














	
  

16 

Figure 2 

 
Figure 2: Using machine learning to scan the primary literature in search of a patient candidate gene that 
best explains the patient set of phenotypes. AMELIE evaluates every paper it has found that ties any of the 
patient candidate genes to any clinical phenotype/s. AMELIE sums the amount of information acquired by 
learning from the paper such that the candidate gene can explain one or more of the patient phenotypes (Online 
Methods). All papers about all candidate genes are scored in this way, and all genes are ranked using their best 
scoring paper. For each of 215 patients with Mendelian diseases from the Deciphering Developmental 
Disorders study39, AMELIE analyzed a median of 2,068 full text articles about 124 (median) patient genes in an 
attempt to explain all 7 (median) patient phenotypes.  
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Figure 3 

 
Figure 3: AMELIE patient causal gene ranking outperforms methods based on manually curated 
databases, even when training only on 2011 knowledge. For each of four methods, the graph shows the 
fraction of 215 patients with Mendelian diseases, obtained from the Deciphering Developmental Disorders 
study39, where the method places the causal gene in the rank order 1, 1-2, 1-3, 1-5 or 1-10 (left to right). 
Methods: (Blue, leftmost) AMELIE trained on 2016 data. (Red) AMELIE trained on 2011 data. (Green) Phevor 
and (Purple, rightmost) Phenomizer, both trained on manually curated OMIM and OrphaNet. Weak supervision 
using 2011 knowledge (never about the causal genes) is adequate to train AMELIE to be the best performer. 
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Online methods 
Knowledgebase construction 
Downloading titles and abstracts from PubMed (Figure 1A, step 1) 

Titles and abstracts from PubMed were obtained using PubMunch (https://github.com/maximilianh/pubMunch).  

Identifying gene mentions in titles and abstracts 
To identify mentions of human genes or protein products in the text, a list of human gene and protein names 
was assembled using HGNC35 symbols, HGNC synonyms, UniProt36 gene names and UniProt protein names. 
Gene mentions are identified in text by matching word groups in the article with gene names from the list of 
gene and protein names. 

To estimate the precision (the fraction of retrieved data points that are true) of the gene identifier, 50 random 
gene mentions were taken from all downloaded full-text articles and the number of correctly identified genes 
was counted. A mention was defined as correct if the word group referred to a gene or protein product and the 
assigned Ensembl gene identifier referred to the mentioned gene. 

Identifying phenotype mentions in titles and abstracts 

To identify human phenotype mentions in the text, a list of names and synonyms of human phenotypes from the 
Human Phenotype Ontology27 annotation build 103 was assembled.  

Phenotype mentions are identified by matching word groups in the article with phenotype names from the 
Human Phenotype Ontology. If a word group matches, it is mapped to the appropriate Human Phenotype 
Ontology term. 

To estimate the precision of the phenotype identifier, 50 random phenotype mentions were taken from all 
downloaded full-text articles and the number of correctly identified phenotypes was counted. A mention was 
defined as correct if the word group occurred referred to a phenotype and the HPO ID referred to the mentioned 
phenotype. 

Document classification discovers articles about Mendelian diseases (step 2) 
To automatically identify articles that are relevant for diagnosing Mendelian diseases, a training set of positive 
abstracts was created from two existing databases about human mutations. HGMD42 (Human Gene Mutation 
Database) compiles information on mutations that cause human diseases. Its entries contain a gene, the exact 
mutation, its pathogenicity status and the PubMed ID of the article describing the mutation. OMIM23 is a 
database of Mendelian diseases and genes, as defined in the results section.  

The raw text of titles and abstracts was split into sentences and words as described above. Gene and phenotype 
mentions were identified as described above. All gene mentions in title and abstract were replaced by a token 
“XGENE” and all phenotype mention in title and abstract were replaced by a token “XPHENO”. All words in 
the title were prefixed with the characters “TITLE_” and all words in the abstract were prefixed with the words 
“ABSTRACT_”. 
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Each document was transformed into a feature vector using the scikit-learn43 0.17.1 CountVectorizer analyzer 
“word”, an n-gram range of exactly one word and default parameters otherwise. The count-vectorized data was 
transformed into a TF-IDF feature vector using the scikit-learn43 version 0.17.1 TfidfTransformer with default 
parameters. A scikit-learn43 version 0.17.1 Logistic Regression classifier was trained on the TF-IDF feature 
vector with L2 penalty, a maximum of 1000 iterations and default parameters otherwise. 

A TF-IDF transformation treats each document as an unordered bag of words. The document is transformed 
into a feature vector by assigning each word the scalar product of two statistics: the term frequency (TF) of the 
word and the inverse document frequency (IDF) of the word. The term frequency tf(w, d) of a word w in a 
document d is defined to be the number of occurrences of w in d. The inverse document frequency of a word w 
in a document d is defined as 

𝑖𝑑𝑓 𝑤, 𝑑 = 𝑙𝑜𝑔
1 + 𝑛-

1 + 𝑑𝑓(𝑤) + 1, 

where nd is the total number of documents and df(w) is the number of documents that contain the word w. (See 
also http://scikit-learn.org/stable/modules/feature_extraction.html - text-feature-extraction). Then 

𝑡𝑓𝑖𝑑𝑓 𝑤, 𝑑 = 𝑡𝑓 𝑤, 𝑑 ×𝑖𝑑𝑓 𝑤, 𝑑 . 

This transformation is applied to each word in a document d and inserted in the document’s specific feature 
vector, which is subsequently used by a machine learning model such as the logistic regression models used 
here. 

The document classifier was subsequently run over all titles and abstracts downloaded from PubMed and 
PubMed IDs for relevant articles were returned. 

Downloading full text of relevant articles (step 3)  

Relevant documents returned from the document classifier were downloaded using PubMunch. Downloaded 
articles in PDF format were converted to text using pdftotext version 0.26.5 (https://poppler.freedesktop.org/). 
From the full text of these documents, topical genes, phenotypes and disease inheritance modes were extracted. 

Identifying genes and phenotypes in relevant articles’ full text (steps 4-5) 
Genes and phenotypes were identified in full text in the same way they were identified in titles and abstracts as 
described above. 

Topical gene classification discovers topical genes in text (step 6) 
To identify which genes are causing human phenotypes when mutated, a “topical gene” classifier was trained. 
The topical gene classifier takes as input all gene mentions from the article’s full text (which are discovered as 
described above) and identifies which gene object mentioned in the article is causing phenotypes when mutated.  

To construct the training set, for articles cited in the OMIM Allelic Variants sections, the topical gene in each 
article is the OMIM gene entry from which the article is cited. For articles cited in HGMD, the topical gene is 
the gene deposited in HGMD. All OMIM and HGMD entries on causative genes for the 215 test patients were 
omitted from the labeled data set. The labeled data set contains 43,228 positive examples of topical genes from 
40,350 articles. The negative set consists of all gene objects mentioned in an article that are not the topical gene 

.CC-BY-NC 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/171322doi: bioRxiv preprint first posted online Aug. 2, 2017; 

http://dx.doi.org/10.1101/171322
http://creativecommons.org/licenses/by-nc/4.0/


	
  

20 

and consists of 569,747 negative training examples. The whole training set was split into 28,262 (roughly 70%) 
articles used for training (“training set”), 4,017 (10%) articles for running evaluation and improvement of the 
classifier (“development set”), and 8,071 (20%) articles for final performance testing (“test set”).  

The classifier is then trained on the following features: 

•   Number of mentions of the gene in the title 

•   Number of mentions of the gene in the abstract 

•   Number of mentions of the gene in the full text 

•   TF-IDF-transformed word counts (defined above) in 5-word-windows around all gene mentions for the 
gene in question 

A scikit-learn43 0.17.1 logistic regression classifier with default parameters is subsequently trained on these 
features, and the classifier is applied to all gene objects in all downloaded articles and all PubMed titles and 
abstracts. Topical gene mentions from PubMed title/abstracts and full text are subsequently combined for each 
relevant article. Articles in which more than 10 topical genes were identified were omitted from the knowledge 
base. Precision (the fraction of retrieved data points that are true) and recall (the fraction of all true data points 
that were retrieved) of the classifier were determined by running the classifier on the test set. 

Linking topical genes to phenotypes 
AMELIE gene-phenotype extractions were compared with gene-phenotype extractions curated by HPO build 
115 (the latest build available in February 2017), after canonicalization (see forth) of both sets. Phenotypic 
abnormalities in HPO are structured as a directed acyclic graph (DAG) with a single root. “Canonicalization” of 
a set of phenotypic abnormalities in the HPO ontology refers to the following process: a set of phenotypic 
abnormalities (i.e., descendants of the node “Phenotypic Abnormality”, HP:0000118) is augmented by adding 
all its ancestors up to and including “Phenotypic Abnormality”. A canonicalized set of gene-phenotype 
relationships refers to a set of gene-phenotype relationships where each gene-phenotype link is augmented by 
gene-phenotype links for all ancestors of the phenotype up to “Phenotypic Abnormality”. E.g., if the original set 
of gene-phenotype links includes “KMT2A – Elbow Hypertrichosis”, then the canonicalized set of gene-
phenotype links includes “KMT2A – Hypertrichosis” etc. up to “KMT2A – Phenotypic Abnormality”.  

Inheritance mode extraction from articles  

For each article, AMELIE attempts to extract mentioned inheritance mode(s). If the title and abstract of an 
article contain only words indicating that the described disease(s) are inherited in a dominant fashion 
(“heterozygous”, “heterozygote”, “heterozygosity”, “dominant”, “dominantly”, “autosomal-dominant”), then 
the article is assumed to describe a dominantly inherited disease. If the title and abstract of an article contain 
only words indicating that the described disease(s) are inherited in a recessive fashion (“homozygous”, 
“homozygote”, “homozygosity”, “recessive”, “recessively”, “heteroallelic”, “autosomal-recessive”, “biallelic”, 
“compound heterozygous”), then the article is assumed to describe a recessively inherited disease. If the 
inheritance mode cannot be uniquely identified from title and abstract using this method, the inheritance mode 
described in the article is extracted as unknown. 
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An analysis of 50 random articles about Mendelian diseases with an extracted inheritance mode revealed that 49 
out of 50 were assigned correctly (precision: 98%). 

Patient test set 
VCF files of patients submitted to the Deciphering Developmental Disorders39,44,45 (DDD) project were 
downloaded from the European Genome-Phenome Archive46 (EGA). The EGA accession numbers were 
EGAD00001001848, EGAD00001001977, EGAD00001002748, EGAD00001001355, EGAD00001001413 
and EGAD00001001114. All patients with a single-gene diagnosis, also found in their VCF, that was not due to 
a structural variant and for which the causative gene was not a novel discovery of the DDD project were 
selected. From any diagnosed set of siblings, a single diagnosed sibling was selected at random. This resulted in 
an intermediate set of 223 diagnoses. 

Variant filtering defines the candidate gene list for each patient 
ANNOVAR40 v527 was used to annotate variants with predicted effect on protein coding genes using gene 
isoforms from the Ensembl gene set version 75 for the hg19/GRCh37 assembly of the human genome40.  All 
coding isoforms were used where the transcript start and end are marked as complete and the coding span is a 
multiple of three. Patient variants are annotated with frequency information from ExAC15 and the 1000 
genomes project47, as previously described in 48. 

To obtain a candidate gene list per patient, variants fulfilling the following criteria are assumed to be possibly 
pathogenic: (a) The variant is in the coding region of a gene or in a canonical splice site and not synonymous. 
(b) The overall allele frequency in both the ExAC and the 1000 Genomes control populations does not exceed 
0.5% and the homozygote count is not greater than 1. (c) Variant calls with inconsistent ALT variant calls (2 or 
more lines in the same VCF with different alternative allele calls) and variant calls with inconsistent REF calls 
(2 or more lines in the same VCF with different reference allele calls) are removed. (d) For transcripts with a 
single heterozygous variant, the frequency of the variant in ExAC and the 1000 Genomes Project has to be 0.1% 
or less and the allele count has to be 3 or less. Using this filtering scheme, 8/223 (3.5%) of diagnoses were 
flagged where the reported causal variant/s occur/s in a significant number of presumably non-affected 
individuals in ExAC. The final test set we used consists of the remaining 215 patients. 

Evaluation 
Phenotype matching calculates similarity of two sets of phenotypes 

Each phenotype node x in the Human Phenotype Ontology that is a descendant of HP:0000118 (“Phenotypic 
Abnormality”) is associated with an information-theoretic score. The score of x is calculated as  

𝑠𝑐𝑜𝑟𝑒 𝑥 = −𝑙𝑜𝑔9
𝑔:
𝑛;

+ 𝑙𝑜𝑔9
𝑔< :

𝑛;
, 

where gx is the number of genes we have learned can cause x, ng is the number of genes we have learned can 
cause any HPO phenotype and gp(x) is the number of genes we have learned can cause all parents of x in the 
HPO directed acyclic graph (DAG). By virtue of the HPO DAG structure design, when a gene causes some 
phenotype x, it also causes all ancestors of x up to Phenotypic Abnormality. E.g., if mutations in KMT2A cause 
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“elbow hypertrichosis”, then mutations in KMT2A also cause “hypertrichosis”, “abnormal hair quantity”, 
“abnormality of the hair”, “abnormality of skin adnexa morphology”, “abnormality of the integument”, and the 
most general term, “phenotypic abnormality”. 

To calculate the match score between two sets of phenotypes A and B (e.g., the match score between a patient’s 
set of phenotypes A and an article’s set of phenotypes B), let A’ = A + all ancestors of nodes in A and similarly 
B’ = B + all ancestors of nodes in B. Let C = intersection of A’ and B’.  

The match score of the sets of phenotypes A and B is defined as  

𝑚𝑎𝑡𝑐ℎ 𝐴, 𝐵 = 𝑠𝑐𝑜𝑟𝑒(𝑥):∈C . 

AMELIE ranks candidate causal genes 
The output of the automated ranking system is the list of patient mutated genes, ranked by their likelihood of 
individually causing the case’s phenotype. To generate this gene list, all articles about one of the patient’s genes 
carrying rare non-synonymous variants are examined. An article A is assumed to be “about” a gene G if the 
gene G is identified as a “topical gene” from article A by the topical gene classifier (above). If a gene contains a 
single heterozygous variant, but the article describes a recessive disease, the article is omitted from the analysis. 
Each of the examined articles receives a phenotype match score that is calculated by matching all the 
phenotypes associated with the topical gene in the article with the case’s phenotypes using the match formula 
described above. 

The output of the solver is a list of genes associated with articles, sorted by the phenotype match score of the 
highest ranked article for each gene. In rare cases, multiple articles (for the same or different genes) receive 
equal match scores. To break tied match scores, additional sorting criteria are applied: 

The RVIS49 score is a measure of a gene’s intolerance to nonsynonymous variants derived from population 
frequencies of synonymous and nonsynonymous variants in a gene. Genes with low RVIS scores are likely to 
be intolerant to nonsynonymous variants. Genes with high RVIS score are more tolerant to such variants. 

To break rare ties between articles’ phenotypic match scores, the following additional sorting criteria are 
applied: (2) the RVIS score of the mutated gene (lower RVIS scores are ranked higher) (3) the publication year 
and month of the article (newer articles are ranked higher) and (4) by the unique PubMed ID of the article. 

AMELIE outperforms curation dependent methods at ranking candidate causal genes 
Comparison to Phevor 
The output of Phevor29 Version 2 for each of the 215 patients was obtained through Phevor’s website 
(http://weatherby.genetics.utah.edu/phevor2/index.html). The output of Phevor contains a list of ranked genes, 
enabling direct comparison with AMELIE. The Phevor gene rank was calculated as the number of candidate 
causative genes ranked before the causative gene plus 1. 

Comparison to Phenomizer 
The output of Phenomizer30 for each of the 215 patients was obtained through Phenomizer’s website 
(http://compbio.charite.de/phenomizer/). The output of Phenomizer consists of a list of ranked diseases along 
with the set of genes known to be associated with each disease. In contrast, AMELIE’s output consists of a list 
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of genes along with the articles that explain why mutations in this gene could be causing the patient’s 
phenotype. 

To compare the output of Phenomizer with AMELIE’s output, the rank of any gene from Phenomizer’s output 
was calculated as follows: (1) Take the patient’s disease as the highest Phenomizer-ranked disease associated 
with the causative gene. (2) Take the set of all genes associated with a disease at higher Phenomizer rank than 
the patient’s disease. (3) Let x be the number of unique genes found in step (2). (4) The rank of the causative 
gene equals x + 1. 

Performance of AMELIE is unchanged when training only on 5-year-old data 
The publication year of an article was taken from the publication date of the original article, which is saved in 
PubMed. The relevant document classifier and the topical gene classifier were trained on PubMed titles and 
abstracts from 2011 or earlier. Articles for which the publication date was not deposited in PubMed were 
omitted from the training data. The training data for the relevant document classifier consisted of 54,537 
negative examples and 40,153 positive examples. This is 22% fewer positive training data points compared to 
the full training set, which contained 51,637 positive examples. The training data for the topical gene classifier 
consisted of 21,634 positive examples and 263,780 negative examples. This is 29% fewer positive training data 
points compared to the full training set, which contained 30,291 positive training examples.  

AMELIE holds over 3 times as many gene-phenotype relationships as HPO-A 
HGNC gene symbols in the HPO build 115 were converted to gene Ensembl IDs for comparison with AMELIE. 
The number of gene-phenotypic abnormality links in HPO build 115 is 103,617. Of those, 54,371 were also in 
the canonicalized set (defined above) of gene-phenotype relationships extracted by AMELIE. Of the remaining 
49,246 links, 50 random gene-phenotype links were selected. 33 (66%) out of those were supported by the 
scientific literature about Mendelian diseases and/or OMIM disease entries for Mendelian diseases. 2 of 50 
(4%) were phenotypes linked through cancer, which AMELIE does not attempt to extract. We could not find 
support for 30% of gene-phenotype links in HPO build 115. Thus, we estimate the number of true gene-
phenotype links for Mendelian diseases that AMELIE is missing to be 66% of 49,246, or 32,502. The number 
of gene-phenotype links extracted by AMELIE that are not in the canonicalized version of HPO build 115 is 
588,595. By sampling 50 random gene-phenotype associations out of those, 18/50 (36%) were determined to be 
correct extractions. The estimated number of true extractions in AMELIE that are not in the canonicalized 
version of HPO build 115 is therefore 588,595 * 36% = 211,894.  
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