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Abstract 

Glioblastoma is characterized by widespread genetic and transcriptional heterogeneity, yet little is known 

about the role of the epigenome in glioblastoma disease progression. Here, we present genome-scale maps of 

the DNA methylation dynamics in matched primary and recurring glioblastoma tumors, based on a national 

population registry and a comprehensively annotated clinical cohort. We demonstrate the feasibility of DNA 

methylation mapping in a large set of routinely collected formalin-fixed paraffin-embedded (FFPE) samples, 

and we validate bisulfite sequencing as a multi-purpose assay that allowed us to infer a range of different 

genetic, epigenetic, and transcriptional tumor characteristics. Based on these data, we identified characteristic 

differences between primary and recurring tumors, links between DNA methylation and the tumor microenvi-

ronment, and an association of epigenetic tumor heterogeneity with patient survival. In summary, this study 

provides a resource for dissecting DNA methylation heterogeneity in genetically diverse and heterogeneous 

tumors, and it demonstrates the feasibility of integrating epigenomics, radiology, and digital pathology in a 

representative national cohort, leveraging samples and data collected as part of routine clinical practice. 

 

Introduction  

Glioblastoma is a devastating cancer with a median age at diagnosis of 64 years1. Even under the best available 

care, the median survival is little more than one year, and very few patients live for more than three years2,3. 

Despite intense efforts, limited therapeutic progress has been made over the last decade, and a series of phase 

III clinical trials with targeted agents have failed to improve overall survival4-6.  

Glioblastoma shows extensive temporal and spatial heterogeneity, which appears to contribute to therapeutic 

resistance and inevitable relapse7-13. Prior research on tumor heterogeneity in glioblastoma has focused mainly 

on the genomic and transcriptomic dimensions7-20, while the dynamic role of the epigenome in glioblastoma 

disease progression is much less understood21. 

Recent data in other cancers have conclusively shown the power of DNA methylation sequencing for analyzing 

epigenetic heterogeneity. For example, DNA methylation heterogeneity has been linked to clonal progression 

in prostate cancer22, low-grade glioma23, esophageal squamous cell carcinoma24, and hepatocellular carci-

noma25; and new measures of DNA methylation heterogeneity such as epi-allele burden, proportion of dis-

cordantly methylated reads (PDR), and DNA methylation inferred regulatory activity (MIRA) have been 

linked to clinical variables in acute myeloid leukemia26, chronic lymphatic leukemia27, and Ewing sarcoma28. 

To investigate the contribution of epigenetics to the temporal and spatial heterogeneity of glioblastoma, we 

performed DNA methylation sequencing on a large cohort of IDH wildtype glioblastoma patients (n = 112) 

with matched samples from primary and recurring tumors (between 2 and 4 time points per patient), and we 

also included multiple subregion samples for a subset of these tumors. Importantly, by using an optimized 

reduced representation bisulfite sequencing (RRBS) protocol28,29 we obtained a high success rate for archival 

formalin-fixed and paraffin-embedded (FFPE) samples, coverage of 3-5 fold more CpGs compared to Infinium 

microarrays30-32, and single-CpG as well as single-allele resolution (in RRBS, each sequencing read captures 

the DNA methylation status of one or more individual CpGs in one single allele from one single cell). 

The presented dataset – comprising 349 RRBS-based DNA methylation profiles, of which 320 were derived 

from FFPE samples – constitutes the largest cohort of FFPE samples that has yet undergone genome-scale 

DNA methylation sequencing, and it conclusively shows the technical feasibility of performing large multi-

center DNA methylation studies based on routinely collected FFPE material. The RRBS data not only identi-

fied epigenetic disease subtypes and quantified epigenetic heterogeneity, but also allowed us to infer transcrip-

tional subtypes, copy number aberration, single nucleotide variants (SNVs), small insertions and deletions 

(indels), MGMT promoter methylation, and G-CIMP/ IDH mutational status. This study thus highlights the 

power of DNA methylation sequencing in routinely collected clinical FFPE tumor samples. 
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Linking DNA methylation profiles to magnetic resonance (MR) imaging, tumor morphology, tumor microen-

vironment, and clinical variables such as patient survival, we obtained a detailed picture of temporal and spatial 

heterogeneity in glioblastoma. We observed characteristic differences in DNA methylation between primary 

and recurring tumors, an association with the tumor microenvironment, and a link between tumor microenvi-

ronment and previously reported clinically relevant MR imaging-based progression types33. DNA methylation 

was highly predictive of the established glioblastoma transcriptional subtypes, and disease progression-asso-

ciated loss of DNA methylation in the promoters of Wnt signaling genes was associated with worse prognosis. 

We also observed across several comparisons that the association with survival was stronger for properties of 

the recurring tumor than for properties of the primary tumor. In summary, our study provides a comprehensive 

resource of the DNA methylation dynamics and heterogeneity in glioblastoma, proof-of-concept for DNA 

methylation sequencing in large FFPE sample sets collected as part of routine diagnostics, and an integrative 

analysis of DNA methylation with various types of clinical and histopathological information. 

 

Results 

DNA methylation sequencing in a cohort of matched primary and recurring glioblastoma samples 

To investigate the DNA methylation dynamics associated with disease progression in glioblastoma, we estab-

lished a richly annotated dataset of patients that underwent tumor resection at diagnosis and at least once upon 

tumor recurrence (Figure 1a). These patients were identified through the population-based Austrian Brain Tu-

mor Registry34, and 112 primary glioblastoma patients (wildtype IDH status) with tumor samples for at least 

two time points (primary tumor and first recurrence) were included in the analysis (Supplementary Fig. 1a). 

Due to the requirement of having undergone at least two tumor resections, the selected patients were on average 

younger (median age at diagnosis of 58 years) and had longer overall survival (median overall survival of 22.4 

months) compared to the unselected population-based cohort (median age at diagnosis 63 years, median overall 

survival of 8 months) (Figure 1b and Supplementary Table 1). 

For each of these tumor samples, we established genome-scale DNA methylation profiles using reduced rep-

resentation bisulfite sequencing (RRBS). The RRBS assay provides single-CpG and single-allele resolution 

with excellent quantitative accuracy even on challenging clinical samples35,36, and it has been successfully used 

to dissect intra-tumor heterogeneity in several cancer types26-28. The RRBS-based DNA methylation data were 

complemented by time-matched MR imaging data as well as quantitative pathology data capturing the mor-

phology, proliferative activity, and tumor microenvironment of the same tumors. All data are available from 

the Supplementary Website (http://glioblastoma-progression.computational-epigenetics.org/). We systemati-

cally integrated these datasets using statistical analysis and machine learning methods (Figure 1a). 

DNA methylation profiling based on routinely collected FFPE material was successful for all samples that had 

adequate tumor cell content, and 95% of the resulting RRBS profiles yielded more than 500,000 covered CpGs 

(Supplementary Table 2). The median number of covered CpGs in FFPE samples (1,880,675) was lower than 

for fresh-frozen samples (4,473,349), but higher than for an alternative ethanol-based fixation method37 

(1,005,828) that was tested by one sample-providing center (Supplementary Fig. 1b and Supplementary Table 

2). The measured bisulfite conversion rates were highly consistent with expectations: 99% of genomic cyto-

sines outside of CpGs were read as thymines, the mean underconversion rate on unmethylated spike-in controls 

was 1%, and the mean overconversion rate on methylated spike-in controls was 2% (Supplementary Fig. 1c 

and Supplementary Table 2). All DNA methylation profiles showed the expected distribution of DNA meth-

ylation levels across CpG islands, promoters, and genome-wide tiling regions (Supplementary Fig. 1d), with a 

tendency toward lower DNA methylation levels in low-quality samples (Supplementary Fig. 1e). 
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Comparing DNA methylation levels of 5-kilobase tiling regions between primary and recurring tumors, there 

was a high correlation (r > 0.94) across the genome (Supplementary Fig. 1f). Nevertheless, we observed wide-

spread epigenetic heterogeneity at individual loci (Figure 1c). An example is the promoter of the MGMT gene, 

whose DNA methylation status has been shown to correlate with sensitivity to alkylating chemotherapy38. The 

MGMT promoter was unmethylated in the majority of samples (Supplementary Fig. 1g), and patients with a 

methylated MGMT promoter in their recurring tumors had significantly better progression-free survival (PFS) 

and overall survival (OS) compared to patients with unmethylated MGMT promoters (Supplementary Fig. 1h).  

To compare our IDH-wildtype primary glioblastoma cohort to IDH-mutant brain tumor samples, we also per-

formed RRBS on primary and recurring tumors of 13 IDH-mutant oligodendroglioma/astrocytoma/glioblas-

toma patients from the same population. The DNA methylation profiles of these tumors showed a characteristic 

CpG island methylator phenotype (CIMP) as expected from previous observations39
 (Figure 1d), which pro-

vides further validation of the accuracy and robustness of our DNA methylation profiling on FFPE material. 

 

Inference of genomic information from the RRBS data  

All tumor samples were obtained via a national brain tumor registry and reflect routine clinical care in Austria, 

which currently does not include whole genome or whole exome sequencing. We therefore evaluated whether 

certain types of genomic information could be inferred directly from the RRBS data. 

First, we reconstructed genome-wide maps of copy number aberrations (CNAs) from the RRBS data using the 

CopywriteR algorithm40. We detected various CNAs previously described in glioblastoma, including amplifi-

cations of the EGFR locus and deletions of chromosome 10 (Supplementary Fig 2a). In particular, we observed 

that 10q deletions in the recurring tumors (which affect the MGMT gene and have been shown to correlate 

with sensitivity to alkylating chemotherapy41) were associated with longer survival (Supplementary Fig. 2b). 

Based on the CNA data, we also verified that none of our primary glioblastoma samples harbored the 1p19q 

co-deletion, thereby excluding the presence of any misclassified cases of anaplastic oligodendroglioma (Sup-

plementary Fig. 2c). 

Second, we inferred single nucleotide variants (SNVs) and small insertions/deletions (indels) from the RRBS 

data using the Bis-SNP algorithm42. Although confident SNV and indel detection in RRBS data is limited to a 

relatively small subset of the genome, it allowed us to confirm that none of our samples displayed a hypermu-

tator phenotype and that there was no strong trend toward higher mutational rates in primary versus recurring 

tumors (Supplementary Fig. 2d). Furthermore, among the variants with high predicted impact on protein ex-

pression we found multiple genes with known relevance in glioblastoma (Supplementary Fig 2e). 

 

Prediction of transcriptional subtypes in glioblastoma based on DNA methylation 

Recent research defined three transcriptional subtypes of glioblastoma (classical, mesenchymal, and proneu-

ral)43, while a previously described fourth (neural) subtype has been described as an artifact of contaminating 

non-tumor tissue. Because RNA sequencing of FFPE material is challenging and often infeasible, we tested 

whether these transcriptional subtypes can be inferred from DNA methylation data (Figure 2a). Machine learn-

ing classifiers using L2-regularized logistic regression were trained and evaluated on matched DNA methyla-

tion and transcriptional subtype data44,45 from The Cancer Genome Atlas (http://cancergenome.nih.gov/). 

Based on these data, we obtained good prediction accuracies with cross-validated receiver operating charac-

teristic (ROC) area under curve (AUC) values above 0.8 for most samples (Supplementary Fig 3a). 

Applying the trained classifiers to our DNA methylation dataset, we assigned class probabilities to each tumor 

sample. While these percentage values primarily reflect the confidence with which each sample is assigned to 

each of the transcriptional subtypes, here we used them as an indicator of the relative contribution of each of 
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the three subtypes to individual tumor samples, thus providing an initial assessment of intra-tumor heteroge-

neity. We found that all three transcriptional subtypes were common in our cohort of IDH wildtype primary 

glioblastoma (Figure 2b) – in contrast to the IDH mutated tumors, which were almost always assigned to the 

proneural subtype (Supplementary Fig 3b). 

Predicted transcriptional subtypes were heterogeneous both in space and in time. Most individual tumor sam-

ples showed signatures of more than one transcriptional subtype (Figure 2b), which is consistent with recent 

single-cell RNA-seq data that identified similar heterogeneity within individual samples11. Moreover, five out 

of six patients with multi-sector samples displayed at least two transcriptional subtypes (Figure 2c and Sup-

plementary Fig. 3c-e), and about half of the patients showed different predominant transcriptional subtypes 

between the primary and recurring tumors (Figure 2d). Predicted transcriptional subtypes in the recurring tu-

mor (but not in the primary tumor) were also associated with patient survival (Figure 2e), the mesenchymal 

subtype being associated with the worst prognosis and the classical subtype with the best prognosis. Finally, 

patients whose tumors switched to the mesenchymal subtype displayed the worst PFS and OS (Figure 2e). 

To investigate the epigenetic differences between the three transcriptional subtypes, we compared the DNA 

methylation profiles of those tumors that were most confidently assigned to one specific subtype (class prob-

ability > 0.8) with each other (Figure 2f). Performing region set analysis for the differentially methylated CpGs 

using LOLA46, we identified a moderate enrichment of chromatin protein binding sites among regions hypo-

methylated in the mesenchymal subtype, including EZH2, KDM4A, RBBP5, and SUZ12 (Figure 2g). 

We also calculated ‘DNA methylation inferred regulatory activity’ (MIRA) scores28 for each individual tumor 

sample, where high scores indicate strong local depletion of DNA methylation at specific transcription factor 

binding sites (Figure 2h). We observed significantly higher MIRA scores (corresponding to deeper DNA meth-

ylation dips and increased regulatory activity) for CTCF, EZH2, and KDM4A in the mesenchymal subtype 

(Figure 2i). In contrast, MIRA scores for key regulators of pluripotency (NANOG, SOX2, POU5F1) were 

reduced in the mesenchymal subtype (Figure 2i). To corroborate this observation, we plotted MIRA scores for 

EZH2 and NANOG against class probabilities for the different transcriptional subtypes across all samples (not 

only those with high class probability), and we indeed observed highly significant correlations with mesen-

chymal class probabilities of 0.49 (EZH2) and -0.48 (NANOG) (Supplementary Fig. 3f). 

 

Linking DNA methylation differences to changes in the tumor microenvironment 

To test whether the DNA methylation data captures relevant aspects of the tumor microenvironment, we quan-

tified the abundance of various types of immune cells in the primary and recurring tumors. Specifically, we 

performed single-plex stainings for markers that identified different immune cell types (CD3, CD8, CD80, 

CD68) including anti-inflammatory (CD163, FOXP3) and memory T-cell (CD45ro) subpopulations. Simi-

larly, cell proliferation was measured by staining for the cell proliferation marker Ki67 (MIB1) followed by 

quantification of the relative abundance of MIB1 positive cells. We observed significant differences in the 

immune cell count between the three transcriptional subtypes (Figure 3a-b), with the highest number of im-

mune cells found in tumors of the mesenchymal subtype. The increased level of immune cell infiltration was 

accompanied by larger necrotic areas, fewer vital tumor areas, lower tumor cell proliferation, and lower cell 

density in tumor tissues (Supplementary Fig. 4a-b). Moreover, high levels of CD68 positive cells (macro-

phages of all types) were associated with poor prognosis in recurring tumors; and high levels of CD163 positive 

cells (anti-inflammatory, tumor-propagating M2 macrophages) were associated with poor prognosis in both 

primary and recurring tumors (Figure 3c). 

Comparing immune cell infiltration between primary and recurring tumors of the same patients, we observed 

significantly increased levels of inflammatory infiltrates upon recurrence, while the infiltration levels of anti-

inflammatory macrophages and memory T-cells did not change significantly (Figure 3d-f). The increase in 
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inflammation in the recurring tumors was accompanied by a decrease in necrotic volume and contrast-enhanc-

ing (active) tumor mass, but an increase in edema according to matched diagnostic MR imaging data (Supple-

mentary Fig 4c-d). Patients with less necrotic or contrast-enhancing (active) tumor mass upon recurrence pre-

sented with a more favorable clinical outcome (Supplementary Fig. 4e). 

When we stratified patients according to prognostically relevant MR imaging-based progression types (i.e., 

classic T1, cT1 relapse / flare-up, and T2 diffuse)33 (Supplementary Fig. 5a), we found that primary and recur-

ring tumors from patients displaying the “cT1 relapse / flare-up” subtype had lower infiltration of pro-inflam-

matory immune cell types (CD3, CD8, CD68) and a lower fraction of proliferating cells (MIB) (Figure 3g). In 

concordance with previous work33, cT1 relapse / flare-up patients displayed a slightly better survival compared 

to the other two progression types (Supplementary Fig. 5b). 

Several of these characteristics of the tumor microenvironment could be predicted from the DNA methylation 

data using machine learning methods (Supplementary Fig. 5c-d). Differentiating between tumors with a high 

and low level of immune cell infiltration, we observed a high cross-validated prediction performance for 

CD163 (ROC AUC = 0.88), CD68 (0.79), CD45ro (0.93), CD3 (0.87) and CD8 (0.79) (Figure 3h; Supplemen-

tary Fig. 5e). For those immune cell types with high cross-validation accuracy, DNA methylation levels at the 

most predictive genomic tiling regions accurately grouped the samples by their immune cell infiltration levels 

in a hierarchical clustering analysis (Supplementary Fig 5f). Extending recent research that has demonstrated 

the feasibility of inferring immune cell infiltration from RNA expression profiles20,47, our data support that 

DNA methylation data can be used in similar ways. 

 

Linking DNA methylation differences to tumor cell-intrinsic properties 

To investigate the relationship between DNA methylation and tumor cell characteristics such as proliferation 

and nuclear morphology, we performed detailed histopathological analysis for the majority of tumor samples. 

The percentage of proliferating (MIB positive) cells showed no consistent changes between primary and re-

curring tumors (Figure 4a). Nevertheless, high proliferation in the recurring tumors (but not in the primary 

tumors) was significantly associated with increased PFS (Figure 4b). DNA methylation patterns discriminated 

with high accuracy between tumors characterized by high versus low proliferation rates (ROC AUC = 0.89) 

(Figure 4c). This was not due to differences in mean DNA methylation levels (Figure 4d-e). Rather, highly 

proliferating tumors showed intermediate DNA methylation levels at discriminatory regions, while low pro-

liferating tumors showed more extreme methylation patterns (Figure 4e). 

Nuclear morphology of tumor cells was measured by the size and eccentricity (a measure of elongated shape) 

of the tumor cell nuclei, and by the variability of the two parameters. None of these measures were significantly 

different between primary and recurring tumors. However, tumors that shifted to a sarcoma-like phenotype 

(i.e., secondary gliosarcoma) upon recurrence had a significant increase in nuclear eccentricity and a decrease 

in its variability (Figure 4f-g), accompanied by an increase in CD8 immune cell infiltration, proliferative rates 

(MIB+ cells), and relative tumor mass in the recurring tumor (Figure 4h). DNA methylation patterns predicted 

nuclear eccentricity (ROC AUC = 0.83) and its variability (0.76) (Figure 4i), and patients with shape-shifting 

tumors (i.e., classic to sarcoma) displayed significantly shorter PFS and a trend towards reduced OS (Figure 

4j), which might be explained by increased tissue infiltration of the spindle-shaped cells. 

 

DNA methylation heterogeneity and dynamics between primary and recurring tumors 

To quantify epigenetic tumor heterogeneity in glioblastoma progression, we used two complementary ap-

proaches (Figure 5a). Sub-clonal heterogeneity was measured by epi-allele entropy48, and stochastic DNA 

methylation erosion was measured by the proportion of discordant reads (PDR)27. Both measures identified 
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extensive heterogeneity between patients (Supplementary Fig. 6a-b) but no strong trend between primary and 

recurring tumors (Figure 5b).  

Comparing the epi-allele composition of the 20% most heterogeneous and the 20% least heterogeneous sam-

ples (Figure 5b), we found extensive variability between patients and over time (Figure 5c). Samples with high 

epi-allele entropy and high diversity in their epi-allele composition also showed high PDR values, indicating 

that these samples were characterized by broadly increased epigenetic heterogeneity. 

The observed differences in epigenetic heterogeneity were not a side effect of different tumor sizes, as there 

was little to no correlation between the two measures of tumor heterogeneity on the one hand and the tumor 

size as measured by MR imaging on the other hand (Figure 5d). In contrast, we did observe a significant 

association between PDR values and clinical outcome specifically in the primary tumors (Figure 5e and Sup-

plementary Fig. 6c), and we also found that a longer time span between first and second surgery was weakly 

associated with fewer differentially methylated regions (Figure 5f) but not with the extent of epi-allelic shifting 

(Supplementary Fig. 6d). 

To further dissect the temporal dimension of DNA methylation heterogeneity in glioblastoma, we performed 

differential DNA methylation analysis on all matched pairs of primary and first recurring tumors. Focusing on 

gene promoters, we observed high correlation of DNA methylation levels (r = 0.86) and a small number of 

promoters with strong differential methylation in multiple patients (Figure 6a). Most of these promoters 

showed consistent trends toward either gain or loss of DNA methylation upon tumor recurrence, although for 

one gene with known involvement in brain cancer (OTX2) we observed a progression-associated gain of DNA 

methylation in some patients and a loss in others (Figure 6b upper panel). When we classified the patients into 

those that followed the cohort-level trend in differential DNA methylation (trend patients) and those that did 

not (anti-trend patients) (Figure 6b, lower panel and Figure 6c), the trend patients showed worse prognosis 

(Figure 6e), suggesting that some of the observed differences may contribute to disease progression. 

Pathway analysis identified an enrichment of genes involved in development and apoptosis among those genes 

whose promoters gained DNA methylation during disease progression; in contrast, genes whose promoters 

lost DNA methylation were enriched in the Wnt signaling pathway and T cell activation (Figure 6d). Corrob-

orating the latter finding, when we classified all patients according to whether they on average gained or lost 

DNA methylation in the promoters of Wnt signaling genes, we observed a significant association between loss 

of DNA methylation and reduced PFS and OS (Figure 6f).  

 

Discussion 

Focusing on glioblastoma as one of the genetically most complex cancers, we sought to determine the preva-

lence and character of epigenetic tumor heterogeneity in time and space. To that end, we established a com-

prehensive set of DNA methylation profiles covering primary and recurring tumors from the same patients as 

well as multi-sector samples in a subset of patients. A longitudinal cohort of 112 patients with IDH-wildtype 

primary glioblastoma that had undergone at least two (and up to four) tumor resections was assembled based 

on the Austrian Brain Tumor Registry, thus providing a population-scale representation of glioblastoma pa-

tients. An optimized RRBS protocol allowed us to work with minute amounts of FFPE tissue, while providing 

single-CpG and single-allele resolution and insights into epigenetic heterogeneity at single-cell level that 

would be difficult or impossible to obtain using microarray-based methods for DNA methylation profiling. 

Based on the RRBS dataset, we were able to infer a broad range of tumor properties – including glioblastoma 

transcriptional subtypes, aspects of the tumor microenvironment, and tumor cell-intrinsic attributes such as 

cell proliferation. Our analysis revealed changes in tumor microenvironment between primary and recurring 

tumors and identified the composition of the tumor microenvironment to be a major discriminatory factor 

between transcriptional subtypes as well as MR progression types, suggesting potential clinical applications 
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of DNA methylation based prediction of the tumor microenvironment. In line with recent work13,20 we ob-

served co-occurrence of multiple transcriptional subtypes within the same tumor and frequent switching of the 

dominant subtype over time. Moreover, patients whose tumor switched to the mesenchymal subtype had re-

duced survival. Assessing the regulatory basis of the transcriptional subtypes, we identified epigenomic sig-

natures of increased EZH2 activity in glioblastoma of the mesenchymal subtype. In light of the significantly 

worse prognosis of mesenchymal tumors, these results might enable new subtype-specific therapeutic ap-

proaches that exploit the observed regulatory differences, such as the use of emerging EZH2 inhibitors49-51.  

We also observed characteristic trends in DNA methylation between primary and recurring tumors, including 

a demethylation of Wnt signaling gene promoters that was associated with worse prognosis. Aberrant activa-

tion of the Wnt signaling pathway is observed in various cancers including glioblastoma, where hypermethyl-

ation mediated suppression of Wnt signaling inhibitors was identified as a source of aberrant activation of this 

pathway52. We quantified epigenetic tumor heterogeneity in two complementary ways, and DNA methylation 

erosion as measured by the PDR score was associated with survival. Patients whose primary tumors harbored 

higher levels of DNA methylation erosion showed longer PFS and a tendency towards longer OS. These results 

were surprising given that previous studies in hematopoietic malignancies (AML26 and CLL27) had associated 

increased epigenomic heterogeneity with worse prognosis. This discrepancy might be explained by the fact 

that chemotherapy in leukemia is applied to the entire population of malignant cells, while the bulk of glio-

blastoma is surgically removed prior to chemotherapy and radiotherapy. The non-selective bottleneck of tumor 

resection might turn the evolutionary advantage of a heterogeneous population of tumor cells into a disad-

vantage, especially in the case of stochastic and therefore mostly detrimental DNA methylation erosion. 

Finally, we observed that several properties of the recurring tumors were specifically associated with survival, 

while there was no strong association in the primary tumors. This was true for transcriptional subtypes (Figure 

2e), MR-imaging derived necrotic and enhancing tumor volumes (Supplementary Fig. 4e), CD68+ macro-

phage infiltration (Figure 3c), and tumor cell proliferation levels (Figure 4b). These results emphasize the 

potential clinical relevance of repeated biopsy and detailed diagnostic work-up of recurring tumors in order to 

promote more personalized treatment decisions upon glioblastoma recurrence.  

In summary, our study establishes a rich resource describing the DNA methylation dynamics of glioblastoma 

progression in a highly annotated clinical cohort with matched MR imaging and detailed histopathological 

analyses that included the tumor microenvironment. Importantly, all data are openly available through public 

repositories and a detailed Supplementary Website (http://glioblastoma-progression.computational-epigenet-

ics.org/). This study also highlights the feasibility and potential of working with national patient registries and 

large patient cohorts, with FFPE samples, and with clinical data that have been collected as part of routine 

clinical care. Finally, in combination with research that established the accuracy and robustness of DNA meth-

ylation assays for clinical diagnostics54, our data support that DNA methylation sequencing can make a rele-

vant contribution to the clinical assessment of tumor heterogeneity, providing potential biomarkers for im-

proved diagnosis, prognosis, and personalized therapy in glioblastoma and other heterogeneous cancers.  
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Methods 

Sample acquisition via a population-based registry  

All glioblastoma cases were selected from the Austrian Brain Tumor Registry34, including only patients over 

18 years of age with a first surgery at diagnosis and at least one additional surgery upon recurrence. Tumor 

samples and clinical data were provided by the following partner institutions: Medical University of Vienna, 

Kepler University Hospital Linz, Paracelsus Medical University Salzburg, Medical University of Innsbruck, 

Karl-Landsteiner University Hospital St. Pölten, State Hospital Klagenfurt, State Hospital Wiener Neustadt, 

Hospital Rudolfstiftung Vienna, and the Medical University of Graz. The resulting cohort comprised 159 pa-

tients with matched FFPE samples for the primary tumor and at least one recurring tumor, which were depos-

ited in the neurobiobank of the Medical University of Vienna (ethics vote EK078-2004). After screening for 

sufficient tumor content in both the primary and the recurring tumor, 47 patients were excluded. A total of 112 

patients were retained, each with at least two and up to four time points (283 tumor samples in total, including 

6 patients with multi-sector sampling). The diagnosis of primary glioblastoma, IDH-wildtype was confirmed 

by central pathology review according to the 2016 update of the WHO classification55 including targeted as-

sessment of the IDH R132H mutational status. In addition, 13 patients (32 tumor samples) with IDH-mutant 

oligodendroglioma/astrocytoma/glioblastoma, and 5 patients (5 samples) who underwent temporal lobe sur-

gery due to epilepsy (Medical University of Vienna) were included as controls. Informed consent was obtained 

according to the Declaration of Helsinki, and the study was approved and overseen by the ethics committee of 

the Medical University of Vienna (ethics votes EK550/2005, EK1412/2014, EK 27-147/2015).  

 

DNA isolation from FFPE tumor samples 

Areas of highest tumor cell content were selected based on hematoxylin-eosin stained sections, while any 

samples with tumor cell content below 50% in the region-of-interest were excluded from further analysis. 

Genomic DNA was extracted from FFPE tissues using the QIAamp DNA FFPE Tissue Kit following manu-

facturer’s instructions.  

 

DNA methylation profiling by RRBS 

RRBS was performed as described previously29 using 100 ng of genomic DNA for most samples, while occa-

sionally going down to 2 ng (if not more DNA was available) and up to 200 ng (Supplementary Table 2). To 

assess bisulfite conversion efficiency independent of CpG context, methylated and unmethylated spike-in con-

trols were added in a concentration of 0.1%. DNA was digested using the restriction enzymes MspI and TaqI 

in combination (as opposed to only MspI in the original protocol) in order to increase genome-wide coverage. 

Restriction enzyme digestion was followed by fragment end repair, A-tailing, and adapter ligation. The amount 

of effective library was determined by qPCR, and samples were multiplexed in pools of 10 with similar qPCR 

Ct values. The pools were then subjected to bisulfite conversion followed by library enrichment by PCR. En-

richment cycles were determined using qPCR and ranged from 12 to 21 (median: 16). After confirming ade-

quate fragment size distributions on Bioanalyzer High Sensitivity DNA chips (Agilent), libraries were se-

quenced on Illumina HiSeq 3000/4000 machines in a 50 or 60 basepair single-read setup.  

 

DNA methylation data processing 

RRBS data were processed using a custom pipeline based on Pypiper (http://databio.org/pypiper) and Looper 

(http://databio.org/looper). Adapter sequences were trimmed, and 60 basepair reads were cropped to 50 base-

pairs using Trimmomatic56 with the following settings: ILLUMINACLIP:RRBS_adapters.fa:2:40:7 SLID-
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INGWINDOW:4:15 MAXINFO:20:0.50 CROP:50 MINLEN:18. Trimmed reads were then aligned to the hu-

man genome build hg38 using BSMAP in RRBS mode57, and DNA methylation calling was performed with a 

custom python script (biseqMethCalling.py) published previously29. To assess bisulfite conversion efficiency, 

unmapped reads were aligned to the spike-in reference sequences using Bismark58, and DNA methylation calls 

for methylated and unmethylated controls were extracted from the alignment file. CpGs in repetitive regions 

according to the UCSC RepeatMasker track were excluded from further analysis. DNA methylation data were 

analyzed at the level of single CpGs or in a binned format with mean DNA methylation values calculated 

across 5-kilobase regions, CpG islands (as defined in the UCSC Genome Browser) or GENCODE promoter 

regions (1 kilobase upstream to 500 bases downstream of the transcription start site). 

 

Identification of copy number aberrations from RRBS data 

Copy number aberrations for each sample were identified using the R/Bioconductor package CopywriteR40 

based on the BSMAP-aligned BAM files and a bin size of 100,000. Data from five normal brain controls were 

merged at the level of aligned bam files to serve as the shared control for all analyses. Each individual sample 

was then normalized either against the merged control or against the cohort median, whichever showed the 

less extreme (i.e., more conservative) value for a given bin. Genomic segments identified by CopywriteR were 

classified as significantly amplified or deleted if their normalized absolute copy number value deviated more 

than one cohort standard deviation (mean standard deviation across all bins in a given segment) from 0. Sig-

nificantly amplified or deleted segments for each sample were then plotted in an overview graph sorted by 

segment length. 

 

Identification of single nucleotide variants from RRBS data 

Single nucleotide variants and small insertions and deletions were identified using Bis-SNP42 based on the 

BSMAP-aligned BAM files, the human reference genome build hg38, and dbSNP build 147. Identified vari-

ants were annotated using SnpEff v4.2. 

 

Annotation of glioblastoma associated genes 

Glioblastoma associated genes were taken from a recent publication59 and annotated for their cancer-linked 

function (oncogene, tumor suppressor gene, drug resistance gene) based on a published classification of cancer 

genes60. Genes not contained in this classification were manually annotated according to their known or sus-

pected molecular functions as described in GeneCards (http://www.genecards.org).  

 

Patient survival analysis 

Survival analysis was performed using the functions survfit() and survdiff() of the R package ‘survival’. For 

continuous variables, patients with the 50% highest values were compared to those with the 50% lowest values 

(unless indicated otherwise). Survival curves were plotted with ggsurvplot() from the R package ‘survminer’. 

 

Inference of transcriptional subtypes from RRBS data 

Glioblastoma transcriptional subtypes43 were predicted from DNA methylation data at the level of single CpGs 

using L2-regularized logistic regression as implemented in the R package ‘LiblinearR’. Classifiers were trained 

and evaluated on Infinium 27k DNA methylation data for glioblastoma tumors44 obtained from the TCGA data 

portal (https://portal.gdc.cancer.gov/). TCGA data were restricted to IDH wildtype, non-G-CIMP samples. 
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Furthermore, neural subtype samples were excluded because this subtype of glioblastoma had previously been 

associated with tumor margin and contamination with non-tumor brain tissue61. For each sample in our cohort, 

a classifier was trained and evaluated on the TCGA data, using those CpGs that were covered also in the 

sample of which the transcriptional subtype was to be predicted (1,249 CpGs on average). After performance 

evaluation by 10-fold cross-validation and calculation of the cross-validated receiver operating characteristic 

(ROC) area under curve (AUC) values, a final classifier was built using all selected TCGA samples. This 

classifier was used to predict the transcriptional subtype including class probabilities of the respective sample.  

 

Groupwise differential DNA methylation analysis 

Differentially methylated CpGs between predefined groups of tumor samples were identified with a custom R 

script that uses a two-sided Wilcoxon rank-sum test. Groups containing less than five samples were excluded 

from the analysis, and only CpGs covered by at least five reads per sample in at least 30% of samples were 

included. CpGs in repetitive regions (“RepeatMasker”, “Simple Repeats”, and “WM + SDust” tracks from the 

UCSC Genome Browser, downloaded 6 September 2016) were also excluded. For the retained CpGs, differ-

ential DNA methylation between groups of samples was assessed using the Wilcoxon rank-sum test (wil-

cox.test() in R), and p-values were adjusted for multiple testing using the Benjamini-Hochberg method (p.ad-

just() in R). CpGs with multiple-testing adjusted p-values smaller than 0.05 and with a median difference of 

beta values larger than 0.1 were considered significant. 

 

Region set enrichment analysis using LOLA 

Enrichment of genomic region sets among the differentially methylated regions was assessed using the LOLA 

software46. To reduce potential biases from co-located CpGs, CpGs were merged into 1-kilobase tiling regions 

across the genome prior to LOLA analysis. In LOLA, the hypermethylated or hypomethylated regions were 

used as the query set, and the set of all differentially methylated tiling regions were used as the universe. Only 

regions from astrocytes or embryonic stem cells in the LOLA Core database were included in the analysis for 

better interpretability. P-values were corrected for multiple testing using the Benjamini and Yekutieli method 

(p.adjust() in R), and all enrichments with an adjusted p-value below 0.05 were considered significant. In a 

control experiment, to assess potential effects of imbalance between hypermethylated and hypomethylated 

region sets, the analysis was repeated using the top-N highest ranking regions from both sets. 

 

DNA methylation inferred regulatory activity (MIRA) 

MIRA scores for selected sets of transcription factor binding sites from the LOLA Core database46 were cal-

culated as in the original publication28. Briefly, aggregated DNA methylation profiles around the binding sites 

(2.5 kilobases upstream and downstream, split into 21 bins) were created for each sample and transcription 

factor. MIRA scores were calculated as the log ratio between aggregated DNA methylation values for the 

center bin (bin 0, reflecting the binding site) and the average of two flanking bins (bins -5 and +5). 

 

Immunohistochemistry 

The following antibodies were used for immunohistochemistry: IDH1 (1:60 Dianova #DIA-H09), CD3 (1:200 

Thermo Scientific #RM-9107-S1), CD8 (1:100 Dako Cytomation #M7103), CD45Ro (1:500 Dako Cytoma-

tion #M0742), CD8 (1:100 Dako Cytomation #C8/144B), FoxP3 (1:25 BioLegend #320116), CD163 (1:1000 

Novocastra #NCL-L-CD163), CD68 (1:5000 Dako Cytomation #M0814), HLA-DR (1:400 Dako Cytomation 

#M0775), MIB1 (1:200 Dako Cytomation #M7240), CD34 (1:100 Novocastra #NCL-l-END).  
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FFPE blocks were cut at a thickness of 3 μm, and sections were stained on a Dako autostainer system using 

the following primary antibodies MIB1, HLA-DR, CD34, CD45Ro, CD68, CD3, CD8, CD163. Antigens were 

retrieved by heating the sections in 10 mM sodium citrate (pH 6.0) at 95°C for 20 min, followed by incubation 

with primary antibodies for 30 min at room temperature. The Dako Flex+mouse detection system was used 

according to manufacturer´s recommendations. For primary antibodies against IDH1 and FoxP3, a Ventana 

BenchMark automated staining system was used, followed by visualization using the Ultra View detection kit. 

All sections were counterstained with hematoxylin. For each antibody used positive and negative controls were 

used per 30-slide-batch. Negative controls were performed by omitting the primary antibody and by using 

Universal Negative Control rabbit (Dako) for polyclonal rabbit antibodies or purified mouse myeloma IgG1 

(Zymed Laboratories, San Francisco, CA) for monoclonal mouse antibodies. The slides were scanned using a 

Hamamatsu NanoZoomer 2.0 HT slide scanner, and images were analyzed using the NDPview 2 software. 

Whole slide scans were downsampled to 5x magnification and exported as JPEG images. Fiji was used for 

further image processing62. First, the inbuilt Color Deconvolution method was used to separate the hematoxylin 

from the DAB stain. The 8-bit greyscale hematoxylin image was thresholded using Phansalkar thresholding, 

and nuclei were counted using the built-in Analyze Particles algorithm to determine reference cell counts for 

each image. For each antibody stain Phansalkar thresholding parameters were manually optimized, followed 

by automated counting of DAB-positive cells. The inferred counts for antigen-expressing cells and correspond-

ing total nuclei counts were saved as spreadsheet for further statistical analysis. 

 

Histopathological analysis of whole slide scans 

H&E stained slides were scanned using a Hamamatsu NanoZoomer 2.0 HT slide scanner. The Hamamatsu 

NDP.view2 software was used to annotate relevant regions in the slide scans. Areas including hemorrhages, 

necrosis, scars, squeezed tissue, and preexisting brain parenchyma were manually segmented by a specialist 

in neuropathology using the Freehand Region tool. The slide scans were downsampled to 10x magnification 

and exported as jpeg images using the NDPITools plugin of Fiji62-64 along with xml files featuring the annota-

tions (*.ndpa). The JPEG images were loaded into Fiji for further processing.  

To obtain a cell nuclei mask for each slide scan image, the Color Deconvolution method of Fiji was used to 

obtain an 8-bit greyscale image of the hematoxylin stain65. Automated local thresholding based on Phansalkar’s 

method segmented cell nuclei (parameters k = 0.2, r = 0.5, radius = 8)66, followed by the binary Close and 

Open operations. The Watershed method was used to separate clustered nuclei67. To obtain a mask of the gross 

tissue on the slide scan, the original image was first converted to an 8-bit greyscale image followed by global 

thresholding (thresholding values 0-207). The masks were loaded into MATLAB R2014b (MathWorks) for 

further automated image analysis. For each image, the annotation data was fetched from the respective xml 

file and converted into polygons. These polygons were subsequently grouped to form binary masks based on 

their annotation (e.g., a necrosis mask comprising all annotated necrotic areas). The gross tissue was deter-

mined by first loading the previously obtained gross tissue mask into MATLAB, performing the binary Close 

operation (dilating and eroding the binary image by 30 pixels) and then removing all connected components 

smaller than 1,000 pixels. Pixels that were neither included in the background nor in any of the image annota-

tion masks were assigned to the tumor. Using the pixel-to-area conversion, the areas covered by tumor, necro-

sis and other annotated tissues were calculated.  

Subsequently, the pre-obtained binary nucleus mask was analyzed in blocks of 160 x 160 pixels (~146 µm x 

146 µm). This block size was empirically found to provide a good compromise between spatial resolution and 

nuclear content required for statistical analysis. The centroids of the nuclei were localized and the area and 

eccentricity (which is calculated as the distance between the foci of a fitted ellipse divided by its major axis 

length, with values close to 0 corresponding to circular nuclei and values close to 1 corresponding to spindle-

shaped nuclei) of each localized nucleus was assessed. Next, the number of nuclei per block was calculated 
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from the centroid map. From the nucleus areas in each block, the average area and eccentricity as well as the 

standard deviation of the nucleus areas and eccentricities were determined. The coefficient of variation was 

calculated by dividing the standard deviation by the average for each block. For nuclei number, average area 

and eccentricity, standard deviation and coefficient of variation, the data from all blocks were assembled in a 

matrix and saved as grey scale bitmap (.bmp) image as well as color portable network graphics (.png) image. 

Furthermore, using the binary annotation masks, each block was assigned to its corresponding region, given 

that >90% of the pixels in that block were uniformly annotated. Subsequently, for each type of region, the 

mean, standard deviation, coefficient of variation, median, and mode of the aforementioned nucleus charac-

teristics were calculated (e.g., obtaining the mean average nucleus density in tumor tissue). For further statis-

tical processing, the numerical data extracted from the slide scan images were saved into a spreadsheet. 

 

Radiological evaluation of glioblastoma patients 

MR images of glioblastomas at time of first diagnosis and recurrence in sufficient quality were available for 

54 of the glioblastoma patients included in this study, which were contributed by 6 different radiology depart-

ments. Both T1-weighted images with contrast enhancement (CE) and fluid-attenuated inversion recovery 

(FLAIR)/T2-weighted axial images were reviewed for topographic tumor location to assess solitary versus 

multicentric tumors and local versus distant recurrences. Multicentric glioblastomas were defined as at least 

two spatially distinct lesions that are not contiguous with each other and whose surrounding abnormal 

FLAIR/T2 signals do not overlap68. Tumor segmentation was performed with BraTumIA69,70, which uses 

multi-modal MRI sequences for fully automated volumetric tumor segmentation. T1, T1 contrast enhanced, 

T2, and FLAIR sequences were used to segment four tumor tissue types: necrotic, cystic, edema/non-enhanc-

ing, and enhancing tumor. Due to differences in MRI protocols across the study sites, the multi-modal se-

quences were affine registered to the T1 sequence with SPM122 and resampled to 1x1x3mm voxel size prior 

to segmentation. The BraTumIA-derived segmentations were reviewed by an expert radiologist, and errors in 

the automatic segmentation were manually corrected. 

 

Evaluation of MR imaging-based progression phenotypes 

MR imaging-based tumor progression was assessed according to the Response Assessment in Neuro-Oncology 

(RANO) standard71. Serial T1-weighted images with CE and FLAIR/T2-weighted images were available for 

43 patients. Progression subtypes were classified as described previously33,72: (i) Classic T1 (incomplete dis-

appearance of T1-CE during therapy followed by T1-CE increase at progression), (ii) cT1 relapse / flare-up 

(complete disappearance of T1-CE during therapy followed by T1-CE reoccurrence at progression), (iii) Pri-

mary non-responder (increase and/or additional T1-CE lesions at first MR imaging follow-up after start of 

therapy), (iv) T2-circumscribed (bulky and inhomogeneous T2/FLAIR progression, no or single faintly speck-

led T1-CE lesions at progression), and (v) T2-diffuse (complete decrease in T1-CE during therapy but exclu-

sive homogeneous T2/FLAIR signal increase with mass effect at progression). 

 

DNA methylation based prediction of tumor properties 

Tumor properties such as the immune cell infiltration and tumor cell morphology were predicted from DNA 

methylation data using a machine learning approach that was based on the R package ‘LiblinearR’. The DNA 

methylation data were prepared by calculating for each sample the mean DNA methylation levels in 5-kilobase 

tiling regions across the genome. Tiling regions covered in less than 90% of the samples were excluded from 

the analysis, and the filtered data matrix (samples x tiling regions) was subjected to imputation using the func-

tion impute.knn() from the R-package ‘impute’, with the parameter k (i.e., the number of nearest neighbors 
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considered) set to 5. Tumor properties represented by continuous response variables were converted into cat-

egorical variables by setting the 20% highest values to ‘high’, the 20% lowest values to ‘low’, and the remain-

ing samples to ‘NA’. Imputed beta values were used to train and evaluate the classifiers using LiblineaR(). In 

the confirmatory hierarchical clustering based on the most predictive features identified by the classifiers, the 

beta values were scaled across samples for better visualization and comparability. LiblineaR() was set to use 

support vector classification by Crammer and Singer as model type, and the appropriate cost parameter was 

estimated from the imputed data matrix using the function heuristicC() from the same package. For each tumor 

property, the performance of the classifiers was determined through leave-one-out cross-validation, and 10 

control runs with randomly shuffled labels were included to detect potential overfitting. ROC curves and ROC 

AUC values were determined using the functions prediction() and performance() of the R-package ‘ROCR’. 

Finally, we trained a classifier on the entire dataset using the selected model and cost parameter, which was 

then used for further analysis including the extraction of the most predictive features, hierarchical clustering, 

and the prediction of additional samples (for the transcriptional subtypes). 

 

Estimation of DNA methylation heterogeneity 

The epi-allele entropy as a measure of sub-clonality within a tumor was calculated using a slightly modified 

version of methclone48. We calculated epi-allele entropies separately for each of the samples and, inde-

pendently, for each matched pair of primary and recurring tumors. Input files to methclone were created by 

aligning the trimmed RRBS reads to the human reference genome build hg38 using Bismark58. As in the orig-

inal publication, methclone was set to require a minimum of 60 reads in order to consider a locus, and loci 

with a combinatorial entropy change below -80 were classified as epigenetic shift loci (eloci) between primary 

and recurring tumors48. For each pair, we then calculated epi-allele shifts per million loci (EPM), dividing the 

number of eloci by the total number of assessed loci normalized to 1 million loci48. 

The proportion of discordant reads (PDR) as a measure of local erosion and DNA methylation disorder was 

calculated as described in the original publication27. Briefly, the number of concordantly or discordantly meth-

ylated reads with at least four valid CpG measurements was determined for each CpG using a custom python 

script. The PDR at each CpG was then calculated as the ratio of discordant reads compared to all valid reads 

covering that locus. CpGs at the end of a read were disregarded to remove potential biases due to the end-

repair step of RRBS library preparation. Because the PDR and epi-allele entropy calculation is highly sensitive 

to differences in the read composition of the underlying RRBS library, we focused this analysis on RRBS 

libraries with a similar number of enrichment cycles (13-15) to ensure high consistency between samples 

(Supplementary Fig. 6a). 

Sample-wise PDR and epi-allele entropy values were calculated by averaging across promoters that were cov-

ered in more than 75% of the samples. Promoter regions were defined as the genomic region 1 kilobase up-

stream to 500 basepairs downstream of a given transcription start site as annotated by GENCODE73. 

 

Pairwise differential DNA methylation analysis 

Differentially methylated CpGs between sample pairs (i.e., primary tumor versus matched recurring tumor) 

were identified with a custom R script that uses Fisher’s exact test. This test was applied to the methylated and 

unmethylated read counts derived from the BSMAP-aligned reads by the biseqMethCalling.py script. P-values 

were adjusted for multiple testing using the Benjamini-Hochberg method. To obtain promoter-wise differential 

DNA methylation calls, p-values were combined using a generalization of Fischer’s method74 as implemented 

in RnBeads75. Promoter methylation levels for each sample were calculated as the mean of all CpGs in the 

promoter region. Promoter regions were defined as the genomic region 1 kilobase upstream to 500 basepairs 

downstream of a given transcription start site as annotated by GENCODE73. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 9, 2017. ; https://doi.org/10.1101/173864doi: bioRxiv preprint 

https://doi.org/10.1101/173864


15 

 

 

Pathway enrichment analysis 

Enrichment analysis for gene sets and pathways was performed using enrichR76,77 through an R interface 

(https://github.com/definitelysean/enrichR) querying the Panther_2016 database (http://www.pantherdb.org/) 

for enrichments with an adjusted p-value below 0.05. 

 

Data and code availability 

All data are available through the Supplementary Website (http://glioblastoma-progression.computational-ep-

igenetics.org/). Genome browser tracks facilitate the locus-specific inspection of the DNA methylation data, 

and a d3.js based graphical data explorer enables interactive analysis of associations in the annotated dataset 

(Supplementary Fig. 7). The Supplementary Website also hosts the raw and segmented image data from the 

histopathological analysis as well as the raw and segmented MR imaging data. The processed DNA methyla-

tion data will also be available for download from NCBI GEO (accession number: GSE100351, reviewer link: 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100351, login token: ufahcwkajrqnhef), and the 

raw sequencing data will be available from EBI EGA. Finally, in the spirit of reproducible research78 the Sup-

plementary Website makes the source code underlying the presented analyses publicly available. 
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Figures 

Figure 1. DNA methylation landscape of glioblastoma disease progression 

A: Integrative analysis of longitudinal DNA methylation data (RRBS) with matched magnetic resonance (MR) 

imaging data (morphology, segmentation), clinical annotation data (e.g., treatment, progression, IDH mutation 

status), and histopathological data (segmentation, morphology, immunohistochemistry) using statistical meth-

ods and machine learning. TMZ: Temozolomide; RTX: Radiation therapy; PC: Palliative care. 

B: Patient cohort overview summarizing the disease courses of 112 primary glioblastoma patients with IDH-

wildtype status, ordered by time of first surgery. 

C: DNA methylation profiles for primary and recurring tumors at three relevant gene loci (BCL2L11, SFRP2, 

and MGMT). Genes and ENCODE histone H3K27ac tracks were obtained from the UCSC Genome Browser.  

D: DNA methylation levels at CpGs indicative of the CpG island methylator phenotype (CIMP), shown sepa-

rately for IDH mutated control samples (which are CIMP-positive) and the IDH wildtype primary glioblastoma 

samples from the study cohort (which are CIMP-negative). The fold change of DNA methylation levels be-

tween IDH mutated and wildtype samples is indicated based on data from a previous study39. 

 

Figure 2. Glioblastoma transcriptional subtypes inferred from DNA methylation 

A: Overview of the machine learning approach for classifying tumor samples by their transcriptional subtypes 

using DNA methylation data. Classifiers were trained on DNA methylation data (Infinium 27k assay) of TCGA 

glioblastoma samples with known transcriptional subtype, using only CpGs shared by RRBS. All classifiers 

were evaluated by tenfold cross-validation on the TCGA samples and then applied to the RRBS profiles, pre-

dicting class probabilities that indicate the relative contribution of each transcriptional subtype. 

B: Transcriptional subtype heterogeneity within cohort samples, as indicated by class probabilities of the sub-

type classifier. Samples are grouped and ordered by their dominant subtype. 

C: Distribution of class probabilities across different regions of the same tumor (indicated by Roman numbers) 

and across different surgeries (indicated by Arabic numbers) for two patients with multisector samples. 

D: Riverplot depicting transitions in the predicted transcriptional subtype between primary and recurring tu-

mors. The number of samples in each state is indicated. Only patients whose primary and recurring tumors 

were classified with high accuracy (ROC AUC > 0.8) were included in this analysis. 

E: Kaplan-Meier plots displaying progression-free survival and overall survival probabilities over time for 

patients stratified by predicted transcriptional subtypes (left) and switching from a non-mesenchymal to mes-

enchymal subtype during disease progression (right). Only tumor samples that were classified with high accu-

racy (ROC AUC > 0.8) were included in this analysis. 

F: Heatmap displaying the DNA methylation levels of the most differential CpGs between the three transcrip-

tional subtypes. Only tumor samples that were classified with high class probabilities (>0.8) were included in 

this analysis. 

G: LOLA region-set enrichment analysis of differentially methylated CpGs between the different transcrip-

tional subtypes (binned into 1-kilobase tiling regions). Adjusted p-values (Benjamini & Yekutieli method) are 

displayed for all significantly (adjusted p-value < 0.05) enriched region sets (binding sites, x-axis) measured 

in astrocytes or embryonic stem cells (ESCs). 

H: Schematic depicting the calculation of ‘DNA methylation inferred regulatory activity’ (MIRA) scores. 

DNA methylation profiles are combined across centered genomic regions of interest (e.g., transcription factor 

binding sites) for each sample and each region set. The MIRA score is then calculated as the ratio of DNA 

methylation levels at the flank to DNA methylation levels at the center (binding site) of the combined DNA 
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methylation profile. High MIRA scores therefore reflect local demethylation at the binding site, which indi-

cates high regulatory activity of the respective factor. 

I: DNA methylation profiles (upper row) and corresponding MIRA scores (lower row) for three region sets 

enriched in CpGs that are hypomethylated in the mesenchymal subtype (CTCF binding in astrocytes, EZH2 

binding in astrocytes, and KDMA binding in ESCs) as well as three region sets of key regulators of pluripo-

tency measured in ESCs (POUF1, NANOG, SOX2). The significance of differences between the three tran-

scriptional subtypes was assessed using a two-sided Wilcoxon rank sum test: * p-value < 0.05, ** p-value < 

0.01, *** p-value < 0.001, ns: not significant. 

 

Figure 3. DNA methylation and the tumor microenvironment 

A: Comparison of tumor-infiltrating immune cell levels between different transcriptional subtypes as measured 

by quantitative immunohistochemistry for the indicated marker proteins. 

B. Immunohistochemical stainings for FOXP3 and CD45ro in selected samples assigned to each of the three 

transcriptional subtypes. 

C: Kaplan-Meier plots displaying progression-free survival and overall survival probabilities over time for 

patients stratified according to the level of CD163-positive and CD68-positive immune cell infiltration in their 

primary and recurring tumors. 

D, E: Differences in the relative proportion of tumor-infiltrating pro-inflammatory (D) and anti-inflammatory 

or neutral (E) immune cells between tumor samples originating from the patients’ first surgery (primary tu-

mor), second surgery (recurring tumor), or third surgery. 

F: Comparative immunohistochemical stainings between primary and recurring tumors for three selected 

markers (CD68, CD8, CD163). 

G: Comparison of the levels of tumor-infiltrating immune cells (cells positive for CD3, CD8, or CD68) and 

proliferating cells (MIB-positive cells) between the different progression types based on magnetic resonance 

(MR) imaging: Classic T1 (claT1), cT1 relapse / flare-up (cT1), and T2 diffuse (T2). Primary (left panel) and 

recurring (right panel) tumors were analyzed separately. 

H: ROC curves for the DNA methylation based prediction of immune cell infiltration levels, as determined by 

leave-one-out cross-validation. ROC curves and the ROC area under curve (AUC) are indicated for the actual 

prediction (blue) and for background predictions with randomly shuffled labels (grey). 

All significance tests comparing groups of samples in this figure were performed using a two-sided Wilcoxon 

rank sum test: * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001, ns: not significant. 

 

Figure 4. DNA methylation and histopathological tumor characteristics 

A. Comparison of the fraction of proliferating (MIB-positive) cells between first surgery (primary tumor), 

second surgery (recurring tumor), and third surgery. 

B. Kaplan-Meier plots displaying progression-free survival and overall survival probabilities over time for 

patients stratified according to the fraction of proliferating (MIB-positive) cells in the primary and recurring 

tumor. 

C: ROC curves for the DNA methylation based prediction of levels of proliferating (MIB positive) cells, as 

determined by leave-one-out cross-validation. 

D: Hierarchical clustering based on column-scaled DNA methylation levels of the most predictive genomic 

regions from the classifier predicting the fraction of proliferating (MIB-positive) cells (5-kilobase tiling re-

gions). 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 9, 2017. ; https://doi.org/10.1101/173864doi: bioRxiv preprint 

https://doi.org/10.1101/173864


22 

 

E: Distribution of DNA methylation levels of the most predictive genomic regions from the classifier predict-

ing the fraction of proliferating (MIB-positive) cells, displayed separately for samples with high (red) or low 

(blue) fractions and for positively (top) or negatively (bottom) associated features as identified by the classifier.  

F: Comparison of the average nuclear eccentricity (AVG) and its coefficient of variation (COV) between tu-

mors that shift to a sarcoma-like phenotype during disease progression and those that retain a stable histological 

phenotype. 

G: Hematoxylin and eosin stains of matched primary and recurring tumors, illustrating the morphological 

changes observed when tumors shift to a sarcoma-like phenotype during disease progression. 

H: Comparison of additional tumor properties between tumors that shift to a sarcoma-like phenotype during 

disease progression and those that retain a stable histological phenotype. 

I: ROC curves for the DNA methylation based prediction of average nuclear eccentricity and its coefficient of 

variation. 

J: Kaplan-Meier plots displaying progression-free survival and overall survival probabilities over time for pa-

tients stratified according to whether their tumors shift to a sarcoma-like phenotype during disease progression 

(green) or retain a stable histological phenotype (orange). 

All significance tests comparing groups of samples in this figure were performed using a two-sided Wilcoxon 

rank sum test: * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001, ns: not significant. 

 

Figure 5. DNA methylation heterogeneity in glioblastoma disease progression 

A. Illustration of epi-allele entropy (EPY) and proportion of discordant reads (PDR) as two complementary 

measures of epigenetic tumor heterogeneity. Individual loci can have high values for one but not for the other 

measure (locus 1 and 2), or the measures can agree with each other (locus 3). Loci that undergo extensive 

changes in their epi-allele composition (locus 2 and 3) have been termed eloci48. ‘=’: no change in heteroge-

neity between primary and recurring tumor; ‘>’ increased heterogeneity in the recurring tumor. 

B. Comparison of mean sample-wise PDR and epi-allele entropy values between first surgery (primary tumor) 

and second surgery (recurring tumor). The samples with the 20% highest and lowest heterogeneity values are 

color-coded and form the basis for the analyses presented in panels C to E. 

C: Relative epi-allele frequencies in promoter regions for each of the color-coded samples from panel B (bot-

tom) as well as the distribution of high and low heterogeneity samples along the gradient defined by their 

relative epi-allele composition (top). For clearer visualization, the “0000” majority epi-allele with a frequency 

of 70% to 80% is not displayed. 0: unmethylated, 1: methylated 

D: Correlation between intra-tumor heterogeneity and enhancing (active) tumor mass as determined by MR 

imaging. r: Pearson correlation. 

E: Kaplan-Meier plots displaying progression-free survival and overall survival probabilities over time for 

patients stratified according to their PDR and epi-allele entropy values. 

F: Correlation between the number of differentially methylated promoters during progression per million as-

sessed promoters (DPM) and the time between first and second surgery. r: Pearson correlation. 
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Figure 6. DNA methylation differences between primary and recurring tumors 

A. Scatterplot depicting the relationship of promoter DNA methylation between primary and recurring tumors. 

Promoters that were differentially methylated between primary and recurring tumors in at least 5 patients are 

highlighted (DNA methylation difference greater than 75%, adjusted p-value below 0.001, and average RRBS 

read coverage greater than 20 reads). r: Pearson correlation. 

B. Barplots (top) depicting the number of patients that show significant gain or loss of DNA methylation in 

the differentially methylated promoters highlighted in panel A; scatterplots and line plots (bottom) showing 

the change in DNA methylation associated with disease progression (measured as percentage points, pp) for 

patients following the cohort-trend (red) or not (blue). Trend lines were calculated using the loess method. 

C. Definition of “trend” and “anti-trend” patients based on the Manhattan distance between the maximal trend 

at differentially methylated promoters (DNA methylation values of 0% or 100%) and the observed difference 

in DNA methylation for each patient. “Trend” patients are those whose DNA methylation profiles are similar 

to the maximal trend (low normalized Manhattan distance); “Anti-trend” patients are those whose methylation 

profiles are most different from the maximal trend (high normalized Manhattan distance). 

D: Pathway enrichment analysis of those genes that recurrently lose DNA methylation during disease progres-

sion and those that recurrently gain DNA methylation during disease progression. 

E: Kaplan-Meier plots displaying progression-free survival and overall survival probabilities over time for 

patients stratified by whether they followed the cohort trend of differential promoter DNA methylation (trend 

patients) or not (anti-trend patients), according to the definition in panel C. 

F: Kaplan-Meier plots displaying progression-free survival and overall survival probabilities over time for 

patients stratified into the top-30% patients with increasing or decreasing average DNA methylation levels at 

the promoters of Wnt signaling genes during disease progression. 
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Supplementary Tables 

Supplementary Table 1. Patient summary table 

Supplementary Table 2. RRBS summary table 

 

 

Supplementary Figures 

Supplementary Figure 1. RRBS profiling in a population-based glioblastoma cohort 

A: Overview of the clinical centers that contributed to this study. The numbers of IDH wildtype and IDH 

mutated patients are indicated for each center.  

B: Scatterplots summarizing the RRBS sequencing data. The proportion of randomly fragmented reads (i.e., 

reads not starting with the expected RRBS restriction sites) reflect the degree of pre-fragmentation of the input 

DNA. The different sample types (FFPE: formalin-fixed paraffin-embedded; Frozen: fresh-frozen, RCL: eth-

anol-based conservation) are indicated by color. 

C: DNA methylation levels of methylated and unmethylated synthetic spike-in control sequences. Dashed lines 

indicate DNA methylation levels of 5% and 95%. 

D, E: Distribution of DNA methylation levels across different genomic regions (covered by more than 10 reads 

per CpG) and for the different sample types (D) and quality tiers (E) defined by the number of unique CpGs 

detected in each RRBS library (tier 1: more than 3 million; tier 2: between 2 and 3 million; tier 3: between 1 

and 2 million; tier 4: below 1 million). 

F: Scatterplots depicting the relationship of DNA methylation levels in 5-kilobase tiling regions (containing 

more than 25 CpGs and covered by more than 10 reads per CpG) between primary and recurring tumors for 

the three different sample types. r: Pearson correlation. 

G: Mean MGMT promotor methylation levels averaged across two CpGs (cg12434587 and cg12981137)53. 

Error bars indicate the maximum and minimum detected methylation levels in each samples. The dashed line 

indicates the threshold (36%) below which samples are considered unmethylated. 

H: Kaplan-Meier plots displaying progression-free survival and overall survival probabilities over time for 

patients stratified by MGMT promoter methylation status as depicted in panel G. 

 

Supplementary Figure 2. Inference of genetic information from RRBS data 

A: Overview of the RRBS-based inference of copy number aberrations (CNAs) in the glioblastoma cohort. 

The horizontal red and green lines represent the aberrations identified in each of the samples. The genomic 

position of genes with reported relevance in glioblastoma are indicated.  

B: Kaplan-Meier plots displaying progression-free survival and overall survival probabilities over time for 

patients stratified by chromosome 10q deletion status as depicted in panel A. 

C: Assessment of 1p/19q co-deletion status in the IDH wildtype primary glioblastoma samples as well as the 

13 oligodendroglioma samples from 6 patients with known 1p/19q co-deletion as positive controls. The size 

of the bubbles represents the mean fraction of the respective chromosome arms that are affected by the indi-

cated CNAs. 

D: Scatterplot displaying the relationship of normalized RRBS-derived mutation calls (SNPs and InDels) be-

tween primary and recurring tumors. 
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E: Cohort-wide mutational profile of genes with known relevance in glioblastoma. Only mutations with high 

predicted impact on protein function are displayed. Each dot represents a tumor sample in which the indicated 

mutation was detected. Variant qualities above 100 were set to 100. 

 

Supplementary Figure 3. Prediction of glioblastoma transcriptional subtypes from RRBS data 

A: Sample-wise ROC AUC values as a measure for the accuracy of transcriptional subtype prediction from 

RRBS data. Dashed line: ROC AUC = 0.8 

B: Transcriptional subtype distribution for IDH mutated samples. The number of samples assigned to each 

subtype is indicated. 

C, D, E: Distribution of class probabilities across different regions of the same tumor (indicated by Roman 

numbers) and across different surgeries (indicated by Arabic numbers) for four out of six patients with multi-

sector samples (C) and the remaining two patients (D,E) accompanied by matched hematoxylin and eosin 

stains to display the tumor regions from which the multi-sector samples originated. Section III of the primary 

tumor of patient 44 did not yield enough CpGs to support confident classification. 

F: Scatterplots displaying the relationship between MIRA scores for the indicated factors and the class proba-

bilities of the indicated transcriptional subtypes. r: Pearson correlation, p: p-value. 

 

Supplementary Figure 4. Association of histopathological and MR imaging-derived tumor properties 

with transcriptional subtypes and disease progression 

A: Segmented hematoxylin and eosin stains illustrating the quantification of the histopathological tumor prop-

erties (red: hemorrhage, green: necrosis, yellow: meningeal scarring).  

B: Comparison of histopathological tumor properties between the different transcriptional subtypes (Cla: clas-

sical, Mes: mesenchymal, Pro: proneural). 

C: Comparison of histopathological tumor properties between first surgery (primary tumor) and second surgery 

(recurring tumor). 

D: Segmented MR imaging pictures illustrating the quantification of the different MR imaging-derived tumor 

properties. Heatmap intensity overlays indicate the extent of necrosis, contrast-enhancing (active) tumor vol-

ume, and edema in the entire cohort. 

E: Kaplan-Meier plots displaying progression-free survival and overall survival probabilities over time for 

patients stratified according to the level of necrotic and contrast-enhancing (active) tumor volume as derived 

from MR imaging in primary and recurring tumors. 

All significance tests comparing groups of samples in this figure were performed using a two-sided Wilcoxon 

rank sum test: * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001, ns: not significant. 

 

Supplementary Figure 5. MR imaging progression types and DNA methylation based prediction of tu-

mor properties 

A: T1-contrast enhanced and T2/FLAIR MR sequences at each follow-up visit illustrating the three MR im-

aging progression types in this cohort (cT1 relapse / flare-up, classic T1, T2 diffuse). ‘*’: tumor recurrence. 

B: Kaplan-Meier plots displaying progression-free survival and overall survival probabilities over time for 

patients stratified according to their MR imaging progression types. 
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C: Schematic illustrating the machine learning approach (including the data pre-processing) used to assess the 

predictability of various tumor properties from RRBS DNA methylation data. White squares indicate missing 

values; grey squares indicate imputed values. 

D: ROC curves showing high prediction accuracy based on DNA methylation data for two features with high 

expected predictability (IDH mutation status, patient sex). 

E: ROC curves evaluating the DNA methylation based prediction of several histopathologic tumor properties. 

F: Hierarchical clustering based on the column-scaled DNA methylation values of the most predictive features 

(5-kilobase tiling regions) as identified by the machine leaning classifiers built to predict the infiltration levels 

of the indicated immune cell types (cells positive for CD163, CD68, CD45ro, CD3, or CD8) or the extent of 

indicated tumor properties (cells positive for CD34 or HLA-DR). 

 

Supplementary Figure 6. Analysis of DNA methylation heterogeneity in primary and recurring tumors 

A: Scatterplots displaying the relationship between PCR enrichment cycles during RRBS library preparation 

and the indicated measures of DNA methylation heterogeneity. In order to reduce the effect of technical vari-

ability, we limited the analysis of epigenomic heterogeneity to samples that fall into a defined narrow range of 

PCR enrichment cycles (13-15 cycles, indicated by black boxes). 

B: Degree of epi-allelic shifting between normal brain control and primary or recurring tumors, as well as 

between primary and recurring tumors measured by the relative number of loci that show high changes in epi-

allele composition (EPM: eloci per million assessed loci). ***: p-value < 0.001 (two-sided Wilcoxon rank sum 

test) 

C: Kaplan-Meier plots displaying progression-free survival and overall survival probabilities over time for 

patients stratified according to their degree of epi-allelic shifting (as measured by EPM) between primary and 

recurring tumors. 

D: Correlation between epi-allelic shifting during progression (as measured by EPM) and the time between 

first and second surgery. r: Pearson correlation. 

 

Supplementary Figure 7. Illustration of the graphical data explorer on the Supplementary Website 

(http://glioblastoma-progression.computational-epigenetics.org/) 

A: Comparison between two continuous variables. 

B: Comparison between one continuous and one categorical variable. 

C: Comparison between two categorical variables. 

D: Hovering over an individual data point shows information about the specific data point and also highlights 

all matched samples from the same patient. 

E, F: Clicking on a data point locks the highlighting (E) to follow the selected data point through additional 

analyses (F). 
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