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Abstract: Summary-level statistics from genome-wide association studies are now widely used 

to estimate heritability and co-heritability of traits using the popular linkage-disequilibrium-

score (LD-score) regression method. We develop a likelihood-based approach for analyzing 

summary-level statistics and external LD information to estimate common variants effect-size 

distributions, characterized by proportion of underlying susceptibility SNPs and a flexible 

normal-mixture model for their effects. Analysis of summary-level results across 32 GWAS 

reveals that while all traits are highly polygenic, there is wide diversity in the degrees of 

polygenicity.  The effect-size distributions for susceptibility SNPs could be adequately modeled 

by a single normal distribution for traits related to mental health and ability and by a mixture of 

two normal distributions for all other traits. Among quantitative traits, we predict the sample 

sizes needed to identify SNPs which explain 80% of GWAS heritability to be between 300K-500K 

for some of the early growth traits, between 1-2 million for some anthropometric and 

cholesterol traits and multiple millions for body mass index and some others.  The 

corresponding predictions for disease traits are between 200K-400K for inflammatory bowel 

diseases, close to one million for a variety of adult onset chronic diseases and between 1-2 

million for psychiatric diseases. 
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Introduction 

Sample sizes for genome-wide association studies for many complex diseases and traits now 

range between tens to hundreds of thousands due to success of the large consortia. These 

studies have led to discoveries of dozens and sometimes hundreds of common susceptibility 

SNPs for individual traits
1–3

. Although the effects of individual markers are modest, collectively 

they provide significant insights into underlying pathways and contribute to models for risk-

stratification for some common diseases such as breast cancer
4,5

.  Existing GWAS for almost all 

traits also indicate that common variants have the potential to explain much more heritability 

than that explained by SNPs achieving stringent genome-wide significance level
6–13

.  

It can be anticipated that sample sizes for many easily ascertainable traits and common diseases 

will continue to rise rapidly allowing GWAS to reach their full potential. However, for rare 

diseases and difficult or expensive-to-ascertain traits, it is not clear what is realistically 

achievable given the practical limits in sample size and what is the best way to distribute 

resources as a community based on the likely yield for the traits.  We and others have earlier 

shown that yield of future GWAS critically depend on underlying effect-size distribution
14–16

. In 

this report, we propose novel methods for analysis of summary-level association statistics to 

estimate effect-size distributions and subsequently apply these methods across a large number 

of traits and diseases to make projections regarding future discoveries and genetic risk 

prediction. 

Recently, LD-score method has become a popular approach for estimation of heritability and co-

heritability using summary-level association statistics across GWAS
17–19

. The method relies on 

the observation that for highly polygenic traits, the association test-statistics for GWAS markers 

are expected to be linearly related to their LD-scores, a measure of total amount of LD individual 

SNPs have with others in the genome. The slope of this linear relationship is determined by the 

degree of narrow-sense heritability of the underlying trait associated with a reference panel of 

SNPs tagged by the GWAS markers.  In this report, we develop a likelihood-based framework 

that allows estimation of potentially complex effect-size distribution of a trait based on a single 

set of summary-statistics that are widely available from GWAS consortia.  We show that under a 

mixture-normal model for the effects of the genetic variants, the distribution of summary-

statistics can be approximated by an alternative mixture normal distribution, the form of which 

depends on estimates of LD-scores and number of underlying tagged SNPs. We propose 

methods for obtaining estimates of model parameters and valid standard errors through a 

composite-likelihood inferential framework effectively dealing with correlated GWAS markers. 
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We apply the methods to analyze publicly available summary-level association statistics for 19 

quantitative traits and 13 binary traits to provide the most comprehensive analysis of effect-size 

distributions underlying GWAS to date.  The applications provide detailed insights into the 

diversity of genetic architecture of complex traits, including numbers of underlying susceptibility 

SNPs and different clusters of effects that contribute to heritability of the traits. Using these 

estimated effect size distributions, we then provide projections regarding yield of future GWAS, 

in terms of identification of susceptibility SNPs and in terms of building models for genetic risk 

prediction.  

 

Methods 

Data and Model 

We assume data are available on estimated regression coefficients ��� and corresponding 

standard error ���� for � � �, 
 , � GWAS markers assumed to be analyzed standardized scale 

so that genotypes and phenotypes have unit variances. Typically, these “summary-level” results 

are obtained from one-SNP-at-a-time “marginal” analyses that do not account for correlation 

across SNPs. As linear regression models can yield useful approximations for logistic and other 

non-linear regressions, it is useful to first describe the methods for the study of a continuous 

trait �. We assume that the GWAS markers tag a set of  SNPs in an underlying reference panel 

with respect to which a causal model can be defined in the form � � ∑ ��
����� � � �

��� .  Here, 

the ��
���� represent the regression coefficients in a “joint model” that accounts for correlation of 

the SNPs. The simple relationship �� � ∑ ��
������

�
���  , between regression coefficients of SNPs 

from a marginal model and those from a joint model, where the ���� denote correlations 

across SNP-pairs, allows fitting of “joint” models from estimates of marginal regression 

coefficients
20

.  The same relationship between joint and marginal effects approximately holds 

true for logistic regression models for relatively uncommon diseases.  

We assume that the regression coefficients in the “joint model” are independently and 

identically distributed (i.i.d.) according to a mixture distribution in the form  

��
��� � �	 ∑ �
���, �


���

�� � �� � �	��    (1) 

where, a fraction, � � �	 of the SNPs have no association with the trait. The model assumes the 

effect size distribution for non-null SNPs to be symmetric and modal around zero and allows 

distinct clusters of effect-sizes through incorporation of different variance component 

parameters ��

� , � � �, 
 , ��. In our application, we consider fitting two-component (M2) or 

three-component (M3) models, which allow the distribution of association parameters for non-

null SNPs to follow either a single normal distribution (� � �� or a mixture of two normal 

distributions �� �  �. The latter model allows two distinct variance component parameters 

thereby allowing a fraction of SNPs ���� to have distinctly larger effects. 
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Composite likelihood estimation 

In principle, a joint likelihood for summary-level association statistics across GWAS markers can 

be derived using the relationship �� � ∑ ��
������

�
���  and the fact that  ��� ! ��, � � �, 
 , �, 

are expected to follow a multivariate normal distribution
21

. In general, however, the 

computation of this likelihood for genome-wide analysis of millions of SNPs can be complex. We 

show that under an assumption of independence of LD patterns and the probability of SNPs 

belonging to different mixture components in (1), the distribution of marginal effects for 

individual SNPs can be approximated by another mixture form (see Supplementary Notes) 

�� ! " �  ∑ #$� ���

��, … . , ��

���� & ���, ∑
��
���

��
�

�

� �


�'��.
��

�

���
,….,�

�

���
�

     (2) 

Here, ��
�  is the total number of SNPs in the reference panel in a “neighborhood” ((�� that may 

be “tagged” by marker ); ��

�
�
 are latent variables indicating number of SNPs in (� that have 

underlying effects from � � �, 
 , � different components of the mixture distribution (see 

Equation 1); '� � ∑ ���
�

����
 is the LD score for the )-th GWAS marker associated with ��

�   

SNPs in the reference panel;  * � ��	, ��, 
 , �����  and �
� � �. In the above formula, the 

mixing probability #$� ���

��, … . , ��

���� can be calculated based on the standard multinomial 

distribution with total counts defined by ��
� � ��

�� � ��

��� � 
 � ��

���
 and cell probabilities 

given by �� � �	, �	 & ��, … , �	 & ���. Intuitively, (2) implies that the distribution of marginal 

effects of the GWAS markers is given by mixtures of mean zero normal distributions with 

variance component parameters determined by the product of LD-score and weighted sum of 

the variance component parameters of the original mixture model (see Equation 1). The weights 

which are defined by the number of different types of underlying effects a GWAS marker tags, 

are expected to follow a multinomial distribution in general and a binomial distribution in 

special cases where � � �. 

If " denotes the unknown parameter of model (1), we can write down the likelihood for an 

individual GWAS marker in the form 

+��"� � ����� ! "� ,  ∑ #$����

�� , … . , ��

���� & ���, ∑
��
���

��
�

�

� �


�'� � - � ��
��

��
�

���
,….,�

�

���
�

  (3) 

by exploiting the fact that ��� ! ��~�/��, - � ��
�0, which incorporates an additional factor - 

that could account for systematic bias due to effects such as population-stratification. In 

computing (3), we exploit the fact that the number of underlying susceptibility SNPs (��

��� �


 � ��

���� that may be tagged by an individual GWAS marker is likely to be small, e.g. less than 

or equal to 10, and so the number of terms in the mixture can be dramatically truncated to 

increase the speed of computation. To combine information across all markers, we propose 
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forming a composite likelihood in the form �� � ∏ ���
��� ���, which ignores correlation in 


�� across SNPs. Following the theory of generalized estimating equations
22

,  it is evident that 

such a composite likelihood approach will produce unbiased estimate of � as long as (3) is a 

valid likelihood for the summary-statistics for the individual markers. We maximize the 

likelihood using an Expectation-Maximization algorithm, where in each M-step the mixing 

proportions (�, ��, … ����) are estimated in closed form and the variance component 

parameters are estimated by numerical optimization of weighted univariate normal-likelihoods 

(see Supplementary Notes).  

Variance calculations 

We obtain estimates of standard errors for parameter estimates based on a sandwich variance 

estimator associated with the composite likelihood (see Equation 3). Let ����� � ���������/
�� denote the score function associated with the likelihood ����� for the �th GWAS marker and 

let ������ � ∑ ��′�′	
�
��� be the total likelihood-score across all the GWAS markers that are in 

the neighborhood of the �th marker, including itself, i.e. ��. It is important to note that unlike 

the calculation of the total LD-score that involves SNPs in the underlying reference panel, the 

total likelihood score is computed only with respect to the set of markers that are included in 

the GWAS study itself. Further, we define ���� � � ∑ ����������/����
���  to be the total 

information matrix associated with the composite likelihood. The sandwich variance 

estimator
23,24

 is now defined as 

� � �������� �∑ ������
��� ������� �������� ,      (4) 

which itself can be estimated by plugging in the estimated parameter values �� in lieu of �. The 

estimator accounts for correlation across the GWAS markers through calculation of empirical 

variance-covariances across the likelihood-scores within sets of correlated markers defined by 

physical distance and LD-thresholding criterion same as the one used to define the LD-scores. 

The estimator is expected to produce valid estimates of standard errors for the parameter 

estimates even when the underlying model is misspecified. 

Calculation of LD-score �!�� and number of tagged SNPs �"�
 � 

To implement the proposed method, we need to estimate the number of underlying SNPs in the 

reference panel tagged by the GWAS markers and the corresponding LD-scores. As we analyze 

GWAS of primarily Caucasian studies, we obtain required information based on analysis of 489 

individuals of European origin from the 1000 GENOME project Phase 3 study
25

.  We evaluated all 

the LD-scores and number of tagged SNPs based on a reference panel of ~1.2 million common 

SNPs that were included in the Hapmap3 panel. We estimated "�
  by the number of SNPs in the 

reference panel which are within 1Mb distance and have an estimated LD coefficient with the 

GWAS marker above a fixed threshold (e.g. #� $ 0.1). Then we calculate the corresponding LD-

score by summing up the corresponding squared LD coefficients. We evaluate sensitivity of our 
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results with respect to variation in #� thresholds. In calculation of LD-score, we employ the 

same bias-correction adjustment which is used in the LD-score regression
17

. 

Across all traits, we first extract association statistics available from the underlying GWAS for the 

set of the Hapmap 3 SNPs (see Supplementary Table 1 for list of data sources). As most studies 

provide results after imputation, association statistics are available for large majority of the 

Hapmap 3 SNPs across these studies. We then follow the same filtering steps as in LD-Hub
19

 to 

select GWAS markers to standardize the summary-level datasets. In particular, we include SNPs 

with MAF above 5% and remove SNPs that had sample sizes less than 0.67 times the 90
th

 

percentile of sample sizes or were within the major histocompatibility complex (MHC) region 

(i.e., SNPs between 26Mb and 34Mb on chromosome six), or had extremely large effects 

�(� $ 80�.  

Simulation Studies 

We use a novel simulation scheme to generate summary-level association statistics for GWAS 

without generating individual-level data under a given model for genetic architecture of the 

trait. We simulate summary-statistics based on the model 


�� � 
�*+� * ,� , 

where +�s are assumed to be i.i.d. following normal distribution with mean zero and variance  -    

and ,. � �,�, / , ,�� is assumed to be following a multivariate normal distribution with mean 

zero and variance-covariance matrix 0/1, with 1 denoting the sample size for GWAS and 

0 � 23-���4�������,���
�,�

  being the matrix of LD coefficients across the GWAS markers. In 

each simulation, we first generate value for 
�
���, 5 � 6, / , 7 based on model (1) and then 

generate values for 
�, � � 6, / , 8 based on the transformation 
� � ∑ 
�
���4���	�

�

.  For 

simulation of  ,.  , we observe that in a GWAS study where the phenotype has no association with 

any of the markers, the summary-level association statistics is expected to follow the same 

multivariate distribution as ,. . Thus, we simulate null phenotypes for the samples in our 

reference dataset and calculated association statistics 9: � �9� , / , 9�� for the GWAS markers. 

We then define ,. � ;1���/1 < 9: to account for the difference in sample sizes between the 

reference dataset and the GWAS. 

 

Results 

Simulation studies show that the proposed method produces nearly unbiased estimates of 

parameters and associated standard errors when data are both simulated and analyzed using 

the two-component model (Supplementary Table 2). However, when data are simulated using 

the three-component model (M3), but analyzed using the simpler two-component model (M2), 

the estimates of proportion of susceptibility SNPs ��� and variance component parameter �=�� 
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are downwardly and upwardly biased, respectively. The estimates of total heritability and 

estimates of standard errors for all parameters are nevertheless nearly unbiased. When 

simulation and analysis are, both conducted using the three-component model, the degree of 

bias in estimates of � reduces to a large extent and continues to decrease with increasing 

sample size. Across all sample sizes, the three-component model estimates distinct variance 

component parameters associated with the two components for the non-null effects.  For 

studies with smaller sample sizes (i.e. " > 25A), there is substantial bias and uncertainty in 

estimates of cluster specific variance component parameters and mixing proportions. Despite 

such uncertainty, uniformly across all sample sizes, the three-component model provides more 

accurate estimate of number of susceptibility SNPs in the tails regions of effect-size distribution 

(Supplemental Table 3).  

We analyze summary-level results from GWAS for each trait using both the two- and three-

component models and assess their goodness of fit of by comparing observed distribution of p-

values against what is expected based on fitted models (see Online Methods). In general, the 

three-component model provides distinctly better fit for the observed distribution of p-values 

(Figure 1, Supplementary Figures 1-5). For most of the traits, it provides excellent to adequate 

fit to observed p-values over a wide range except at extreme tails of the distribution (p-value 

> 10���) indicating the presence of a small number of susceptibility SNPs whose underlying 

effects were “outliers” with respect to the fitted effect-size distribution. Interestingly, for a 

subset of the traits, consisting of psychiatric diseases and traits related to intelligence, 

educational accomplishments and cognitive ability, the fits for the two- and three-component 

models are very similar indicating that the effect-sizes for underlying susceptibility SNPs can be 

adequately modeled using a single normal distribution.  

Parameter estimates associated with the three-component model reveal wide diversity in 

genetic architecture across the traits (Table 1, Figure 2, Supplementary Table 4). Estimates of 

narrow sense heritability from the fitted models are generally close to those reported by LD-

score regression. Estimates of the number of underlying susceptibility SNPs also vary widely, 

sometimes even among traits with similar estimates of heritability. In general, anthropometric 

traits, psychiatric diseases and traits related to education ability and cognitive performance are 

found to be most polygenic, each involving often close to 10,000 or even higher number of 

underlying susceptibility SNPs. In contrast, some of the early growth traits, autoimmune 

disorders and adult onset chronic common diseases (e.g., Coronary artery disease, Asthma, 

Alzheimer disease, Type-2 diabetes) are less polygenic, although each still involved at least a few 

thousands of underlying susceptibility SNPs. Consistent with results from simulation studies, we 

observe that the fitting of two-component model generally provides substantially lower 

estimate for the number of susceptibility SNPs (Supplementary Table 5).  

For a majority of the traits, the fitting of three-component model detects presence of distinct 

clusters of effects. For these traits, the average heritability explained per variant in one cluster 

�=�
�� is often 10-fold or higher than that �=�

�� in the other cluster. Although a small fraction, 

typically ranging between 0.5-10%, of the susceptibility SNPs belong to clusters with larger 
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effect-sizes, the fraction of heritability they explained is substantial for many traits (i.e. 10-50%).  

In contrast, for all psychiatric diseases and traits related to intelligence and cognitive ability, the 

estimates of two variance components collapse to a single value, a phenomenon consistent with 

adequate fit for the two-component model for these traits (see Figure 1, Supplementary Figure 

1-5).  Comparison of the number of SNPs in the tail regions of effect-size distribution show that 

some traits, such as early growth traits and inflammatory bowel diseases, have distinctly larger 

number of SNPs with moderate to large effects (i.e. odds-ratio $ 1.03) (see Supplementary 

Table 6). 

The diversity of genetic architecture across the traits implies major differences in the future 

yield of GWAS (Figure 3). In general, the expected number of discoveries will continue to rise 

rapidly across all traits in the foreseeable future. The degree of genetic variance they will explain 

will rise at a slower rate as the effect-size explained per SNP will continue to diminish. For most 

quantitative traits, the rate of increase in genetic variance explained is expected to diminish 

after sample size reaches approximately 300K. In contrast, for BMI, years of education and 

neuroticism, the genetic variance explained is expected to increase at a steady rate until sample 

size reaches at least one million. The sample sizes needed to identify SNPs that can explain 80% 

of GWAS heritability vary from 300K-500K for some of the early growth traits, between 1-2 

million for some anthropometric and cholesterol traits and into multiple millions for the 

remaining. For most disease traits, genetic variance explained is expected to rise either steadily, 

or even at an accelerated rate for the highly polygenic psychiatric diseases, between sample 

sizes 50K-300K. The sample sizes needed to identify SNPs that can explain 80% of GWAS 

heritability turn out to be between 200K-400K for inflammatory bowel diseases, around 600K 

for rheumatoid arthritis, around one million for most common adult onset chronic diseases and 

between 1-2 million for psychiatric diseases.  

We conduct several sensitivity analyses to ascertain the robustness of results. We observe that 

use of higher #� threshold for defining tagging SNPs lead to increase in estimate of number of 

susceptibility SNPs across all traits though conclusions regarding relative degrees of polygenicity 

of the traits and existence or absence of distinct clusters of effects do not alter (Supplementary 

Table 7).   To determine impact of sample size, we used three traits namely, years of education, 

child-birth-weight and schizophrenia, for which we accessed summary-level statistics available 

from older GWAS with sample sizes markedly smaller (by 3-5 fold) than the more recent studies 

we have analyzed. For all the three traits, the estimated number of susceptibility SNPs increased 

in the more recent studies, with the increase being particularly prominent for years of education 

and child-birth-weight (Supplementary Table 8).  These results are consistent with simulation 

studies where we observe that the estimates tend to increase towards true value as sample size 

increases (see Supplementary Table 2). Thus, it is likely that the true genetic architecture of 

these traits is likely to be even more polygenic than that suggested by our analysis. 

We also attempt to empirically validate the ability of the fitted effect-size models to project 

yields of future studies (Supplementary Table 9). In this analysis, we include two additional 

traits namely, height and BMI, for both of which results are available from more recent studies 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 11, 2017. ; https://doi.org/10.1101/175406doi: bioRxiv preprint 

https://doi.org/10.1101/175406
http://creativecommons.org/licenses/by-nc-nd/4.0/


than the ones we used to build the models. For all traits, except years of education, the fitted 

model built based on older studies are able to predict the genomic control factor for the newer 

study reasonable well. For three of the traits namely, Height, BMI and schizophrenia, the model 

also predict accurately the number of independent loci reaching genome-wide significance level.  

For years-of-education and child-birth-weight, the model over-predicts, the expected number of 

independent discoveries.  

Using the inferred effect-size distributions and theoretical framework we developed earlier
16

, 

we assess the expected predictive performance of polygenic models when SNPs are included at 

optimal threshold
26

 and the stringent genome-wide significance level (p-value > 5 < 10���.  The 

results reveal two very distinct patterns. For psychiatric diseases, which include a continuum of 

highly polygenic effects, use of the optimal threshold for SNP selection is expected to lead to 

large improvement in performance of polygenic models in a wide range of sample sizes (Figure 

4, and Supplementary Figure 6). For these traits, the optimal threshold is expected to be highly 

liberal (i.e. p-value $ 0.2) for relatively small studies (i.e. C > 20,000) and then become more 

stringent as sample size increases. In contrast, for all other diseases, which are less polygenic 

but included more SNPs with relatively large effects, use of optimal threshold is expected to lead 

to only modest benefits. For these diseases, the optimal threshold is expected to be highly 

stringent for studies with small sample sizes (C >  10A), then gradually become more liberal 

with intermediate sample sizes (10K > C > 50A) and then slowly decrease for larger sample 

sizes. 

We also assess the potential implications for the inferred effect-size distributions on subsequent 

analysis of GWAS to optimize SNP discovery and estimation of SNP effect-sizes. We calculate 

local false discovery rates
27,28

 for each SNP based on the observed Z-statistics and the model for 

the marginal effect-sizes (see Equation 2). It is evident that a high degree of polygenicity for the 

traits implies that it may be possible to identify large number of loci at fairly low false discovery 

rates (Supplementary Figures 7-8). The posterior mean estimates for effect-sizes for individual 

SNPs are shrunken heavily towards zero compared to their estimates available from GWAS with 

the degree of shrinkage being highest for SNPs with intermediate effects and studies with 

smallest sample sizes (Supplemental Figure 9-10). Further, SNPs with largest effect-sizes are 

shrunken more under the two-component than the three-component model because of the 

ability of the latter model to accommodate SNPs with distinctly larger effects.  

 

Discussion 

In this report, we develop and apply novel methods for analysis of GWAS summary-level 

statistics to conduct most comprehensive analysis of effect-size distributions associated with 

common genetic variations across complex diseases and traits. Our analysis shows that fairly 

parsimonious normal-mixture models for effect-size distributions, involving four or less 

parameters, can adequately describe distribution of p-values observed in some of the most 
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recent and largest GWAS. The estimated values of the model parameters provide insights into 

heritability, degree of polygenicity and presence of distinct clusters of effects. Using these 

estimated effect-size distributions, we provide further insights into likely yields of common 

variant GWAS in future, as sample size further accumulates.   

Estimation of heritability based on SNP-arrays has been a major focus of research for GWAS ever 

since the first application of the approach to analysis of human height
29–33

. While such estimates 

of heritability provide an understanding of the limits of GWAS to explain trait variations, further 

understanding of effect-size distribution is critical for understanding how fast one can approach 

the limit as a function of the corresponding sample-size
15,16

. Although applied in more limited 

settings, various approaches have been developed in the past for estimation of effect-size 

distribution (ESD) from GWAS. We have described a simple method for estimating ESD within 

the range of effects observed in an existing study simply based on its reported number of 

findings with different effect sizes and its power for discovery of the underlying study at those 

effect-sizes
14

. Several methods have been developed to infer ESD by evaluating predictive 

performance of series of polygenic models that include varying number of SNPs on independent 

validation datasets
34,35

.  A variety of Bayesian methods described for analysis of GWAS studies 

can also produce estimates of effect-size distribution according to the underlying “prior” 

models
36–40

. Most recently, a number of methods have been proposed for analyzing GWAS 

summary-level data under the two-component mixture model for estimating effect-size 

distribution
21,41,42

. 

The current analysis of effect-size distribution is unique in several ways. First, we provide most 

comprehensive insights into diversity in effect-size distributions across complex traits by analysis 

of publicly available summary-level statistics from a large number of GWAS. Second, by 

considering a flexible model for effect-size distribution, we show that a commonly used two-

component model, which assumes that the effect-sizes for underlying causal SNPs can be 

described by a single normal distribution centered around zero, can be inadequate for 

describing effect-size distribution across a large majority of the traits. Instead, a three-

component model for effect-size distribution, which allows a proportion of causal SNPs to have 

distinctively larger effects than others, provides adequate fit to current GWAS for most traits 

and is thus likely to provide more accurate projections for future discoveries. Further, through 

both simulation studies and data analysis we demonstrate that there could be additional hidden 

components of effect-size distributions associated with groups of causal SNPs with extremely 

small effects that have no power to be distinguished from null effects in current studies.  

In terms of methodology, the proposed approach, although is closely related to several recent 

methods
21,42

, has some unique aspects. We show that under the commonly invoked assumption 

of independence of effect-sizes and local linkage disequilibrium pattern, the likelihood of 

summary-statistics for individual GWAS markers depends on LD coefficients through total LD-

score. The simplification allowed us to develop a computationally tractable and robust method 

for estimating parameters, as well as their standard errors, under the complex mixture model 

for effect-size distribution based on an underlying composite likelihood inferential framework. 
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Simulation studies show that the proposed method produces unbiased estimate of heritability 

even when the underlying model of effect-size distribution is misspecified. Further, it provides 

either nearly unbiased or downwardly biased estimate of proportion of non-null SNPs 

depending on sample size and whether the number of components for mixture model is 

correctly or not.  The simulation study also shows that the proposed standard error estimator is 

highly accurate and thus could be used to conduct statistical inference. 

Estimation of the total number of susceptibility SNPs for an underlying trait can be an elusive 

concept given the sensitivity of the quantity to underlying model assumptions and sample size 

of GWAS.  Given that any analysis of effect-size distribution can only be expected to provide a 

lower bound of the total number of susceptibility SNPs, the possibility of infinitesimal
43,44

 or 

omnigenic model
45

 where every SNP or gene is associated with a trait cannot be ruled out.  

Given such difficulty, a more interpretable way to compare genetic architecture and discovery 

potential of GWAS across traits would be to examine the number of susceptibility SNPs that may 

have meaningfully large effects, such as an odds-ratio of 1.01 or larger for disease traits 

(Supplemental Table 6). 

Our projections show that high-degree of polygenicity of the traits imply requirement of very 

large sample sizes, from hundreds of thousands to millions, for discovery of SNPs at genome-

wide significance level in order to explain nearly all of the GWAS heritability. These projections 

are expected to be optimistic given that larger studies in the future with increasingly 

heterogeneous sample may reveal higher degree of polygenic nature of the underlying traits.  

However, given that thousands to tens of thousands of SNPs may be associated with any 

individual trait, the current practice of using stringent genome-wide significance level to 

minimize the chance for a single false positive may be too conservative an approach for 

discovery. Instead, more optimal strategy for discovery would be to select thresholds in a more 

adaptive fashion, taking into account underlying effect-size distributions, while controlling for 

false discovery rate
46,47

. 

A major utility of future GWAS could be improving performance of polygenic prediction model 

as opposed to simply identifying of susceptibility SNPs at high-levels of significance
48–52

. Our 

projections show that use of optimal thresholds will lead to large benefit for psychiatric 

diseases, but much more moderately so for others. In general, across all traits we observe that 

the overall discriminatory performance of models, as measured by the area under the curve 

(AUC) criterion, is expected to rise very modestly after sample size reaches around 100K. 

However, larger sample size could still improve the performance of models meaningfully in 

terms of identifying individuals who are at extremes of risk distribution. For example, for type-2 

diabetes, a model built on GWAS with sample size of 1 million instead of 100K individuals is 

expected to identify additional 0.2% (1.2% vs 1.4%) of the population who are at 5-fold or higher 

risk than the average risk of the general population. Such improved model may lead to 

intervention for an additional 2.2% of prospective cases (8.2 vs 10.4%) (Supplementary Table 

10). 
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The limitations of the proposed method include that its assumption of independence of effect-

sizes from allele frequencies and local LD patterns of the SNPs. It has been recently shown that 

these simplified assumptions, which implicitly or explicitly have been used in many earlier 

methods, can lead to substantial underestimation of heritability
53

 and is likely to have impact on 

other aspects of effect-size distributions as well. In principle, the proposed method can be 

extended to model dependence of effect-sizes on various SNP characteristics through regression 

modeling approach. The proposed inferential framework, which yields parameter estimates as 

well as their standard errors, can be used to test various hypotheses regarding underlying 

parameters of such models and thus could provide insights into genetic architecture of traits in 

finer details. It will also be of interest to extend the framework to jointly model the effect-size 

distributions to obtain deeper insights into shared genetic architecture of multiple traits.  

To summarize, we propose methods for statistical inference for effect-size distributions under 

flexible normal-mixture models using summary-level GWAS statistics. Applications of the 

methods to a large number of GWAS reveal wide diversity in genetic architecture of the 

underlying traits with important consequence for the yields of future GWAS in terms of both 

discovery and risk prediction. 
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Table	1.	Estimated	parameter	values	and	standard	errors	from	fitting	of	3-component	
models	for	effect	size	distributions	across	32	traits.	All	results	are	reported	with	respect	to	a	
reference	panel	of	1.2	million	common	SNPs	included	in	the	Hapmap3	panel	after	removal	of	MHC	
region.	A	𝑟"	threshold	of	0.1	is	used	to	define	the	set	of	reference	SNPs	the	GWAS	markers	may	tag.	
For	traits	related	to	mental	health	and	ability,	the	variance	component	parameters	associated	with	
two	non-null	components	of	the	mixture	distribution	collapsed	indicating	adequacy	of	a	two-
component	model.		Results	from	2-component	model	and	alternative	𝑟"	threshold	are	shown	
in	Supplemental	Tables	5	and	7.		
	

Trait	 Sample	size	
(in	10K)	

Total	#	of	sSNPsa	

(SEb),	reported	
in	hundreds	

#	of	sSNPs	in	
cluster	1	(SE),	
reported	in	
hundreds	

Heritability	
explained	by	
cluster	1c	(SE)	

Heritability	
explained	by	
cluster	2d	(SE)	

Total	
heritabilitye	
(SE)	

Continuous	Traits:	 	 	 	 	 	 	
BMI	 12.4	 174	(19)	 0.9	(0.34)	 0.02	(0.005)	 0.20	(0.012)	 0.21	(0.011)	
Height	 13.4	 120	(14)	 10.2	(1.65)	 0.15	(0.017)	 0.21	(0.018)	 0.36	(0.016)	
Hip	circumference	 21.3	 130	(15)	 3.0	(1.07)	 0.02	(0.006)	 0.12	(0.010)	 0.15	(0.008)	
Waist	circumference	 23.2	 140	(15)	 2.0	(0.72)	 0.02	(0.004)	 0.11	(0.008)	 0.13	(0.007)	
Waist-to-hip	ratio	 21.2	 118	(17)	 2.5	(1.32)	 0.02	(0.005)	 0.08	(0.009)	 0.09	(0.007)	
HDL	cholesterol	 9.5	 118	(15)	 2.1	(0.54)	 0.03	(0.005)	 0.09	(0.011)	 0.12	(0.011)	
LDL	cholesterol	 9.5	 104	(19)	 1.4	(0.42)	 0.03	(0.005)	 0.09	(0.012)	 0.12	(0.011)	
Total	cholesterol	 9.5	 71	(19)	 1.7	(0.47)	 0.04	(0.007)	 0.09	(0.011)	 0.13	(0.012)	
Triglycerides	 9.5	 104	(14)	 0.7	(0.20)	 0.02	(0.003)	 0.10	(0.011)	 0.12	(0.011)	
Child	birth	length	 2.8	 29	(12)	 N/Af	 N/A	 N/A	 0.16	(0.034)	
Child	birth	weight	 14.4	 65	(24)	 3.3	(3.21)	 0.03	(0.018)	 0.09	(0.018)	 0.12	(0.009)	
Childhood	obesity	 1.4	 84	(25)	 0.6	(0.24)	 0.05	(0.021)	 0.35	(0.058)	 0.41	(0.056)	
Infant	head	circumference	 1.1	 38	(23)	 N/A	 N/A	 N/A	 0.30	(0.074)	
Childhood	IQ	 1.2	 60	(33)	 N/A	 N/A	 N/A	 0.24	(0.072)	
Cognitive	performance	 10.7	 121	(43)	 N/A	 N/A	 N/A	 0.12	(0.012)	
Intelligence	 7.8	 161	(81)	 N/A	 N/A	 N/A	 0.24	(0.025)	
Years	of	schooling	 29.4	 194	(28)	 39.2	(32.57)	 0.07	(0.037)	 0.08	(0.037)	 0.15	(0.006)	
Age	at	menarche	 18.2	 146	(15)	 4.0	(0.59)	 0.05	(0.006)	 0.10	(0.007)	 0.15	(0.008)	
Neuroticism	 16.1	 13	(9)	 N/A	 N/A	 N/A	 0.01	(0.005)	
Disease	Traits:	 	 	 	 	 	 	
Alzheimer's	disease	 1.7/3.7g	 33	(31)	 0.5	(0.48)	 0.09	(0.047)	 0.30	(0.080)	 0.39	(0.081)	
Asthma	 1.0/1.6	 20	(16)	 0.3	(0.11)	 0.15	(0.055)	 0.32	(0.120)	 0.47	(0.132)	
Coronary	artery	disease	 2.2/6.5	 30	(11)	 0.2	(0.11)	 0.03	(0.014)	 0.43	(0.072)	 0.46	(0.075)	
Type	2	diabetes	 1.2/5.7	 59	(33)	 0.5	(0.47)	 0.09	(0.046)	 0.67	(0.111)	 0.76	(0.111)	
Crohn's	disease	 0.6/1.5	 92	(19)	 3.9	(0.83)	 1.49	(0.212)	 1.31	(0.267)	 2.80	(0.296)	
Inflammatory	bowel	disease	 1.3/2.2	 71	(29)	 4.2	(0.75)	 0.91	(0.122)	 0.72	(0.145)	 1.63	(0.159)	
Ulcerative	colitis	 0.7/2.0	 30	(18)	 2.0	(0.91)	 0.60	(0.185)	 0.97	(0.224)	 1.57	(0.230)	
College	completion	 2.2/7.3	 120	(69)	 N/A	 N/A	 N/A	 0.73	(0.067)	
Rheumatoid	arthritis	 1.4/4.4	 46	(18)	 1.8	(0.58)	 0.32	(0.063)	 0.68	(0.090)	 1.00	(0.098)	
Autism	spectrum	disorder	 0.5/0.5	 120	(88)	 N/A	 N/A	 N/A	 1.77	(0.528)	
Bipolar	disorder	 0.7/0.9	 124	(68)	 N/A	 N/A	 N/A	 2.22	(0.272)	
Major	depressive	disorder	 0.9/1.0	 84	(40)	 N/A	 N/A	 N/A	 0.71	(0.172)	
Schizophrenia	 3.4/4.3	 213	(27)	 N/A	 N/A	 N/A	 2.28	(0.101)	
aSusceptibility	SNPs.	bStandard	errors.	cCluster	1	and	dcluster	2	refer	to	the	two	components	for	the	normal-mixture	model	for	effect-sizes	for	
non-null	SNPs	where	cluster	1	corresponds	to	the	component	with	larger	variance-component	parameter.	eTotal	heritability	is	defined	as	ℎ" =
𝑀𝜋' 𝑝)𝜎)" + (1 − 𝑝))𝜎"" = ℎ)" + ℎ"",	where	𝑀	is	the	total	number	of	SNPs	in	the	Hapmap3	panel,	𝜋' 	is	the	proportion	of	susceptibility	SNPs,	𝑝)	
is	the	proportion	of	SNPs	in	the	1st	cluster	among	all	the	susceptibility	SNPs,	and	𝜎)"	and	𝜎""	are	the	variance	estimates	corresponding	to	each	
cluster	–	this	definition	corresponds	to	heritability	in	observed	scale	for	continuous	traits	and	in	log-odds-ratio	scale	for	disease	traits.	fN/A	
implies	the	variance	component	parameters	associated	with	two	clusters	collapsed	for	these	traits	and	thus	results	are	reported	assuming	
existence	of	only	one	cluster	of	non-null	SNPs.		gNumber	of	cases/	number	of	controls.	
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Figure	1.	Q-Q	plots	comparing	observed	distributions	of	association	statistics	against	those	
expected	under	fitted	models	for	three	representative	traits.	Plots	in	upper	and	lower	panels	
are	generated	under	2-	and	3-component	models	for	underlying	effect-size	distributions,	
respectively.	Shaded	regions	mark	80%	point	wise	confidence	intervals	derived	from	100	
simulations	(see	Methods	and	Supplemental	Notes).	While	the	more	flexible	3-component	model	
provides	distinctively	better	fit	for	Type	2	diabetes	and	HDL	cholesterol,	the	simpler	2-
component	model	is	adequate	for	Schizophrenia.	See	Supplementary	Figures	1-5	for	analogous	
plots	for	29	additional	complex	traits.	
	
	 	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 11, 2017. ; https://doi.org/10.1101/175406doi: bioRxiv preprint 

https://doi.org/10.1101/175406
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
Figure	2.	Estimated	effect-size	distributions	based	on	fitted	3-component	models	to	
results	from	GWAS	for	continuous	(upper	panel)	and	binary	traits	(lower	panel).	The	
density	plot	for	each	trait	is	obtained	based	on	mixture	normal	distribution	where	SNPs	
with	null	effects	were	represented	by	normal	distribution	with	extremely	small	variance	
component	(𝜎0" = 10230).	Distributions	with	fatter	tails	imply	the	underlying	traits	have	
relatively	larger	number	of	susceptibility	SNPs	with	larger	effects.	In	general,	traits	related	
to	mental	health	and	ability	have	effect-sizes	with	narrower	trails	in	spite	of	larger	estimate	
of	heritability	and	associated	number	of	susceptibility	SNPs.	See	Supplementary	Table	
6	for	more	detailed	comparison	of	the	tail	regions	of	effect-size	distributions.	
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Figure	3.	Projected	number	of	discoveries	(upper	panel)	and	corresponding	percentage	of	
GWAS	heritability	explained	(lower	panel)	based	on	fitted	3-component	models	for	effect-
size	distribution	for	continuous	(left	panel)	and	binary	traits	(right	panel).	Results	are	based	
on	power	calculations	for	discovery	at	the	genome-wide	significance	level	(p-value=5×1026).	Total	
estimate	of	GWAS	heritability	is	used	as	the	denominator	in	calculating	the	percentage	of	
heritability	that	would	be	explained	by	SNPs	reaching	genome-wide	significance.	
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Figure	4.		Expected	area	under	the	curve	(AUC)	for	polygenic	risk	prediction	models	with	
SNPs	included	at	the	optimal	significance	(α)	threshold	(red	solid	line)	and	at	the	genome-
wide	significance	level	of	𝟓×𝟏𝟎2𝟖	(black	solid	line).	Optimum	values	for	significance	thresholds	
(shown	in	blue	dashed	line)	are	obtained	based	on	expected	relationship	of	AUC	with	sample	size	
and	significance	threshold	under	the	fitted	3-component	models	for	effect-size	distributions.		All	
calculations	assume	an	analysis	of	a	total	of	200,000	independent	set	of	SNPs.	
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