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ABSTRACT 

There are excessive zero values in single-cell RNA-seq (scRNA-seq) data. Some of them are real 

zeros of non-expressed genes, while the others are the so-called “dropout” zeros caused by the low 

mRNA capture efficiency of tiny amounts of mRNAs in single cells. These two types of zeros should 

be distinguished in differential expression (DE) analysis and other types of analyses of scRNA-seq 

data. We proposed a new method DEsingle for DE analysis in scRNA-seq data by employing the 

Zero-Inflated Negative Binomial (ZINB) model. We proved that DEsingle could estimate the 

percentage of real zeros and dropout zeros by modelling the mRNA capture procedure. According to 

this model, DEsingle can distinguish three types of differential expression between two groups of 

single cells, with regard to differences in expression status, in expression abundances, and in both. 

We validated the performance of the method on simulation data and applied it on real scRNA-seq 

data of human preimplantation embryonic cells of different days of embryo development. Results 

showed that DEsingle outperforms existing methods for scRNA-seq DE analysis, and can reveal 

different types of DE genes that are enriched in different functions. 

 

INTRODUCTION 

Single-cell RNA sequencing (scRNA-seq) is a new technology developed in recent years which can 

study transcriptomes in individual cells (1-4). The expression level of a gene in a cell could be 

estimated by counting the number of sequenced reads mapped to the reference sequence of the 

gene (5-7). The importance of measuring the gene expression level in single cells as well as the 

importance of studying bioinformatics methods for single-cell data has been increasingly recognized 

(7-10). 

Differential expression (DE) analysis is to detect genes whose expression levels are significantly 

different between the compared groups of samples (11-15). It has been a key task in transcriptome 

study since the early days of microarrays. Traditional DE analysis methods for RNA-seq data were 

designed for bulk RNA sequencing (11,16,17), which needs millions of cells in one sample (6,18), and 
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most of those DE analysis methods focus on the detection of DE genes by their mean expression 

levels (11,12,16,17,19). 

scRNA-seq data has many different characteristics from bulk RNA-seq data (20). One important 

difference is that there are much more zero values in scRNA-seq data than in bulk RNA-seq data (12). 

Due to the tiny amount of mRNAs in one cell (~0.01-2.5pg), the small mRNA copy number of each 

gene in a cell (thousands of genes have only 1-30 mRNA copies) and the very low mRNA capture 

efficiency (~5-25%, up to ~40%) (21-24), some mRNAs are totally missed during the reverse 

transcription step and the following cDNA amplification step, and consequently undetectable in the 

later sequencing step (3). This phenomenon is called dropout events (25,26). We call this type of zero 

values as dropout zeros. On the other hand, because of the heterogeneity between cells and the 

stochastic nature of transcription in a single cell, there is also a high chance that the expression level 

of some genes are really zero when it is sequenced (19,27). In other words, these genes are not 

expressed in the cell when the cell is lysed. We call this type of zero values as real zeros. The 

excessive zero values observed in most scRNA-seq data are mixed with these two possible types of 

zeros. 

The transcription process of a gene in one single cell is an on-off stochastic process (28,29). If there 

is not a single copy of the mRNA molecule of a gene in the cell at the time of RNA capturing, scRNA-

seq will produce a zero count for this gene. This zero is a real zero. It reflects the expression status of 

the gene in the cell. For a group of cells, the proportion of cells with real zeros reflects the overall 

expression status of the gene in the group (19). Existing methods for analysing differential gene 

expression of single cell did not take this into consideration. 

In this paper, we proposed a new method called DEsingle for DE analysis of scRNA-seq data. 

DEsingle is based on Zero-Inflated Negative Binomial (ZINB) model (30-33), which provides a good fit 

for the data. It introduced an extra parameter to model the excessive amount of zeros in the data. 

Using this model, we can separate observed zero values as two parts to roughly reflect the proportion 

of real zeros and dropout zeros due to very low expression level. Simulation experiments showed that 

DEsingle can not only detect DE genes with better performance than existing methods, but can also 

distinguish different expression status of a gene from differential expression abundance of the gene. It 

can report three types of differential expression: different expression status (DEs), differential 

expression abundance (DEa) and general differential expression (DEg) with mixed effects of both 

DEs and DEa. Among the three types, DEa and DEg are similar to conventional understanding on 

differential expression, but the type DEs highlights a new situation that has not been paid sufficient 

attention. We compared our method with several representative existing methods on simulation data. 

The methods we compared with include traditional DE detection methods edgeR (16) and DEGseq 

(17) that were developed for bulk RNA-seq data but have been also used on many scRNA-seq data 

(12), as well as new methods specifically developed for scRNA-seq data including BPSC (34), D3E 

(19), monocle (35), SCDE (25). We applied DEsingle on a real scRNA-seq dataset of human 

preimplantation embryonic cells of different days of embryo development (36) and found interesting 
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observations on the three types of differentially expressed genes between different days of the 

development. 

MATERIAL AND METHODS 

Using the ZINB model to fit scRNA-seq data with excessive zeros 

The zero percentages are very high for most of genes in scRNA-seq data. Figure 1A shows the 

histogram of zero percentages of all the expressed genes in a human embryonic scRNA-seq dataset 

(36). Because of this excessive proportion of zeros as shown in the data, we consider using zero-

inflated models in our method. For RNA-seq read counts data, Negative Binomial (NB) distribution 

has been widely used in most DE analysis methods (e.g., edgeR (16), DESeq (11), baySeq (37)). We 

adopted the Zero-Inflated Negative Binomial (ZINB) model in our method and found that it can fit 

scRNA-seq data well (Figure 1B). 
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Figure 1. ZINB model for scRNA-seq data and workflow of DEsingle. (A) Histogram of zero percentages of 

all expressed genes in a human embryonic scRNA-seq dataset. (B) An example of ZINB model fitting for scRNA-

seq data. The figure is density fitting (left) and cumulative distribution function fitting (right) for the scRNA-seq 

data (empirical) to the ZINB model (theoretical). (C) Mathematical modeling of mRNA capture procedure, under 

the random capture assumption. (D) Theoretical ZINB distribution of a gene with different random capture 

efficiency   denoted above each graph.   = 100% represents the distribution of original data;   = 30%, 20% 

and 10% represent the observed data obtained from the original data after mRNA capture procedure. The 

parameters of ZINB distribution of the original data are   = 0.1, r  = 20 and p  = 0.5. The red line represents 

the probability density of real zero expression (constant zeros), which is comes from the   parameter of the 

ZINB model; the blue line represents the probability density of NB part of ZINB model. When   becomes 
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smaller, the zero density from NB part (blue line on zero value) becomes larger. (E) Workflow of DEsingle to 

detect and classify DE genes. Hypothesis testing of 
0 1 2 1 2 1 2: , ,H r r p p     is used to detect all the DE 

genes; hypothesis testing of 
20 1 2:H    and 

30 1 2 1 2: ,H r r p p   are used to classify the found DE genes. 

 

The ZINB model is a mixture of constant zeros and NB distribution, with mixture proportions of   and 

1  , respectively. The probability mass function (pmf) of ZINB distribution for the read counts 
gN  of 

gene g  in a group of cells is 

       | , , 0 1 , , 0,1,2,...gP N n r p I n NB r p n           

where 
gN  is the read counts of gene g ,   is the proportion of constant zeros of gene g  in the 

group of cells, r  is the size parameter and p  is the probability parameter of the NB distribution part 

of the ZINB model. Note that the NB part can also have zero values. The observed zero values are 

the sum of constant zeros and the zero values from the NB distribution part. 

Model the mRNA capture procedure 

Most dropout zeros are produced because of the very low mRNA capture efficiency (~5-25%, up to 

~40%) and the small mRNA copy number of each gene (thousands of genes only have 1-30 mRNA 

copies) in a cell (21-24). As a result, mRNA molecules in a cell can be randomly missed during the 

reverse transcription step and the following cDNA amplification step, and the mRNA products of some 

genes may be totally missed in the capturing procedure, which then produces dropout zeros in the 

scRNA-seq data (3,25,26). In this section, we try to model this mRNA capture procedure and study 

what impact this process will have on the ZINB distribution. For convenience, we use “mRNA capture 

procedure” to refer to both the mRNA capture procedure in reverse transcription step and the cDNA 

capture procedure in cDNA amplification step. 

Let ijm  denote the original transcript copy number of gene i  in cell j , and let ijn  denote the number 

of captured transcript copies of gene i  in cell j . In real data, the true 
ijm  is unknown, and the 

observed ijn  is the result of sampling from the existing transcripts with the mRNA capture procedure. 

In practice, the cDNA amplification step and sequencing from the cDNA library can also introduce 

noises and bias in the number of reads sequenced from captured transcripts. But this is less severe 

comparing to the mRNA capture procedure. Therefore we assumed that the estimated abundance of 

the transcript of gene i  in cell j  from the sequencing reads reflects the ijn . 

We use a parameter  0%,100%   to denote the efficiency of the mRNA capture procedure. 

Assume  ~ , ,ijm ZINB r p , under the random capture assumption that all transcripts are captured 
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with the same probability  , we can prove that  *~ , ,ijn ZINB r p  with 
1

p
p p

p p





  
 

 

(Figure 1C), as described in Supplementary Data. 

Therefore, we can see that, 

1. Parameter p  in the ZINB model becomes 
1

p
p p

p p





  
 

 after the capture procedure. 

Since the mean and the variance of the NB part of the ZINB model are 
1

pr

p
 and 

 
2

1

pr

p
 

respectively, when p  becomes smaller, both the mean and the variance of the NB part become 

smaller. The NB distribution moves to closer toward zero after the capture procedure. This means 

more zeros in the observed data can be from the NB part of the model. Figure 1D shows 

examples of theoretical ZINB distribution of original data (   = 100%) and observed data with 

different capture efficiency   (30%, 20%, 10%). 

2. Parameter   is unchanged after the mRNA capture procedure, which means that the proportion 

of constant zeros of the gene among the group of cells is unchanged. For the ideal original data 

(   = 100%), only those cells with no transcript of the gene in the cell will give zero values. Those 

are real zeros that reflect genes that are not at the transcription status. For any none-100% 

capture efficiency, observed zeros are the mixture of real zeros and dropout zeros.  But as   is 

unchanged by the capture procedure, the   estimated from observed data ijn  can be used to 

measure the proportion of real zeros that represent the expression status of the gene in the group 

of cells. 

 

Figure 1E is a workflow of DEsingle. It includes three major steps: the normalization of the data, 

detection of the DE genes and classification of the found DE genes into subtypes: DEs, DEa or DEg. 

The input of DEsingle is the raw read counts matrix from scRNA-seq data. DEsingle integrates a 

median normalization method proposed by DESeq to normalize the data (11), as described in 

Supplementary Data. After normalization, maximum likelihood estimation (MLE) and constrained MLE 

of the parameters of two ZINB populations are calculated. Finally, likelihood ratio tests are conducted 

to detect the DE genes and classify them into three types. 

Comparing two ZINB populations 

Detecting differentially expressed genes of two groups of cells using ZINB model is equivalent to 

testing the heterogeneity of two ZINB populations (30-32,38). When any of the three parameters of 

two ZINB models has significant difference, we consider the gene is a DE gene. We use  
1ijn  and 

 
2ijn  to denote the read counts of gene i  in cell j  of group 1 and of group 2, respectively, and use 

the following 3 steps to test the difference of the two populations. 
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1. Calculate MLE of  1 2 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,r r p p θ  for the parameters of the two ZINB populations using 

Expectation-Maximization (EM) algorithm (39), i.e., 

   
1 1 1 1 1

ˆ ˆ ˆ ˆ, ,i

M E

j

Ln r p θ ,    
2 2 2 2 2

ˆ ˆ ˆ ˆ, ,i

M E

j

Ln r p θ  

2. Calculate constrained MLE of  1,0 2,0 1,0 2,0 1,0 2,00
ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,ˆ r r p p θ  under the null hypothesis 

0 1 2 1 2 1 2: , ,H r r p p    , i.e., 

   
1 1,0 1,0 1,0 1,0

ˆ ˆ ˆ ˆ, ,
constrained E

j

M

i

Ln r p θ  

   
2 2,0 2,0 2,0 2,0

ˆ ˆ ˆ ˆ, ,
constrained E

j

M

i

Ln r p θ  

They are equivalent to calculate unconstrained MLE using the two groups of counts data together, 

   
1 2 0 1,0 2,0 1,0 2,0 1,0 2,0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ,, ,
ML

i ij

E

j r rn p pn      θ . 

3. Hypothesis testing. According to Wilks Theorem (40), under the null hypothesis 
0H , the 

2

1LR  

statistics follows a 
2

3  distribution, 

 
 

 
       02 2

1 0 0 3

sup |
ˆ ˆ ˆ ˆ2log 2log 2 2 ~

sup |
LR

L y

y l l l l
L y



  






           
   
θ θ θ θ  

Then hypothesis testing is conducted using the 
2

1LR  statistics. 

Detailed algorithms of the parameter estimation and statistical test are provided in the Supplementary 

Data. 

Three types of DE genes 

The three types of DE genes between single cell groups can be identified according to patterns of 

differences of parameters in the following tests. The testing against the null hypothesis 

0 1 2 1 2 1 2: , ,H r r p p     detects all genes that are significantly differentially expressed between 

the two groups in any of the parameters. Then we’ll use another two hypothesis tests 
20 1 2:H    

and 
30 1 2 1 2: ,H r r p p   to classify the found DE genes into three types or categories. 

The first type is of genes with 
0H  and 

20H  rejected but with 
30H  accepted. This means that there is 

a significant difference in the number of zero values of the gene between the two groups of cells, but 

the difference between the cells with non-zero expression values of the gene shows no significance. 

We call this type of DE genes as DEs genes, meaning that they have different expression statuses 

between the two groups.  The second type is of genes with 
0H  and 

30H  rejected but 
20H  accepted. 

We call them DEa genes as they have differential expression abundances in the cells with non-zero 

values, which the relative proportion of zero values do not show significance difference between the 

two groups of cells. The third type is of genes that have both different expression statuses in the two 
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groups and differential expression abundances. Genes for which 
0H  are rejected but 

20H  and 
30H  

are either both accepted or both rejected are of this category. We call these genes as DEg genes, 

meaning that they have general differential expression between the two groups of cells. 

To analyze the direction of the differential expression, we further breakdown the 3 types into 6 sub-

categories. A DEs gene is more active in the group with significantly less zero-valued cells than the 

other group. In other words, the gene is in “turned-on” status in more cells of this group while the 

other group has more cells with this gene “turned-off”. We call that the gene is “DEs-on” in the group 

with less zeros and is “DEs-off” in the group with more zeros for convenience. For a DEa gene, the 

proportions of zeros are not significantly different between the two groups of cells, but for those none-

zero parts, the gene is significantly highly expressed in one group than in the other group. We call the 

gene as “DEa-up” in the highly expressed group and “DEa-down” in the lowly expressed group. 

Similarly, for a DEg gene, there are a significant expression difference between the two groups of 

cells, but the difference is not solely caused by proportion of zeros or by expression of the non-zero 

values. When a DEg gene has less zeros and also has higher expression values in one group than 

the other group, we call the gene as “DEg-up” in this group, and call it as “DEg-down” in the other 

group. It can be imagined that there could be cases that a gene has more zeros in one group but has 

higher expression for the non-zero values in this group, or that having less zeros is accompanied by 

lower expression of non-zero values. In such cases, it will not be feasible to use a single “up” or 

“down” to describe the direction of the difference. However, we observed only few such cases in real 

data so we do not count for such special cases when profiling a whole dataset. Table 1 summarized 

the 3 types of DE genes and the 6 sub-categories. 

 

Table 1. Sub-categories of DE genes. 
1

NB

pr

p
 


, which is the mean of the NB part of the ZINB model. 

DE type DE parameter 
Null Hypotheses Rejection Conditions for “DEs-on/DEa-

up/DEg-up” in group 1 H0 H20 H30 

Different Expression 
Status (DEs) 

θ Significant Significant 
Not 

significant 1 2   

Different Expression 
Abundance (DEa) 

r or p Significant 
Not 

significant 
Significant 

1 2NB NB   

General Differential 
Expression (DEg) 

θ, and r or p Significant 
Both significant or both 

not significant 
   

1 21 21 1NB NB     

 

 

 

Simulation data 

We generated a series of simulation data to study the performance of the proposed method. To 

generate scRNA-seq simulation data more fairly, we used the simulation method proposed by (19,26). 

In brief, the simulated scRNA-seq data was generated by randomly sampling from a Poisson-Beta 

distribution (19), which is originated from the transcriptional bursting model (41). The data was 

produced with the following procedures: Firstly, draw a variable c  from a Beta distribution with 
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parameters   and  , namely  ~ ,c Beta   . Secondly, randomly sample a number from the 

Poisson distribution with parameter c  . Parameters  ,   and   is randomly picked from the 

parameters list downloaded from the additional file of (19), which was generated from a real scRNA-

seq dataset (42). 

To add dropout events to the simulated data, we applied the dropout model introduced by Pierson 

and Yau (26). Specifically, let 
ijx  denotes the expression level of gene i  in cell j , and let   denote 

the mean of non-zero expression level (log read count) of gene i  across cells. The dropout rate of 

gene i  is modeled as  2

0 expp   , where   is the exponential decay parameter and is shared 

across genes. We use 0.1   in our simulation as recommended. Then the expression level 
ijy  of 

gene i  in cell j  after adding dropout events is denoted as 
, if 0,

0, if 1,

ij ij

ij

ij

x h
y

h


 


, where 

 0| ~ Bernoulliij ijh x p . 

Using this strategy, we simulated two types of scRNA-seq data: those with and without additional 

dropout events. For each type of data, we simulated datasets with 10×2, 50×2, 100×2 and 200×2 

cells, each with 10,000 simulated genes. We got 8 sets of simulation data in this way, 4 with dropout 

events and 4 without. For each dataset, we set half of the genes as DE genes. A non-DE gene is 

defined as a gene all three parameters have changes of less than 1.5 fold between the two groups. 

And a gene with any of the three parameters showing fold change greater than 1.5 is regarded as a 

DE gene. 

We applied the proposed DEsingle and 6 other methods BPSC (34), D3E (19), monocle (35), SCDE 

(25), edgeR (16), DEGseq (17) on the 8 sets of simulation data. Four of the methods, BPSC, D3E, 

monocle, SCDE, are DE analysis methods specially designed for scRNA-seq. The other two methods, 

edgeR and DEGseq, are traditional DE analysis methods developed for bulk RNA-seq data. But they 

have also been widely applied on single-cell data. The parameters settings of each method in the 

experiments were provided in the Supplementary Data. 

Real scRNA-seq data of human embryonic cells 

We applied the DEsingle method on a public scRNA-seq dataset of human preimplantation embryonic 

cells (36). We conducted a systematic comparison on the gene expression of the 81 cells from 

embryonic day 3 (E3) and that of the 190 cells from embryonic day 4 (E4) in this dataset. We used the 

mapped raw read counts table provided by the original authors as input to DEsingle to detect and 

analyze the genes that are differentially expressed between E3 and E4 cells. 

RESULTS 

Performances on the simulation data 
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We compared DEsingle with the 6 existing methods on the simulation data. Figure 2 shows the 

Receiver Operating Characteristic (ROC) curve of the methods on the 8 simulation datasets. We used 

the Area Under Curve (AUC) to quantitatively evaluate the performance of the methods (43). We can 

see that DEsingle is almost always the best among the compared methods in the experiments, except 

for the comparison of 10 vs 10 cells without additional dropout events (upper left panel in Figure 2), in 

which DEsingle is the second best. 

 

Figure 2. Evaluating performances of DE analysis methods on simulation data. ROC curves and AUCs of 

DE analysis using 7 methods on 8 scRNA-seq simulation datasets. The top 4 graphs are using simulation data 

without additional dropout events while the bottom 4 graphs are using simulation data with dropout events. The 

sample size for comparison is annotated above each graph. The AUC of each method is annotated on bottom 

right corner of each graph. We could see that, DEsingle performs best among the methods in these experiments 

except for the 10 vs 10 comparison without additional dropout events (the graph in upper left corner), in which 

DEsingle is the second best. 

 

Three types of differentially expressed genes between E3 and E4 cells 

When comparing the 81 cells of E3 to the 190 cells of E4 from the human preimplantation embryonic 

dataset (36), DEsingle reported a total of 7,560 genes that are differentially expressed at the level of 

p-value < 0.05 (Bonferroni correction). The majority of them, namely 5,685 genes (75.2%), belong to 

the DEg type. The differences on the proportion of zeros and on the mean expression levels of the 

non-zero values are of the same direction for most genes. Among them, 2,909 genes are DEg-up and 

2,776 genes are DEg-down in E3 cells comparing to E4 cells. There are another 1,147 genes (15.2%) 

that are of the DEa type, with 670 DEa-up genes and 477 DEa-down genes in E3 comparing to E4. 

Besides these genes of the more conventional sense of differential expression, DEsingle reported 728 

DEs genes (9.6%) with significant differences in the proportion of zero values in the two groups of 
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cells. Among them, 333 genes are DEs-on in E3 and 395 genes are DEs-off in E3 comparing to in E4. 

The E3 DEs-on genes are active in E3 but not active in E4, and the E3 DEs-off genes are not active 

in E3 but active in E4. 

Figure 3A shows the heatmap of top 500 genes of each of the 3 types of DE genes. DE genes of the 

same type tends to be clustered together, and each type has its distinct expression pattern in E3 and 

E4. Figure 3B shows histograms of gene expression of 3 example genes in E3 cells and E4 cells. We 

can see that all three genes have different distributions among E3 cells and E4 cells, but the 

differences of different patterns. We are interested in whether the different patterns of DE imply 

different biological functions. 

 

Figure 3. Heatmap and histogram of DE genes found by DEsingle. (A) log(#{counts} + 1) of top 500 of each 

of the 3 types DE genes of E3 versus E4 human preimplantation embryonic cells found by DEsingle. Row is gene 

and column is cell. Specially, for #{counts} = 0, the color of heatmap is set to blue to show the zero expression 

separately. We could see that same type of DE gene is basically clustered together and different types of DE 

genes show different patterns in the heatmap. (B) Histogram of expression levels of three DE genes examples 
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detected by DEsingle. From top to bottom, the three DE gene belongs to DEs, DEa and DEg category 

respectively. The sample number of E3 and E4 cell is 81 and 190 respectively. 

 

To explore the underlying functional roles of each kind of DE genes, we performed Gene Ontology 

(GO) enrichment analysis on the top 500 of each of the 3 types of DE genes using DAVID (44). The 

1,500 DE genes are divided into 6 sub-categories for GO enrichment analysis: 238 DEs-on genes, 

262 DEs-off genes, 274 DEa-up genes, 226 DEa-down genes, 232 DEg-up genes and 268 DEg-down 

genes. The “on”/“off” and “up”/“down” here all refer to E3 comparing to E4. Table S1 listed all enriched 

GO terms with some highlighted in Figure 4B. Figure 4A shows the overlap between the enriched GO 

terms from the 6 sub-categories of DE genes. We can see that there are more enriched GO terms in 

DEa and DEg genes than in DEs genes, which implies that DEs genes are involved in less biological 

processes than DEa genes and DEg genes. However, the GO terms enriched in DEs genes have no 

intersection with the GO terms enriched by other DE genes (Figure 4A). This indicates that the 

regulation and function of genes that have different expression statuses between E3 and E4 involve 

different pathways with those of the genes that are differentially expressed in the conventional sense. 

Specifically, DEs-on genes of E3 are enriched for Biological Process (BP) GO terms of cell adhesion, 

extracellular matrix organization, Cellular Component (CC) GO terms of integral component of plasma 

membrane, plasma membrane, basement membrane, cell junction, and Molecular Function (MF) GO 

terms of calcium ion binding, extracellular ligand-gated ion channel activity (Figure 4B; Table S1). E3 

is around the 8-cell stage of preimplantation embryos (45), during which cell compaction occurs and 

functional gap junctions are formed (46,47). Cell compaction is initiated by the E-cadherin mediated 

cell adhesion (47-50), and the genes related to cytoskeletal, cell junction and cell adhesion are also 

involved in this process (51). The enriched GO terms of the DEs-on genes of E3 are all directly or 

indirectly associated with the cell compaction process. For example, GO terms calcium ion binding 

and extracellular ligand-gated ion channel activity are known to play an important role to the function 

and interactions of E-cadherin (52); GO terms extracellular matrix organization, integral component of 

plasma membrane, plasma membrane, basement membrane and cell junction are essential to the 

formation of gap junctions and cell adhesion (46,47,49,51). For example, the DEs E3-on genes 

ICAM1 (intercellular adhesion molecule 1) and ICAM5 (intercellular adhesion molecule 5) show up in 

4 of the GO terms listed above. The zero expression ratio of gene ICAM1 and ICAM5 in E3 cells are 

28.4% and 45.3% respectively, while the ratio in E4 cells are 73.6% and 98.2% respectively (Figure 

3B). This is to say, these two genes are expressed in most of cells in E3 but are turned off in almost 

all cells in E4. Genes related with cell compaction are active in E3 but are shut down gradually after 

compaction is finished and morula is formed in E4 (Figure 4B). Recent study has shown that, 

although the initiation of cell compaction occurred from 4-cell to 16-cell stage (about late embryonic 

day 2 to embryonic day 4), most human embryos (86.1%) initiated compaction at the 8-cell stage or 

later (around E3 to E4 stage), with initiation at the 8-cell stage (E3) being most frequent (53). That 

explains why the compaction related genes are still expressed in some (very few) E4 cells. 
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DEs-on genes of E4 are enriched for the BP GO term of positive regulation of collagen biosynthetic 

process (Figure 4B; Table S1). According to the recent study of Petropoulos et al. (36), human 

preimplantation embryonic cells will differentiate into three lineages of epiblast (EPI), primitive 

endoderm (PE) and trophectoderm (TE) simultaneously at E5. And Rasmussen et al. showed that 

collagen could improve the differentiation of human embryonic cells towards endoderm (54), which 

implies some inner cells of morula will synthesize collagen at E4 to induce themselves to differentiate 

into PE cells at E5. That explains why the GO term of positive regulation of collagen biosynthetic 

process is enriched in DEs-on genes of E4 and also verifies the different expression status of the 

related genes between E3 and E4 cells. 

For the other types of DE genes, DEa-up genes of E3 are enriched for BP GO terms of mRNA 

splicing via spliceosome, mRNA 3'-end processing, RNA splicing, mRNA export from nucleus, RNA 

export from nucleus, mRNA processing, and CC GO terms of nucleoplasm, nucleus, nucleolus 

(Figure 4B; Table S1). DEg-up genes of E3 also are enriched in CC GO terms of nucleus and 

nucleoplasm. These GO terms are consistent with the process of zygotic genome activation (ZGA) or 

embryonic genome activation (EGA) that occurs at E3 (36,45), which brings the burst of transcription 

(55) in nucleus (56,57) simultaneously (Figure 4B). 

DEa-up genes of E4 are enriched in BP GO terms of translational initiation, translation, cytoplasmic 

translation, CC GO terms of ribosome, cytosol, cytoplasm, and MF GO terms of translation initiation 

factor activity (Figure 4B; Table S1). These enriched GO terms are in agreement with the fact that 

translation occurs on the ribosomes in the cytoplasm (56,57), and the translation peak of EGA is 

delayed (58,59) to E4, which is called uncoupling of transcription and translation during EGA (60). 

Except for the GO terms related to translation, DEg-up genes of E4 are enriched for BP GO terms of 

mitochondrial translational elongation, mitochondrial respiratory chain complex I assembly, 

mitochondrial electron transport NADH to ubiquinone, mitochondrial translation, mitochondrial ATP 

synthesis coupled proton transport, protein targeting to mitochondrion, and CC GO terms of 

mitochondrial inner membrane, mitochondrion, mitochondrial respiratory chain complex I, and 

mitochondrial ribosome (Figure 4B; Table S1). All these enriched GO terms are directly or indirectly 

related to mitochondrion. Dumollard et al. have reported that before the compaction is complete, 

pyruvate is metabolized by mitochondria whereas glucose is not, and that after compaction, glucose 

becomes the major substrate for energy supply instead of pyruvate in embryonic cells (61) (Figure 4B). 

Moreover, Wilding et al. have showed that the aerobic respiration is upregulated and the percentage 

of glucose metabolised through aerobic respiration rises dramatically during this period (62). These 

reports as well as our observations imply that the major metabolic mode of mitochondrion is changed 

from E3 to E4 and the mitochondrion becomes more active at E4. It is reasonable to infer that the 

changes of the metabolic mode and activity of mitochondrion may be related to the translation peak in 

E4 which requires more energy than E3. 
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Figure 4. Venn diagram and related biological process of enriched GO terms in 6 sub-categories of DE 

genes. (A) Venn diagram of the enriched GO terms in the DE genes showed in Figure 3A. These 1500 DE genes 

are divided into 6 sub-categories for GO enrichment analysis: 238 DEs E3-on genes, 262 DEs E4-on genes, 274 

DEa E3-up genes, 226 DEa E4-up genes, 232 DEg E3-up genes, 268 DEg E4-up genes. (B) The illustration of 

the related biological processes of the enriched GO terms in Figure 4A, which occur on embryonic day 3 to 

embryonic day 4 of the human preimplantation embryos. EGA: embryonic genome activation. 

 

DISCUSSION 

Differential expression analysis is one of the most important aspects for scRNA-seq data analyses 

(3,6,25). The mixture of real zeros and dropout zeros in scRNA-seq data posed a great challenge to 

DE genes detection (2,6,9). Due to the special characteristics of scRNA-seq data, traditional DE 

analysis methods developed based on bulk RNA-seq data are not suitable for the analysis of single-

cell data (19). Existing DE analysis methods designed for scRNA-seq data are also not capable of 

distinguishing the two types of zeros (19,25,34,35), and may therefore miss important indicators of 

gene expression status in the cells. 

We proposed a method called DEsingle which could estimate the proportions of the two kinds of 

zeros and then detect the DE genes based on ZINB model. We studied the mRNA capture procedure 

using a mathematical model. Under the random capture assumption, we proved that after the mRNA 
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capture procedure, the data changed from a ZINB distribution to another ZINB distribution, with 

parameter p  changing to 
*p  while all the other parameters remain unchanged. Based on this, the 

unchanged parameter   in our model represents the proportion of real zero expression of a gene in a 

group of cells. This is also intuitively understandable in the sense that real zeros will still be zeros 

after the capture procedure, and its proportion in the cells will not change due to the capture. On the 

contrary, the parameter p  of NB part in the ZINB model becomes smaller after the random capture, 

resulting in a smaller mean of the data and a higher probability of generating dropout zeros. That is to 

say, the dropout zeros produced by mRNA capture procedure are taken into account by the NB part 

of the ZINB model. Therefore, we could distinguish the real zeros and dropout zeros by estimate the 

parameter  , which is the proportion of real zeros in the data. 

In the model, the parameter   represents the ratio of cells in which the gene is not active in its 

expression, i.e., the proportion of cells in which the expression status is “OFF”. When a gene’s   has 

significant difference between two groups of cells, the gene’s expression statuses of the two groups of 

cells are different. Therefore, the two parts in our model represents two types of differential 

expression: differential expression status of the gene in the two groups or differential expression 

abundance between the two groups. And these two cases can also happen at the same time, which 

we refer to as general differential expression. These three types of differential expression represent 

differential biological situations. We showed in this study that the DEsingle method we proposed can 

not only detect differential expression with higher accuracy, but also can differentiate these three 

types of differential expression, which we named as different expression status (DEs), different 

expression abundance (DEa) and general differential expression (DEg). We applied the method on a 

human preimplantation embryonic cell scRNA-seq dataset and successfully detected genes with 

differential expression status and/or abundances between E3 and E4 cells with enriched GO functions 

that are specific to the biological processes at E3 or E4. 
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