = 20	and	𝑀	 = 18,	 respectively).	 	The	468 

second	method	uses	the	Kaiser	method	on	the	eigenvalues	of	the	trait	correlation	matrix	to	469 

calculate	𝑘/00	[35],	and	gives	𝑘/00 = 9	for	MANOLIS	and	𝑘/00 = 8	for	Pomak.		470 

For	𝑁/00,	we	extrapolate	the	number	of	SNVs	based	on	calibration	curves[36]	that	provide	471 

the	 number	 of	 independent	 SNVs	 given	 the	 total	 number	 of	 tested	 SNVs	 (assuming	472 

MAF>0.5%).	 This	 gives	𝑁/00 = 5,145,236	 for	 MANOLIS	 (𝛼"#$ = 1.08×10>?)	 and	𝑁/00 =473 

5,361,759	 for	 Pomak	 (𝛼"#$ = 1.16×10>?).	 Performing	 LD-pruning	using	PLINK	 [37]	 yields	474 

8,123,367	variants	with	MAC>2	for	Pomak	(𝛼"#$ = 7.7×10>A&)	and	6,833,823	variants	 for	475 

MANOLIS	(𝛼"#$ = 8.12×10>A&).	We	define	genome-wide	significance	at	𝛼"#$ = 1.0×10>?,	476 

which	is	reasonably	close	to	these	estimates.	477 

	478 

Signal	prioritisation	479 
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Signals	 were	 extracted	 using	 the	 peakplotter	 software	 (https://github.com/wtsi-480 

team144/peakplotter	)	using	a	window	size	of	1Mb.	481 

	482 

Replication	483 

The	 discovery	 and	 validation	 studies	 were	 conducted	 in	 different	 populations.	 This	 can	484 

affect	 the	 strength	 of	 associations	 of	 genetic	 variants	 and	 lead	 to	 heterogeneity	 in	 effect	485 

sizes	[38,	39].	Therefore,	we	assessed	heterogeneity	and	carried	out	a	random	effects	meta-486 

analysis	when	there	was	evidence	of	heterogeneity	at	p<0.05.	We	estimated	heterogeneity	487 

using	 I2	 and	 Q	 statistics.	We	 used	 the	method	 described	 in	 [13]	 for	 the	 random	 effects	488 

meta-analysis,	 as	 it	 was	 shown	 to	 have	 higher	 power	 to	 detect	 associations	 than	 the	489 

conventional	random	effects	method.	490 
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Figures	546 

Figure	 1:	 Concordance	 and	 call	 rate	 for	 1x	WGS	 genotypes.	Genotype	 (blue	 circles)	 and	547 

minor	allele	(yellow	circles)	concordance	is	computed	for	1239	samples	in	MANOLIS	against	548 

merged	OmniExpress	and	ExomeChip	data.	Call	rate	is	assessed	for	the	refined	(purple)	and	549 

refined	plus	imputed	(green)	datasets.		550 

	 	551 
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Figure	 2:	 Unique	 variants	 called	 by	 sequencing	 and	 imputed	 GWAS.	 Variants	 unique	 to	552 

either	 dataset,	 arranged	 by	 MAF	 bin.	 Both	 datasets	 are	 unfiltered	 apart	 from	553 

monomorphics,	which	are	excluded.	MAF	categories:	 rare	 (MAF<1%),	 low-frequency	 (MAF	554 

1-5%),	common	(MAF>5%).		555 
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Figure	3:	Association	between	rs6489858	and	lymphocyte	count	in	MANOLIS.		 	557 
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Figure	4:	Imputed	GWAS	results	for	association	signals	found	in	the	1x	WGS	at		p<5x10-7.	558 

Purple	dots	represent	significant	results	 in	the	1x	analysis.	Orange	dots,	 if	present,	denote	559 

the	p-value	of	 the	 same	SNP	 in	 the	 imputed	GWAS	 study.	Absence	of	 a	dot	 indicates	 the	560 

variant	was	not	found	in	the	imputed	GWAS	dataset.	Red	dashes	indicate	the	minimum	p-561 

value	among	all	tagging	SNPs	in	the	imputed	GWAS	(r2>0.8).	 	562 
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