














Figure 5. Manhattan plots for chosen phenotypes with the largest 
number of genome wide significant associations (P < 10-8) within each 
of four categories (all phenotypes, cancer registry, hospital episode 
statistics and self-reported non cancer illness). From top to bottom: 
amongst all phenotypes (Standing height), cancer registry phenotypes 
(Melanoma and other malignant neoplasms of skin), clinical information 
from hospital episode statistics and self-reported non cancer illness 
(intestinal malabsorption and malabsorption/coeliac disease 
respectively). Genetic variants with P < 10-30 are indicated by marks 
along the top of each plot.  
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ONLINE METHODS  

Phenotypes  

In total we analysed 717 phenotypes in White-British UK Biobank participants. 

These included 596 binary phenotypes generated from self-reported disease 

status, ICD10 codes from hospitalization events, and ICD10 codes from 

cancer registry, as well as a further 3 binary and 118 non-binary (comprising 

continuous and integral measures) phenotypes from across the UK Biobank. 

A description of each phenotype, its category and the relevant UK Biobank 

fields can be found in Supplementary Table 1. Some of the traits analysed 

have some redundancy that has been left for completeness, that is some of 

these traits were measured in different ways during the study (e.g. weight) or 

are analysed as self-reported traits and clinical traits (e.g. malabsorption). For 

disease traits all individuals reporting a disease code were coded as cases 

with all other individuals considered controls. Only non-disease phenotypes 

with missing data rate < 5% were selected for analysis. For these phenotypes 

missing values were imputed to the age and sex specific mean in the White-
British cohort.  

 

Genotypes 

The genotypes of the UK Biobank participants were assayed using either of 

two genotyping arrays, the Affymetrix UK BiLEVE Axiom or Affymetrix UK 

Biobank Axiom array. These arrays were augmented by imputation of ~96 

million genetic variants from the Haplotype Reference Consortium3, the 

thousand genomes8 and the UK 10K8 projects. Full details regarding these 

data have been published elsewhere9.  

 

We excluded individuals who were identified by the UK Biobank as outliers 

based on either genotyping missingness rate or heterogeneity, whose sex 

inferred from the genotypes did not match their self-reported sex and who 

were not of white British ancestry. Finally, we removed individuals with a 

missingness >5% across variants which passed our QC procedure. The 

resulting White-British cohort comprised 408,455 individuals.  
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From the genotyped data we only retained bi-allelic autosomal variants which 

were assayed by both genotyping arrays employed by UK Biobank. We 

furthermore excluded variants which had failed UK Biobank quality control 

procedures in any of the genotyping batches. Additionally we excluded 

variants with P < 10-50 for departure from Hardy-Weinberg, computed on a 

subset of 344,057 unrelated (Kinship coefficient < 0.0442) individuals in the 

White-British cohort, and with a missingness rate > 2% in the White-British 

cohort. Only variants with MAF>10-4 in the White-British cohort were tested for 

association in the GWAS of the 717 traits, this cut-off corresponds to less than 

82 occurrences of the minor allele in the White-British cohort.  

 

GWAS Analysis 
To test each genetic variant whilst taking into account population structure in 

UK Biobank (e.g. presence of related individuals or local structure), we used a 

Linear Mixed Model. Specifically, the model takes the form 
𝐲 = 𝐗𝛃+ 𝐠+ 𝛜, 

where y is the vector of phenotypes, X, is the matrix of fixed effects, and β the 

effect size of these effects. We included as fixed effects sex, array batch, UK 

Biobank Assessment Center, age, age2, and the leading 20 genomic principal 

components as computed by UK Biobank. g is the polygenic effect that 

captures the population structure, fitted as a random effect. It follows the 

distribution 𝐠~𝐍 0,𝐀𝜎!! , with A the Genomic Relationship Matrix (GRM), and 

𝜎!! the variance explained by the additive genetic effects. The GRM was 

computed using common (MAF > 5%) genotyped variants that passed quality 

control. Finally, 𝛜~𝐍 0, 𝐈𝜎!!  is a residual effect not accounted for by the fixed 

and random effects. Under this model, the phenotype vector 𝐲, follows the 

distribution 𝐍 𝐗𝛃,𝐀𝜎!! + 𝐈𝜎!! . 

 

Fitting one instance of such a LMM model is computationally very demanding. 

Following a naïve approach, the required computational time increasing with 

the cube of the sample size, ~O(N3), and the memory requirements with the 

square of the sample size, ~O(N2). Consequently, fitting a single model on a 

cohort of the size of UK Biobank is challenging, and fitting millions of these 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/176834doi: bioRxiv preprint first posted online Aug. 16, 2017; 

http://dx.doi.org/10.1101/176834


models, one for each analysed genetic variant and phenotype is not feasible 

with standard computational and statistical approaches. To address this 

problem, we took advantage of three different tools. First, we used a large 

supercomputer (5,040 processor cores working together for ~10h, and using 

~5TB of memory for computing the GRM eigen-decomposition), and 

DISSECT10 to speed up the calculations. Second, we computed the full eigen 

decomposition of the GRM, 𝐀 = 𝚲𝚺𝚲!, where 𝚲 is the matrix  of eigenvectors, 

and 𝚺 is a diagonal matrix containing the eigenvalues. This allowed us to 

transform all the other model matrices, y, X, and 𝛜 to the new space where the 

GRM is diagonal. Although the eigen-decomposition is a computationally 

intensive process, once diagonalized, the computational time of fitting a model 

is reduced considerably to ~O(N), thus enabling us to perform several tests 

using Mixed Linear Models on a cohort of hundreds of thousands of 

individuals. Finally we performed over 23 billion tests using a two-step 

approximation that optimizes the computational resources11. The first step of 

the approximation fits a LMM that adjusts by the relevant fix (e.g. age, sex, 

etc.) and random effects (genetic effects) to each trait, the second step uses 

the residuals of LMM to test all available genetic markers for significance in a 

linear model. We adjusted for the genetic variants genotyped in the odd 

chromosomes when testing polymorphisms in the even chromosomes, and for 

the genetic variants genotyped in the even chromosomes when testing 

genetic variants in the odd chromosomes.  

 

HLA Region  
We defined the HLA region as the region of chromosome 6 spanning base 

pairs 28,866,528 to 33,775,446. Throughout all analyses we included 10Mb 

either side of the above HLA region to account for LD with variants outside 

this region. 

 

Estimation of Genetic Parameters 

In order to estimate heritabilities and genetic correlations we fitted LMMs for 

each trait with a GRM containing all common (MAF > 5%) autosomal genetic 

variants which passed QC. The heritability was estimated as ℎ!! = 𝜎!!/ 𝜎!! +
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𝜎!! , where 𝜎!! and 𝜎!! are the estimates of the genetic and residual variance. 

For all binary outcomes, we transformed heritabilities on the observed scaled 

to the liability scale using the population prevalence of the disease. We 

provide sex-specific prevalences to allow sex-specific transformations 

(Supplementary Table 1). Using the model fits we computed best linear 

unbiased predictor estimates of genetic additive values for each individual. 

The genetic correlations were estimated by computing correlations between 

these additive genetic values. Environmental correlations were estimated as 

𝑟! = (𝑟! − ℎ!!ℎ!! 𝑟!)/ (1− ℎ!!)(1− ℎ!!), where 𝑟!, 𝑟! are the phenotypic and 

genetic correlations for traits 𝑖, 𝑗 and. 

  

Independent Loci 
We clustered GWAS results into independent loci using the --clump option of 

the plink 1.9 software12. Specifically for each trait individually, we clustered 

GWAS results by selecting genome wide significant variants as lead variants 

and assigning to them unassigned variants within 10Mb, that have P<10-2 and 

a 𝑟! > 0.3 with the lead variant. To compute the total number of independent 

loci across all traits, we performed the same clustering on the lead variants of 

loci across all traits, choosing the lowest P value for variants which were lead 

variants of a locus in different traits.     
 

Relation of association count and chromosome length  
We regressed the number of significant associations (P<10-8) across traits for 

each chromosome on the covered length of the chromosome, i.e., distance in 

base pairs of the first and last genetic variants contained on the genotyping 

array, and the number of genetic variants on the chromosome contained on 

the genotyping array. For chromosome 6 we excluded the HLA region and 

variants contained therein from the statistics. We compared the full model to 

one with either the chromosomal length or number of genetic variants 

removed using the likelihood ratio test. The full model was not significantly 

better than either of the reduced models, which both were significant when 

compared to a null model containing only an intercept.         
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