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Abstract:

Secondary metabolites are heterogeneous natural products that often mediate
interactions between species. The tryptophan-derived secondary metabolite,
psilocin, is a serotonin receptor agonist that induces altered states of consciousness.
A phylogenetically disjunct group of mushroom-forming fungi in the Agaricales
produce the psilocin prodrug, psilocybin. Spotty phylogenetic distributions of fungal
compounds are sometimes explained by horizontal transfer of metabolic gene
clusters among unrelated fungi with overlapping niches. We report the discovery of
a psilocybin gene cluster in three hallucinogenic mushroom genomes, and evidence
for its horizontal transfer between fungal lineages. Patterns of gene distribution and
transmission suggest that psilocybin provides a fitness advantage in the dung and
late wood-decay niches, which may be reservoirs of fungal indole-based metabolites
that alter behavior of mycophagous and wood-eating invertebrates. These
hallucinogenic mushroom genomes will serve as models in neurochemical ecology,

advancing the prospecting and synthetic biology of novel neuropharmaceuticals.
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Secondary metabolites (SMs) are small molecules that are widely employed in
defense, competition, and signaling among organisms (Raguso et al. 2015). Due to
their physiological activities, SMs have been adopted by both ancient and modern
human societies as medical, spiritual, or recreational drugs. Psilocin is a
psychoactive agonist of the serotonin (5-hydroxytryptamine, 5-HT) -2a receptor
(Halberstadt and Geyer 2011) and is produced as the phosphorylated prodrug
psilocybin by a restricted number of distantly related mushroom forming families of
the Agaricales (Bolbitiaceae, Inocybaceae, Hymenogastraceae, Pluteaceae) (Allen
2010 May 19; Dinis-Oliveira 2017). Hallucinogenic mushrooms have a long history
of religious use, particularly in Mesoamerica, and were a catalyst of cultural
revolution in the West in the mid 20th century (Nyberg 1992; Letcher 2006).
Psilocybin was structurally described and synthesized in 1958 by Albert Hoffman
(Hofmann et al. 1958), and a biosynthetic pathway (Fig. 1B) was later proposed
based on the transformation of precursor molecules by Psilocybe cubensis (Agurell
and Nilsson 1968). However, prohibition since the 1970s (21 U.S. Code § 812 -
Schedules of controlled substances) has limited advances in psilocybin genetics,
ecology, and evolution. There has been a recent resurgence of the hallucinogen
research in the clinical setting. Brain state imaging studies of psilocin exposure have
identified changes in neural activity and interconnectivity that underlie subjective
experiences, and therapeutic trials have investigated psilocybin’s potential for
treating major depression and addictive disorders (Griffiths et al. 2011; Carhart-
Harris et al. 2012; Petri et al. 2014; Carhart-Harris et al. 2016; Johnson et al. 2017).
While the ecological roles of psilocybin, like most SMs, remain unknown, psilocin’s

mechanism of action suggests metazoans may be its principal targets.

A common feature of fungal SM biosynthesis is the organization of most or all
required anabolic, transport, and regulatory elements in gene clusters (GCs). GCs
are often discontinuously distributed among fungal taxa, partly due to horizontal
transfer (HT) among species with overlapping ecological niches (Gluck-Thaler and
Slot 2015). The sparse phylogenetic distribution of psilocybin, coupled with the

requirement for multiple enzymatic steps for its biosynthesis (tryptophan-
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47  decarboxylation, N-methylation, indole-4-hydroxylation, and O-phosphorylation),
48  suggest the psilocybin pathway might have dispersed via horizontal GC transfer, and
49  therefore the genetic mechanism for psilocybin biosynthesis might be identified in
50  searches for GCs with a common phylogenetic history and distribution among

51  psilocybin producing (PS+) mushrooms. The pattern of HT events may further

52 suggest ecological pressures that have driven the pathway’s persistence (Baquero
53 2004).

54

55  Weidentified candidate psilocybin genes by sequencing three diverse PS+

56  mushroom monokaryon genomes -- Psilocybe cyanescens, Panaeolus (=Copelandia)
57  cyanescens, and Gymnopilus dilepis (Table 1), and comparing them to three related
58  mushrooms not known to produce psilocybin (PS-): Galerina marginata, Agaricales
59 sp.9 , and Hypholoma sublateritium. Of 37 gene homolog groups (HGs)

60  consistent with a PS+ distribution among these taxa, only five were clustered, all in
61  PS+ genomes (Fig. S1-pipeline and HGs). We retroactively designated Gy.

62  chrysopellus, potentially PS+ because it possesses a cluster identical to Gy. dilepis,

63  which is not a surprising oversight given inconsistent identifications, and

64  geographical variation among Gymnopilus spp. phenotypes. Predicted functions of
65  these five genes were also consistent with psilocybin biosynthesis and metabolite
66  transport, and were putatively designated tryptophan decarboxylase (TDC),

67 tryptamine N-methyltransferase (TMT), dimethyltryptamine-4-hydroxylase (D4H),
68  psilocin phosphotransferase (PPT), and psilocybin transporter (PST). As SM GCs are
69 infrequently identified in Basidiomycota compared with Ascomycota, this is a

70 notable discovery (Quin et al. 2014).

71

72 To confirm GC function, we profiled the enzymology of heterologously expressed

73  TDC and PPT, and assayed by LC-MS/MS analyses. We determined that TDC, the first
74  committed step in the reaction and the only one not producing a drug-scheduled

75  compound, has specific decarboxylase activity on tryptophan. TDC reactions

76  produced tryptamine, identified at the characteristic m/z 144.1 [M+H]+, (Fig. S2,

77  Supplemental datal). TDC did not decarboxylate phenylalanine, tyrosine or 5-
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hydroxy-L-tryptophan (5-HTP) under the same conditions. We note that TDC is
similar to type Il phosphatidylserine decarboxylases (PSDs), but has no significant
sequence similarity with a pyridoxal-5’-phosphate-dependent decarboxylase
recently characterized in Ceriporiopsis subvermispora as specific for L-tryptophan
and 5-HTP (Kalb et al. 2016). A unique GGSS sequence in a conserved C-terminal
motif (Fig. S3), suggests tryptophan decarboxylation is a previously unknown
derived function among PSDs (Wriessnegger et al. 2009; Choi et al. 2015). We
detected no activity of PPT on 5-HT or 4-Hydroxyindole (4-HI) as alternatives to the
psilocin substrate, possibly due to requirements for the 4-hydroxyl and the
methylated amine groups of psilocin, but further characterization of PPT and other

enzymes was prevented by the regulatory status of substrates and products.

Phylogenetic analyses of PS homologs from a local database of 618 fungal
proteomes yielded congruent gene tree topologies with respect to PS* taxa, and
clades of clustered PS genes from all gene trees excluded the PS- taxa in the
database, suggesting the clustered genes are coordinately-inherited (Fig. 1, Fig. S4
A-F).The gene trees also suggest HT of the cluster from Psilocybe to Panaeolus and
HT of most PS genes between Atheliaceae and Agaricaceae when compared to a
phylogenomic tree of related Agaricales (Fig. 1). The direction of the latter HT is
ambiguous, and not strongly supported by all five genes. Analyses with TDC and PPT
amplicon sequences retrieved by degenerate PCR of unsequenced Psilocybe and
Conocybe genomes (Supplemental datal) suggest the dung fungus Ps. cubensis
vertically inherited the cluster, and Pa. cyanescens acquired the cluster from
Psilocybe sp., and possibly from a dung-associated lineage. Alternative hypotheses of
vertical inheritance in these lineages were rejected; exclusion of Pa. cyanescens and
C. cyanopus (AU test, p = 0.004) or Pa. cyanescens alone (p = 0.036) were
significantly worse constrained topologies (Supplemental datal). Furthermore, a
TDC gene tree-species tree reconciliation model allowing duplication, HT, and loss
(6 events: D=1, HT=3, L=2) is more parsimonious than a model that only allows
duplication and loss (28 events: D=3, L=25)(Fig. S5). PS gene orthologs were not

detected in Ps. fuscofulva, a PS- species representing an early branch in Psilocybe
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diversification (Borovicka et al. 2015). Conservation of synteny flanking the Ps.
cyanescens PS cluster (Fig. 1) suggests it may have been recently acquired in
Psilocybe as well, or lost as a unit in close relatives. A genome wide scan did not
identify additional HT genes or clusters between Psilocybe and Panaeolus (Fig. S6).
HT is comparatively rare in the Basidiomycetes, suggesting the transfer of the PS
cluster may have special significance (Wisecaver et al. 2014), and is to our
knowledge, the first report of HT of a SM GC between lineages of mushroom-forming

fungi (Agaricomycotina).

Recent studies suggest that ecology can select for both genome content (Ma et al.
2010; de Jonge et al. 2013) and organization in eukaryotes through both vertical and
horizontal patterns of inheritance (Holliday et al. 2015; Kakioka et al. 2015).
Ordination of 10,998 HGs identified two principal components (PCs) that describe
22% of the variation in gene content among 16 Agaricales genomes (Fig. 2B).
Discrimination of genome composition along PC1 appears to reflect phylogenetic
differences, while discrimination along PC2 parallels ecological differences between
plant mutualists and other fungi. However, PC2 does not discriminate between dung
and wood-decay fungi. The functions of HGs most associated with each PC are
consistent with this interpretation. All eight metabolism-related processes in the
COG classification system are overrepresented in PC2, but only one is
overrepresented in PC1 HGs (Supplemental datal). The grouping of several
divergent lineages of wood and dung decay fungi to the exclusion of close
ectomycorrhizal relatives along PC2 may reflect similar selective pressures in the
decayed wood and dung environments, from recalcitrant plant polymers like lignin,
and invertebrate predation (Rouland-Lefévre 2000). However, a small number of
HGs exclusive to either wood or dung associated fungi (Fig. S7, Supplemental datal)
are consistent with ecological specialization within each guild. Wood-specific genes
include functions in lignin degradation (e.g., peroxidase, isoamyl alcohol oxidase)
and carbohydrate transport, while dung-specific genes have functions in bacterial
cell wall degradation (e.g., lysozyme), hemicellulose degradation (e.g., Endo-1,4-

beta-xylanase, Alpha-L-arabinofuranosidase), and inorganic phosphate transport.
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Niche-specific genes are largely consistent with vertical inheritance; however,
analyses support HT of a single ferric-reductase-like gene (pfam01794, pfam00175)
likely involved in iron uptake, to Coprinopsis and Panaeolus from dung-associated

Ascomycota (Supplemental data).

In addition to similar ecological pressures, similar genome content among wood and
dung-decaying fungi may also reflect the ecological diversification of
Agaricomycetes that accompanied major geological transformations (Fig. 2B). For
example, the emergence of true wood opened a massive saprotrophy niche space in
the upper Devonian (380 Mya), in which the Agaricomycetes diversified with the aid
of key enzymatic innovations (Floudas et al. 2012). The subsequent radiation of
herbivorous megafauna during the Eocene approximately 50 MYA (MacFadden
2000) and the spread of grasslands 40 MYA (Retallack 2001) expanded the
mammalian dung niche space in which invertebrates and fungi competed. These
changes parallel the repeated emergence of dung-specialization from plant-decay
ancestors in the radiation of Psilocybe and other Agaricales lineages (Ramirez-Cruz
et al. 2013; Toth et al. 2013). Late stage wood decay fungi like Psilocybe spp. likely
harbor genetic exaptations for lignin tolerance/degradation, and competition with
invertebrates and prokaryotes, and acquisition of particularly adaptive functions by
other fungi (e.g. Panaeolus) through HT may have facilitated additional transitions

to dung saprotrophy.

The evolution of PS genes suggest they originally served roles in the wood-decay
niche, and more recently emerged through both vertical and horizontal transfer in
dung-decay fungi (Fig. 2). HT and retention of PS clusters are evidence of selection
on the PS pathway in the recipient lineage, as SM clusters are inherently unstable in
fungal genomes (Reynolds et al. 2017 Apr 28). Psilocybin neurological activity,
coupled with HT and retention in lineages that colonize dung and/or decayed wood,
which are rich in both mycophagous and competitor invertebrates (Rouland-Lefevre
2000), suggest that psilocybin may be a modulator of insect behavior. Psilocybin

and/or the related aeruginascin have also been identified in the lichenized agaric,
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Dictyonema huaorani, and in the ectomycorrhizal genus Inocybe (Kosentka et al.
2013; Schmull et al. 2014). PS distribution in Inocybe is complementary to that of
the acetylcholine mimic, muscarine, which could suggest alternative strategies and
pressures to manipulate animal behavior beyond the dung and wood decay niches.
Neurotransmitter mimics may provide advantages to fungi by interfering with the
behavior of invertebrate competitors for woody resources (Hunt et al. 2007),
especially social insects, like termites, which emerged ~ 137 Mya, because they rely
on the coordinated activities of multiple castes (Genise 2017). It is thus intriguing
that D4H and PST have experienced massive gene family expansion through
duplication in Fibulorhizoctonia sp., which produce termite egg-mimicking sclerotia
in an ancient mutualistic relationship with Reticulitermes termites (Matsuura 2005).
While neurotransmitter agonists are not known to mediate this symbiosis, insect
predatory fungi (i.e. Cordyceps spp.) use neurotransmitter analogs to influence the
behavior of infected insects (de Bekker et al. 2014), and a number of repellents and
toxins in wood-decay fungi inhibit xylophagy and mycophagy by termites (Rouland-
Lefevre 2000).

The identification of genes underlying PS biosynthesis is an important advance in
the field of neurochemical ecology, with both social and medical applications. The
sequences of the first Psilocybe and Panaeolus genomes presented here will be
important resources for the prospecting of novel neurotropic natural products
(Rutledge and Challis 2015). The discovery that a psilocybin cluster has been
horizontally transferred and subsequently maintained among the invertebrate-
challenged environments of dung and late wood-decay suggests these niches may be
reservoirs not only of new antibiotics (Bills et al. 2013 Aug 23), but also novel

neuroactive pharmaceuticals.
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Table 1. Genome assembly and annotation of psilocybin-producing mushrooms.

G. dilepis®
TENNO71165

Pa. cyanescens

Ps. cyanescens

length (nt)

47,177,497

44,965,162

53,483,841

scaffolds

8,423

9,521

18,721

contigs

10,681

11,850

38,006

Complete
av. depth of NS50 BUSCOs
coverage (x) (nt) (%)

16.5 33,540 73.43
25.7 32,751 75.66
44.7 46,250 72.18

total
proteins

16,257

13,420

15,973

decarboxylases /
PSD*

28/9

28/8

38/17

P450's"

151

148

178

methyltransferases /  kinases /

DUF890 domain- phosphotransferases

proteins® / OG term OPNAW*
89/4 275/29/1
91/2 267/16/2
102/2 298/23/1

aFunctional category of PS genes as annotated in Eggnog. »G. dilepis (= G. aeruginosus sensu L.R. Hesler) was isolated from oak

sawdust in Knoxville, Tennessee 4-Oct-2013. Pa. cyanescens and Ps. cyanescens basidiospores were supplied by The Spore Works,

Knoxville.

MEFS*

37

34

44
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Figure Legends:

Figure 1. Psilocybin evolution. A. The PS cluster consists of tryptophan
decarboxylase (TDC), 1-2 P450 monooxygenases (D4H), methyltransferase (TMT),
phosphotransferase (PPT), and 1-2 MFS transporters (PST). B. Phylogenomic tree of
Agaricales (tan) with Atheliales (blue) outgroup. Support values = (internode
certainty, tree certainty). Clades 1-5 are as in Fig. 2B. C. PS locus synteny relative to
Ps. cyanescens scaffold 5617 and G. marginata scaffold 9. D. RAXML phylogeny of
TDC indicating putative HT branches; Eutypa lata is in Xylariales (Ascomycota,
lavendar), an order correlated with absence of termites in coarse woody debris
(Kirker et al. 2012), with members that produce a white rotof wood. - . . __
Entomophthoromycotina sp. 1, rose) is commonly associated with amphibian dung
and arthropods. Grey taxon names = PCR sequences, black = whole genome.

Support is percent of 100 ML bootstraps. **54 similar D4H homologs not shown.

Figure 2. Patterns of ecological diversification of PS genes and Agaricales genomes.
A. Ultrametric representation of PPT phylogeny, with root age hypothetically set to

align ecological transitions with Earth history events. HT = horizontal transfer, VT =
vertical transmission. B. Ordination of Agaricales genome content. Numerals

correspond to clades in Fig. 1A.

10
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