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Supplementary Text

Bayesian estimation of trait evolution

We developed a Bayesian method to jointly estimate the parameters of a Brownian

motion model of trait evolution (BM), i.e. rates and trends, their variation across clades,

and the ancestral states at all internal nodes. We used di↵erent Markov Chain Monte

Carlo (MCMC) algorithms combined into a single MCMC to sample the di↵erent

parameters: Birth-Death MCMC to estimate the number and placement of shifts in BM

parameters, Metropolis-Hastings MCMC to sample rates, trends and the trait value at the

root of the tree, and a Gibbs sampler to sample ancestral states at the other nodes. The

di↵erent algorithms were chosen for their properties to improve the e�ciency of the

analysis (see also Section Performance tests). All three steps are run during a single

analysis and our algorithm randomly jumps across them based on user-defined frequencies.

Birth-Death MCMC to estimate shifts in rates and trends

We implemented a Bayesian algorithm to jointly estimate the number and

placement of shifts in the rate and trend parameters of the BM model. Shifts define

monophyletic clades within which the rate or trend parameter is treated as independent of

the parameters in the other branches of the tree. To infer the number and placement of

shifts, we used Birth-Death MCMC (BDMCMC) (Stephens, 2000), an algorithm that has

been previously used to estimate rates shifts in other stochastic processes in an

evolutionary biology context (Silvestro et al., 2014). Unlike the reversible-jump MCMC

(Green, 1995), the BDMCMC-moves across models are not based on an acceptance

probability, but on varying rates of a stochastic birthdeath process. The birth rate,

determines the probability of proposing a new shift in rates or trends and is fixed to 1
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(Stephens, 2000), while individual death rates are calculated for each class of parameters

defined by a shift. Death rates determine the probability of removing a rate or trend shift.

We use a Poisson distribution with shape parameter set to 1 as prior distribution on the

number of rate and trend shifts.

To compute the death rate of a shift is obtained by calculating the likelihood of the

tree under a BM with and without the shift. To compute the likelihood without a shift we

set the rate (or trend) of the clade identified by the shift to the background rate (or trend),

i.e. the current parameter value at its parent node. The death rate of a parameter class is

computed as the ratio between the likelihood without the shift and the likelihood with the

shift (Stephens, 2000; Silvestro et al., 2014). Thus, rate or trend shifts that improve the fit

of the model have a very low extinction rate, and are unlikely to be removed during the

BDMCMC. In contrast, rate shifts that do not improve the tree likelihood (or even

decrease it) result in high extinction rates and will be removed very quickly by the

BDMCMC algorithm.

The algorithm starts with the simplest BM model (i.e. with homogeneous rate and

trend parameters) and randomly selects a clade for which a new rate or trend is sampled

from their prior distribution. In this case we use an exponential distribution for rates and a

normal distribution centered in 0 for trends. The introduction of a shift in the model

represents a “birth” event. As soon as there is at least one shift the death rates for each

clade identified by a shift are calculated and the following event of the birth-death process

will be determined by the relative magnitude of the rates. Additional details about the

BDMCMC algorithm are described by (Stephens, 2000; Silvestro et al., 2014).

Metropolis-Hastings MCMC to estimate BM parameters

For a given set of rate and trend parameters and a vector of ancestral states, the

likelihood of a BM model can be calculated as a product of normal densities moving from

3
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the tips to the root (see main text). We sampled the rate and trend parameters and the

ancestral state at the root of the tree using MCMC with acceptance probabilities defined

by the posterior odds (Metropolis et al., 1953; Hastings, 1970). We used multiplier

proposals for the rate parameters (while properly adjusting the Hastings ratio (Ronquist

et al., 2007)) and sliding window proposals for trends and the root state.

A Gibbs sampler for ancestral states

Sampling the ancestral states from their posterior distribution using the typical

acceptance ratio of a Metropolis-Hastings MCMC can be di�cult due to the large number

of parameters (one for each internal node in the tree), which increase exponentially with

the number of tips. Thus, we implemented a Gibbs sampler, in which the ancestral states

are sampled directly from their posterior density. This is possible because the posterior

probability distribution of an ancestral state under a BM model, given a normal prior

distribution, is itself normally distributed. Indeed, because the expected trait value of a

BM model after a time t is normally distributed (see Eq. 1 in the main text), the posterior

density of an ancestral state xi derives from the combination of four normal distributions:

To sample the ancestral states from the posterior we therefore draw random values from

the conjugate distribution:
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In our implementation, a Gibbs move implies updating all ancestral states iteratively,

sampling from Eq. 1.
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Evaluation of the method

Simulated data sets

We assessed the accuracy and the e�ciency of our Bayesian framework by analyzing

simulated data sets and comparing the estimated rates, trends, and ancestral states with

the true values. For each simulation, we generated a complete phylogenetic tree (extinct

and extant taxa) under a constant rate of birth-death with 100 extant tips (sim.bd.taxa

function with parameters � = 0.4, and µ = 0.2, in the R package TreePar, (Stadler, 2011)).

The number of fossils simulated on the tree was defined by a Poisson distribution with

expected number of occurrences (N) equal to the total branch length times the

preservation rate (q). We fixed the number of expected fossils N = 20 by setting q to the

ratio between N and the sum of branch lengths. Then, each fossil was placed randomly on

the tree and extinct tips without fossils were pruned out (note that this procedure is

equicalent to that implemented in the FBD original paper (Heath et al., 2014)). Finally,

the fossilized tree was re-scaled to an arbitrary root height of 1.

Phenotypic data were simulated on every tree with the following parameters: rate of

evolution (�2), phenotypic trend (µ
0

), number of shifts in rate, number of shifts in trend,

magnitude of the shifts. We simulated data sets under six evolutionary scenarios:

1. constant �2 drawn from a gamma distribution �(2, 5), and fixed µ

0

= 0

2. fixed �

2 = 0.1, and constant µ
0

drawn from a normal distribution N (2, 0.5)

3. initial �2

r = 0.1, fixed µ

0

= 0, and one rate shift in a randomly selected clade so that

�

2

i = m⇥ �

2

r , where m ⇠ U(8, 16).

4. baseline �

2 = 0.1, fixed µ

0

= 0, and two shifts in �

2 drawn from an uniform distribution

representing a change with magnitude between 8 and 16 fold

5
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5. fixed �

2 = 0.1, fixed initial µ
0

= 0, and one shift in µ

0

drawn from a normal distribution

N (2r, 0.5), where r was randomly set to -1 or 1 (simulating negative or positive trends,

respectively).

6. fixed �

2 = 0.1, fixed µ

0

= 0, and two shifts in µ

0

each one drawn from a normal

distribution N (2r, 0.5), where r was randomly set to -1 or 1 (simulating negative or

positive trends, respectively).

For the last two scenarios the location of shifts (in �

2 or µ
0

) was randomly selected

by choosing clades that contained between 25 to 50 tips. The branches within the chosen

clades were assigned with the new parameter value before performing the phenotypic data

simulation using a mapped tree (make.era.map function in R package phytools (Revell,

2012)).

We simulated 100 data sets under each of the six scenarios. We additionally ran

simulations for scenarios (1) and (2) with a lower number of fossils (N= 5, 1, and 0)

adjusting the q parameter. For simulations with one fossil, we simulated fossils under a

Poisson process with N = 20 and kept only the oldest occurrence in the trait analysis.

Analysis of simulated data

We analyzed each simulated dataset to estimate the rate and trend parameters of

the BM model (�2 and µ

0

) and the ancestral states. Each dataset was run for 500,000

MCMC generations, sampling every 500 steps. We summarized the results in di↵erent

ways. First, for each simulation we graphically inspected the results by plotting the

phylogeny with the width of the branches proportional to the true and estimated rates. We

plotted the true versus estimated �

2, and µ

0

for each branch on the tree (Fig. S4). The

true and estimated ancestral states are compared in a phenogram plot (Revell, 2012).

Secondly, we numerically quantified the overall accuracy of the parameter estimates

6
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across all simulations using di↵erent summary statistics for each set of parameters. The the

BM rate parameters (�2) we calculated the mean absolute percentage error (MAPE),

defined as:

MAPEj(�
2) =

1

N

NX

i=1

 
|�̂2

i � �

2

i |
�

2

i

!
(2)

where j is the simulation number, �̂2

i is the estimated rate at branch i, �2

i is the true rate

at branch i, and N is the number of branches in the tree. Because the trend parameter can

take both negative and positive values, we used the mean absolute error (MAE) to quantify

the accuracy of its estimates:

MAEj(µ0

) =
1

N

NX

i=1

⇣
|µ̂i

0

� µ

i
0

|
⌘

(3)

where µ̂

i
0

is the estimated trend at branch i and µ

i
0

is the true trend at branch i. We

quantified the accuracy of the ancestral state estimates in terms of coe�cient of

determination (R2) between the true and the estimated values. These summary statistics

were computed for each simulation scenario (across 100 replicates) and are provided in

Figs. S2 and S3.

Finally, we assessed the ability of the BDMCMC algorithm to identify the correct

BM model of evolution in terms of number of shifts in rate and trend parameters. We

calculated the mean probability estimated for models with di↵erent number of rate shifts

(K�2 ranging from 0 to 4) and shifts in trends (Kµ0 ranging from 0 to 4). Note that K = 0

indicates a model with constant rate and/or trend parameter across branches. The

estimated posterior probability of a given number of rate shifts was obtained from the

frequency at which that model was sampled during the MCMC (Stephens, 2000). We

averaged these probabilities across 100 simulations under each scenario. We additionally

calculated the percentage of simulations in which each model was selected as the best

7
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model (i.e., it was sampled most frequently). These summary statistics are provided in the

Table S1.

Performance tests

We compared the performance of our implementation using Gibbs sampling for

ancestral states with that of an implementation using a Metropolis-Hasting algorithm to

update the ancestral states, i.e. the method used in other software such as Geiger (Slater

et al., 2012; Slater and Harmon, 2013; Pennell et al., 2014) and phytools (Revell, 2012).

We implemented the latter option in our code by updating the ancestral states individually

using sliding window proposals and acceptance probability based on the posterior ratio.

We ran the two implementations on trees with 50, 100, 500, and 1000 tips for 100,000

MCMC iterations, sampling every 50 iterations and using the true parameter values as

starting values in the MCMC to avoid burnin. We simulated the data using a constant

Brownian rate (�2 = 0.1) and no trend (µ
0

= 0) and ran the analyses setting the MCMC to

run using the simplest Brownian model (i.e. no rate shifts and no trends). We then

calculated for each simulation the run time and the e↵ective sample size (ESS) of the

posterior and use them to estimate the run time necessary to reach an ESS = 1000. These

performance tests (summarized in Fig. S5a), show that the Gibbs sampler achieved the

target ESS of 1000 in a much shorter time than the alternative Metropolis-Hastings

algorithm. Importantly, the time required to reach ESS = 1000 scaled linearly with tree

size using the Gibbs sampler and exponentially using the Metropolis-Hastings.

The joint estimation of model parameters (rates and trends) and ancestral states

allow us to compute the likelihood as a product of normal densities (Fig. S1) while

avoiding the use of a variance-covariance (VCV) matrix (commonly used in comparative

methods(Felsenstein, 1988; O’Meara, 2012)), which can be very expensive especially for

large trees. We ran simulations to assess the performance of the two approaches to

8
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calculate the likelihood of the data (product of normal densities against standard

calculation using the vcv matrix). We simulated trees of 50, 100, 500, 1000, and 5000 tips

under a pure birth process (only extant taxa) and trait data under a simple constant

Brownian model (�2 = 0.1, µ
0

= 0). On each data set we ran 100,000 MCMC iterations

and recorded the run time. The results of these simulations are summarized in Fig. S1b

and show that the two approaches to calculate the model likelihood perform similarly for

small tree ( 100 tips). However, the VCV likelihood calculation time scales exponentially

with tree size, while our implementation with the product of normal densities scales

linearly with tree size. Thus, for instance, our implementation was 1.7 times faster than

the alternative with 500 tips and 16.4 times faster with 5000 tips.

9
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Supplementary Tables

Table S1: Model of testing across simulations. We summarized the mean probability (Pr)
estimated for models with di↵erent number of rate shifts (K�2 ranging from 0 to 4) and
shifts in trends (Kµ0 ranging from 0 to 4) across 100 simulations under each scenario (see
Supplementary Methods). We additionally calculated the percentage of simulations in which
each model was selected as the best model (%bm). Values in bold represent the settings used
to simulated the data.

n. shifts Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Pr %bm Pr %bm Pr %bm Pr %bm Pr %bm Pr %bm

K�2 = 0 0.72 97 0.81 96 0.01 1 0 0 0.80 97 0.76 92

K�2 = 1 0.23 3 0.17 3 0.73 89 0.05 7 0.17 2 0.19 7

K�2 = 2 0.04 0 0.02 1 0.22 9 0.68 91 0.03 1 0.04 1

K�2 = 3 0 0 0 0 0.03 1 0.22 2 0.01 0 0 0

K�2 = 4 0 0 0 0 0 0 0.04 0 0 0 0 0

Kµ0 = 0 0.59 98 0.61 86 0.57 92 0.57 94 0.04 4 0.01 1

Kµ0 = 1 0.31 2 0.3 14 0.32 7 0.32 6 0.55 87 0.12 14

Kµ0 = 2 0.08 0 0.08 0 0.09 1 0.09 0 0.3 9 0.53 79

Kµ0 = 3 0.01 0 0.01 0 0.02 0 0.02 0 0.09 0 0.26 5

Kµ0 = 4 0 0 0 0 0 0 0 0 0.02 0 0.07 1
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Table S2: Summary of the molecular data used in this study (Part 1).

Partition for Position in Alignment Position in Percentage

substitution model Springer et al. (2012) platyrrhine alignment of species sampled

Autosomal-4 16874–17433 1–560 63.22

Autosomal-3 17434–17849 561–976 64.37

X-linked 17850–18349 977–1476 72.41

X-linked 18350–18928 1477–2055 64.37

Autosomal-2 18929–19600 2056–2727 54.02

Autosomal-1 19601–20119 2728–3246 47.13

Autosomal-2 20120–21067 3247–4194 65.52

Autosomal-2 21068–22051 4195–5178 62.07

X-linked 22052–22823 5179–5950 64.37

Autosomal-1 22824–23384 5951–6511 42.53

Autosomal-3 23385–24636 6512–7763 56.32

Autosomal-3 24637–25427 7764–8554 36.78

Autosomal-4 25428–25808 8555–8935 65.52

Autosomal-2 25809–26804 8936–9931 66.67

Autosomal-3 26805–27232 9932–10359 56.32

Autosomal-2 27233–27859 10360–10986 45.98

Autosomal-2 27860–28464 10987–11591 68.97

Autosomal-1 28465–29001 11592–12128 65.52

Autosomal-2 29002–29968 12129–13095 64.37

Autosomal-3 29969–30716 13096–13843 60.92

X-linked 30717–31446 13844–14573 65.52

Autosomal-1 31447–32165 14574–15292 56.32

Autosomal-4 32166–32635 15293–15762 66.67

Autosomal-2 32636–33198 15763–16325 68.97

Autosomal-3 33199–33844 16326–16971 43.68

Autosomal-1 33845–34457 16972–17584 56.32

Autosomal-3 34458–35249 17585–18376 37.93

Autosomal-3 35250–36010 18377–19137 45.98

Autosomal-3 36011–36704 19138–19831 48.28
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Table S3: Summary of the molecular data used in this study (Part 2).

Partition for Position in Alignment Position in Percentage

substitution model Springer et al. (2012) platyrrhine alignment of species sampled

Autosomal-1 36705–37359 19832–20486 67.82

Autosomal-1 37360–37916 20487–21043 59.77

Autosomal-1 37917–38456 21044–21583 68.97

Autosomal-1 38457–39061 21584–22188 68.97

Autosomal-2 39062–39711 22189–22838 68.97

Autosomal-2 39712–40049 22839–23176 63.22

Autosomal-4 40050–40362 23177–23489 62.07

X-linked 40363–40966 23490–24093 67.82

Autosomal-3 40967–41683 24094–24810 70.11

Autosomal-2 41684–42754 24811–25881 64.37

Autosomal-2 42755–43444 25882–26571 67.82

Autosomal-2 43445–44130 26572–27257 70.11

Autosomal-1 44131–44726 27258–27853 68.97

Autosomal-1 44727–45371 27854–28498 67.82

X-linked 45372–45700 28499–28827 59.77

Y-linked 45701–46638 28828–29765 33.33

Y-linked 46639–47105 29766–30232 34.48

Autosomal-1 47106–47261 30233–30388 55.17

Autosomal-4 47262–48139 30389–31266 55.17

Autosomal-3 48140–48614 31267–31741 66.67

Autosomal-1 48615–49219 31742–32346 60.92

Y-linked 49220–49590 32347–32717 44.83

X-linked 49591–50401 32718–33528 67.82

Y-linked 50402–51254 33529–34381 39.08

X-linked 51255–51801 34382–34928 70.11

mitochondrial 51802–52938 34929–36065 82.76
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Table S4: List of fossil taxa used in the phylogenetic analysis of platyrrhines. The taxonomic
assignments were used to enofroce topological constraints in the FBD analysis.

Taxon Taxonomy (Constraints for fossil placement)

Genus Subfamily Family

Cartelles coimbrafilhoi - Alouattinae Atelidae

Paralouatta varonai - Alouattinae Atelidae

Solimoea acrensis - Alouattinae Atelidae

Stirtonia tatacoensis - Alouattinae Atelidae

Stirtonia victoriae - Alouattinae Atelidae

Caipora bambuiorum - Atelinae Atelidae

Acrecebus fraileyi Stem Cebus Cebinae Cebidae

Dolichocebus gaimanensis - Cebinae Cebidae

Killikaike blakei - Cebinae Cebidae

Laventiana annectens Stem Saimiri Cebinae Cebidae

Neosaimiri fieldsi Stem Saimiri Cebinae Cebidae

Panamacebus transitus - Cebinae Cebidae

Patasola magdalenae - Cebinae Cebidae

Micodon kyotensis - Callitrichinae Cebidae

Aotus dindensis - Aotinae Pitheciidae

Tremacebus harringtoni - Aotinae Pitheciidae

Carlocebus carmenensis - Homunculinae Pitheciidae

Homunculus patagonicus - Homunculinae Pitheciidae

Miocallicebus villaviejai - Homunculinae Pitheciidae

Mazzonicebus almendrae - Pitheciinae Pitheciidae

Soriacebus ameghinorum - Pitheciinae Pitheciidae

Proteropithecia neuquenensis - Pitheciinae Pitheciidae

Cebupithecia sarmientoi - Pitheciinae Pitheciidae

Nuciruptor rubricae - Pitheciinae Pitheciidae

Antillothrix bernensis - - Pitheciidae

Insulacebus toussentiana - - Pitheciidae

Xenothrix mcgregori - - Pitheciidae

Branisella boliviana - - -

Canaanimico - - -

Chilecebus carrascoensis - - -

Lagonimico conclucatus - - -

Mohanamico hershkovitzi - - -

Szalatavus attricuspis - - -

Perupithecus ucayaliensis - - -
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Table S5: Age, estiamted body mass and geographic coordinates of the fossil records used
in phylogenetic and trait evolution analyses.

Taxon Age (Ma) Body mass Latitude Longitude

Cartelles coimbrafilhoi 0.02 23500 -10.16 -40.85

Paralouatta varonai 1.255 8444 22.40 -83.68

Solimoea acrensis 7.5 8000 -10.93 -69.92

Stirtonia tatacoensis 12.5 5513 -3.22 -75.20

Stirtonia victoriae 12.5 10000 -3.22 -75.20

Caipora bambuiorum 0.02 24000 -10.16 -40.85

Acrecebus fraileyi 7.5 12000 -10.93 -69.92

Dolichocebus gaimanensis 20 2700 -43.36 -65.45

Killikaike blakei 16.5 2000 -51.57 -69.43

Laventiana annectens 12.5 605 -3.22 -75.20

Neosaimiri fieldsi 12.5 768 -3.22 -75.20

Panamacebus transitus 20.93 2700 9.03 -79.72

Patasola magdalenae 12.5 480 -3.22 -75.20

Micodon kyotensis 12.5 400 -3.22 -75.20

Aotus dindensis 12.5 1054 -3.22 -75.20

Tremacebus harringtoni 20 1800 -42.52 -68.28

Carlocebus carmenensis 17 3500 -47.02 -70.72

Homunculus patagonicus 16.5 2700 -51.22 -69.05

Miocallicebus villaviejai 12.5 1500 -3.22 -75.20

Mazzonicebus almendrae 20 1602 -45.71 -68.68

Soriacebus ameghinorum 17 1483 -47.02 -70.72

Proteropithecia neuquenensis 15.7 1600 -40.04 -70.23

Cebupithecia sarmientoi 12.5 1602 -3.22 -75.20

Nuciruptor rubricae 12.5 2000 -3.22 -75.20

Antillothrix bernensis 1.32 1500 18.37 -68.62

Insulacebus toussentiana 0.01 4805 18.33 -74.05

Xenothrix mcgregori 0.002 5720 17.73 -77.23

Branisella boliviana 26.42 1000 -17.10 -67.60

Canaanimico 26.56 2000 -7.35 -75.00

Chilecebus carrascoensis 20.09 1000 -34.88 -70.42

Lagonimico conclucatus 12.5 595 -3.22 -75.20

Mohanamico hershkovitzi 12.5 1000 -3.22 -75.20

Szalatavus attricuspis 26.42 550 -17.10 -67.60

Perupithecus ucayaliensis 37.5 400 -9.49 -72.76
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Table S6: Parameters estimated by the fossilized birth-death analysis of extinct and extant
platyrrhines. Posterior mean and 95% credible intervals were estimated from the MCMC
samples from two independent runs, after removing burn-in.

Parameter mean 95% credible interval

Net diversification 0.089 0.041 – 0.136

Turnover rate 0.745 0.571 – 0.908

Speciation rate 0.362 0.241 – 0.490

Extinction rate 0.273 0.137 – 0.415

Preservation rate 0.255 0.066 – 0.495
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Table S7: Evolution of body mass and latitude in Platyrrhines: estimated number of shifts
in rate and trend parameters averaged over 100 phylogenies of extinct and extant taxa. We
summarized the mean probability (Pr) estimated for models with di↵erent number of rate
shifts (K�2 ranging from 0 to 7) and shifts in trends (Kµ0 ranging from 0 to 7). For both
traits constant rate BM models received very little support and the number of rate shifts
ranged between 1 and 4 depending on the tree (Figs. S8, S9). This heterogeneity of BM
models estimated across di↵erent trees is likely to capture the uncertainties associated with
the placement of fossil lineages and branching times. We found little evidence of shifts in
trend parameters (S8, S9).

Body mass Mid latitude

n. shifts Pr %bm n. shifts Pr bm

K�2 = 0 0.04 0.05 K�2 = 0 0.02 0.01

K�2 = 1 0.23 0.25 K�2 = 1 0.14 0.13

K�2 = 2 0.3 0.3 K�2 = 2 0.3 0.37

K�2 = 3 0.26 0.25 K�2 = 3 0.33 0.38

K�2 = 4 0.12 0.11 K�2 = 4 0.15 0.09

K�2 = 5 0.04 0.02 K�2 = 5 0.04 0.01

K�2 = 6 0.01 0.02 K�2 = 6 0.01 0.01

K�2 = 7 0.0 0.0 K�2 = 7 0.0 0.0

Kµ0 = 0 0.79 0.87 Kµ0 = 0 0.83 0.98

Kµ0 = 1 0.18 0.12 Kµ0 = 1 0.16 0.02

Kµ0 = 2 0.03 0.01 Kµ0 = 2 0.02 0.0

Kµ0 = 3 0.0 0.0 Kµ0 = 3 0.0 0.0

Kµ0 = 4 0.0 0.0 Kµ0 = 4 0.0 0.0

Kµ0 = 5 0.0 0.0 Kµ0 = 5 0.0 0.0

Kµ0 = 6 0.0 0.0 Kµ0 = 6 0.0 0.0

Kµ0 = 7 0.0 0.0 Kµ0 = 7 0.0 0.0
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Table S8: Posterior estimates of the ancestral body mass for some of the main nodes in
the platyrrhine phylogeny. Ancestral states are summarized from 100 analyses as median
and 95% credible intervals. For comparison, we show the estimated ancestral states obtained
from the analysis of both extinct and extant taxa as well as for analyses based on phylogenies
of living taxa only. Note that in trees pruned of all extinct lineages the most recent common
ancestor (MRCA) of all extant species coincides with the root node.

Ancestral body mass (Kg)

using fossils using only extant data

MRCA of median 95% CI median 95% CI

Callicebinae 1.58 0.74 – 3.06 1.23 0.73–1.86

Pithecinae 1.68 1.06 – 2.61 2.13 1.22–3.35

Alouattinae 6.54 3.28 – 10.21 6.13 4.57–7.86

Cebinae 2.09 0.93 – 3.17 1.36 0.78–2.12

Aotinae 0.91 0.55 – 1.42 0.89 0.65–1.16

Callitrichinae 0.63 0.28 – 1.12 0.65 0.41–0.97

Atelinae 6.91 1.40 – 12.75 6.30 3.81–9.30

Cebidae 1.67 0.83 – 2.57 1.28 0.78–1.91

Atelidae 3.94 0.85 – 7.82 4.06 2.21–6.37

Pitheciidae 1.59 0.58 – 2.69 1.70 0.93–2.68

All extant species 1.18 0.50 – 2.26 1.71 0.95–2.71

Clade origin 0.40 0.26 – 0.89 1.71 0.95–2.71
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Table S9: Posterior estimates of the mid latitude for some of the main nodes in the
platyrrhine phylogeny. Ancestral states are summarized from 100 analyses as median and
95% credible intervals. For comparison, we show the estimated ancestral states obtained
from the analysis of both extinct and extant taxa as well as for analyses based on phylo-
genies of living taxa only. Note that in trees pruned of all extinct lineages the most recent
common ancestor (MRCA) of all extant species coincides with the root node.

Ancestral latitude

using fossils using only extant data

MRCA of median 95% CI median 95% CI

Callicebinae -20.11 -49.36 – 1.41 -7.13 -20.11–6.41

Pithecinae -29.42 -49.90 – -2.52 -3.33 -18.84–11.24

Alouattinae -7.56 -31.69 – 17.66 -11.24 -25.21–7.86

Cebinae -25.73 -51.99 – 9.94 -5.73 -20.36–8.61

Aotinae -7.21 -22.00 – 6.92 -3.44 -11.91–5.23

Callitrichinae -17.78 -36.07 – -1.20 -7.39 -19.65–4.28

Atelinae -15.42 -37.13 – 5.62 -7.04 -24.65–11.07

Cebidae -29.40 -46.99 – -8.87 -6.08 -18.66–6.82

Atelidae -17.60 -38.49 – 2.34 -7.53 -24.08–9.91

Pitheciidae -34.27 -53.63 – -12.38 -5.29 -20.63–10.43

All extant species -22.48 -45.69 – -5.03 -5.84 -21.16–9.31

Clade origin -9.49 -34.39 – -0.23 -5.84 -21.16–9.31
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Table S10: Estimated body mass (g) of Eocene anthropoids and parapithecoids from North
Africa.

Taxon Epoch Locality Body Family

mass (g)

Abuqatrania basiodontos Late Eoc. Egypt 341 Parapithecidae

Qatrania wingi Late Eoc. – Early Olig. Egypt 242 Parapithecidae

Qatrania fleaglei Late Eoc. – Early Olig. Egypt 510 Parapithecidae

Biretia piveteaui Late Eoc. Algeria 383 Incertae sedis

Biretia fayumensis Late Eoc. Egypt 273 Incertae sedis

Biretia megalopsis Late Eoc. Egypt 400 Incertae sedis

Arsinoea kallimos Late Eoc. Egypt 552 Incertae sedis

Proteopithecus sylviae Late Eoc. Egypt 800 Proteopithecidae

Serapia eocaena Late Eoc. Egypt 1029 Proteopithecidae

Talahpithecus parvus Late Eoc. Libya 376 Incertae sedis
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Supplementary Figures

Figure S1: Ancestral states at the internal nodes of the tree are sampled directly from their
posterior distribution, which combines four normal densities: two from the descendants, one
from the parent node (all of which are based on the current trait states and parameters of
the BM model), and one being a vague normal prior distribution on the node state (blue
graph). The notation follows that of equation (1).
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Figure S2: Accuracy of parameter estimation summarized across 100 simulations under six
simulation settings (see Supplementary Methods). Mean absolute percentage errors (MAPE)
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Figure S3: Accuracy of parameter estimation summarized across 100 simulations under
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Figure S4: Example of simulated and estimated parameter estimates. Plots in a-c show a
simulation from scenario 5, in which one clade evolves under negative trend. Plots in d-f show
a simulation from scenario 4, where two rate shifts occur in the phylogeny. The phenogram
(c and f) show the true trait evolutionary history(in blue) and the estimated one (in red).
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Figure S6: Phylogenetic relationships among extant platyrrhine species. Nodal support
(posterior probabilities) is shown only when smaller than 1.
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Figure S7: One of the 100 posterior trees of extinct and extant platyrrhines used to perform
the trait evolution analyses.
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Figure S8: Rates and trend parameters estimated for body mass across families and sub-
families of Platyrrhines, averaged over 100 trees of extant and extinct taxa.
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Figure S9: Rates and trend parameters estimated for mid latitude across families and sub-
families of Platyrrhines, averaged over 100 trees of extant and extinct taxa.
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Figure S10: Range of ancestral body mass through time across lineages of platyrrhines. The
plot shows a comparison between the estimates obtained when analyzing only extant species
and those obtained from the analysis of both extinct and extant taxa. The shaded areas
show the minimum and maximum boundaries of the range of estimated body mass averaged
over 100 analyses within 1 Myr time bins.
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Figure S11: Range of ancestral latitudes through time across lineages of platyrrhines. The
plot shows a comparison between the estimates obtained when analyzing only extant species
and those obtained from the analysis of both extinct and extant taxa. The shaded areas
show the minimum and maximum boundaries of the range of estimated latitudes averaged
over 100 analyses within 1 Myr time bins.
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