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ABSTRACT

Genome wide association (GWA) analysis of brain imaging phenotypes can advance our understanding of the genetic basis of
normal and disorder-related variation in the brain. GWA approaches typically use linear mixed effect models to account for
non-independence amongst subjects due to factors such as family relatedness and population structure. The use of these
models with high-dimensional imaging phenotypes presents enormous challenges in terms of computational intensity and the
need to account multiple testing in both the imaging and genetic domain. Here we present method that makes mixed models
practical with high-dimensional traits by a combination of a transformation applied to the data and model, and the use of a
non-iterative variance component estimator. With such speed enhancements permutation tests are feasible, which allows
inference on powerful spatial tests like the cluster size statistic.

Introduction

Genome-wide association studies (GWAS) of neuroimaging data can advance our understanding of human brain by discovering
genetic variants associated with normal and disorder-related phenotypic variance in brain structure and function'=®. The
genetic association analysis with the quantitative phenotypes from structural (i.e. brain volume, cortical thickness, white matter
integrity) or functional imaging modalities (brain response to particular cognitive task or resting state) at hundred thousand
locations in the human brain present statistical challenges including statistical power, multiple comparisons correction and like
other association studies correction for population structure, a term that encompasses cryptic/family relatedness and population
stratification .

In the GWA studies of unrelated individuals, non-independence due to latent population stratification or due to unknown
(often termed cryptic) relatedness’-® is generally thought to be a confounding factor that can lead to excessive false positives
when ignored. This type non-independence has been studied throughly in the recent GWA era’'*. While genomic data can
be used to control for population stratification by including the top principal components as a fixed effect covariates in a
linear regression model'#, usually individuals with close estimated relatedness from identity-by-state (IBS) matrix or different
ethnicities are excluded from the study sample. This might not be a problem in genetic studies with 4 digits sample sizes, but
may make substantial differences in GWA studies with neuroimaging phenotypes where sample size is much smaller. Also,
even in a carefully design GWA study, it is hard to avoid spurious associations because of population structure; in particular
it is likely that in studies with large sample sizes i.e the UK biobank some level of population structure are induced within
a same population. Moreover, GWA studies with neuroimaging phenotypes require fitting a marginal model at each point
(voxel/element) in the brain, the large number of measurements presents a challenge both in terms of computational intensity
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and the need to account for elevated false positive risk because of the multiple testing problems both in terms of number of
elements in image and number of markers being tested. Although the emergence of large scale neuroimaging consortia like
ENIGMA or CHARGE can help to conduct well-powered genetic association studies through meta analysis framework, still it
is crucial to use a powerful statistical method at the site level. Hence, there is a compelling need for a analytical technique that
addresses these challenges.

There has been great interest in the field of quantitative genetic to develop sophisticated statistical methods to control
population structure in GWA studies of unrelated individuals. Linear mixed models (LMM) allowing for the rigorous testing of
genetic associations (and, more generally, fixed effects) have long been employed in human genetics as the standard to exploit
and/or correct for the non-independence among subjects due to known familial relatedness in pedigree-based studies'>~'°.
Linear mixed effect models using molecularly-derived empirical relatedness measures have gained popularity recently for
both studies of related and unrelated individuals since they do not require prior information on biological relatedness and/or
represent a framework where such complexities are automatically accounted for. One popular utilization of the LMM is as an
alternative method to linear regression models where the association statistic incorporates a component of trait variance that is
explained by a genetic relationship matrix (GRM) that captures the genome-wide similarity between “unrelated” individuals by
modeling it as a random effect?*3!. Additionally, it has been shown that the correction for the problem of latent population

structure in GWA with an LMM is both effective and power preserving??-32.

Due to the required inversion of potentially large matrices, the general LMM is computationally intensive where the
complexity includes the deriving of the GRM, variance component parameter estimation, fixed effect estimation, and the
calculation of the required association statistic for each marker grows with sample size and number of candidate markers for
association testing. Several approximate or exact methods have been proposed to speed up LMM-based testing. Approximate
methods assume the total polygenic random effect is same for all markers under the null hypothesis of no marker effect, hence
the relevant residual genetic variance component is estimated only once using all markers. In contrast, exact methods, which is
the correct LMM practice®*2%3% 33 estimate a residual variance component conditional on each marker’s effect. In studies of
“unrelated” subjects, this residual variance component often involves re-estimation of the GRM which is constructed excluding
the candidate marker and surrounding markers in linkage disequilibrium.

The LMM efficiency in controlling confounding factors in the genetic association analysis and possible boost in power
inspires using it with high-dimensional imaging phenotypes. However fitting LMM at each voxel/ROI in the brain is
computationally intensive or even intractable at the voxel level while variance component estimation relies on likelihood
function optimisation using numerical methods. Moreover, search for genetic association across the genome at different
locations with imaging phenotypes requires intense multiple testing corrections both for number of elements in an image and
number of markers. Whether the association analysis is conducted at the reduced search space in the brain i.e., summary
measure from a region of interest or voxel level, naive application of bonferroni correction for number of hypothesis testing in
the image with usual GWA P-value leads to invalid statistical inference procedure while it ignores complex spatial dependence
between elements in the imaging phenotypes. The parametric null distribution of cluster size®* or threshold free cluster
enhancement (TFCE) statistics® that are the most common and sensitive inference tools in imaging, could be invalid due to
untenable stationary assumption’®37 or in the later case be unknown. Familywise error rate (FWE) correction, controlling the
chance of one or more false positives across the whole set (family) of tests>® requires the distribution the maximum statistic,
can be computed for either voxels/ROI or cluster size with permutation test>® which is the standard tool to conduct inference in
neuroimaging.

Despite many analytical techniques have been developed to accelerate the GWA with LMM, these advances do not eliminate
problems related to numerical optimisation nor multiple testing problem. This paper makes two major contributions to reduce
the complexity of LMM in the genetic association specifically with the imaging phenotypes. First, variance component
estimation step computational cost is reduced using non-iterative one-step random effect estimator*’. Second, complexity of
association testing is dramatically decreased with projecting the model and phenotype to a lower dimension space.

To our knowledge the fastest implementation of exact LMM is Fast-LMM?>*, which transforms the phenotype and LMM
model with the genetic similarity matrix (GRM) eigenvectors and uses a profile likelihood approach to simplify variance
component estimation. The eigenvector matrix diagonalisation along with the profile likelihood with only one variance
parameter reduces optimisation time substantially. In Fast-LMM the covariance matrix is estimated only under the null
hypothesis of no marker effect, and then a generalized least squares (GLS) is applied to estimate the marker effect and the
likelihood ratio test is used for hypothesis testing. Note that small sample size behavior of this approach has not been validated,
using it for association analysis of imaging phenotypes with only, say 300, subjects might not be valid. In addition to concerns
about the finite sample validity, Fast-LMM requires numerical optimisation for each element (voxel/ROI) of image that makes
it computationally intensive or essentially impractical for large-scale imaging phenotypes.

The key to our method is the projection of the phenotype and the model to a lower dimension space, and a score statistic for
association testing. This projection is based on the eigenvectors of the adjusted GRM for the fixed effect nuisance terms. In this
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setting, the projected phenotype likelihood function is equivalent to that used with restricted maximum likelihood (REML) of
the LMM (2?), going forward we call this approach simplified REML. While both models have the same statistical properties,
our particular projection provides several computational benefits that reduces LMM complexity dramatically as follows: (I) As
we described in previous work*’, the diagonalized covariance allows a non-iterative one-step variance component estimator,
taking the form of a weighted regression of squared projected data on eigenvalues of the GRM adjusted for nuisance fixed
effect terms, an approach that we henceforth call WLS-REML (weighted least squares REML); (I1) The regression form of our
estimator is easily vectorized, meaning that many image elements and SNPs can be tested in a single and fast computational
test in several high-level programming languages (Online Methods); (111) Finally, the simplicity and fast computation of the
score test statistic makes permutation testing feasible, allowing exact, non-parametric control over the FWE, accounting for the
number of tests conducted over all image elements and markers. Two permutation schemes can be defined, free and constrained,
where in the latter case the permutation is confined to exchangeability blocks defined based on the eigenvalues distribution.

The reduced computational complexity of our method represents a significant advance over existing methods. The
complexity of LMM association has two components, one for the variance component estimation, the other is for fixed
effect parameter estimation and test statistic computation. For a GWA over S markers and V imaging phenotype elements
on N individuals, the variance component likelihood optimization complexity of FaST-LMM is O(N> + INV), where I is the
average number of iterations, while for WLS-REML the random effect estimator (Online Methods) it is O(N 34N V) (the
common O(N 3) term is the time complexity of the GRM eigendecomposition). More critically, the estimation and test statistic
computation complexity of FaST-LMM is O(SPN?V'), where P is the number of nuisance fixed effects, while for WLS-REML
(Eq. (15)) this is O(SNV), a substantial reduction for imaging phenotypes when number of image elements V is much bigger
than the sample size N. Even for a single trait GWA (V = 1), our proposed projection reduces the association (Eq. (12))
complexity to O(SN) which is significantly less than FaST-LMM for large sample GWA.

In our previous work*’ we introduced WLS-ML random effect estimator that exploits this one-step optimization approach
combined with eigen-rotation of phenotype and model (see Online Methods for more details). The non-iterative estimator
has a simple form, with variance components estimated as a weighted regression of squared ordinary least square residuals
on eigenvalues of the GRM, and fixed parameters estimated with a weighted regression of eigen-transformed phenotype on
eigen-transformed model. In this paper we evaluate our non-iterative ML and REML estimators (WLS-ML and WLS-REML)
with their fully converged counterparts (Full ML or Full REML), comparing score, likelihood ratio (LRT) and Wald tests on
intensive simulation studies. The score test based on the simplified REML function is compared with FaST-LMM using the
simulation study and real data analysis.

Results

Simulation Results

Simulation results on the accuracy of genetic random effect (O'i) estimation shows that the non-iterative one-step approaches
are similar to their fully converged counterparts (Supplementary Figure 1), using either likelihood or restricted likelihood
functions. When the data are independent (Gﬁ = 0), the methods are indistinguishable in terms of bias and mean squared
error (MSE). When G/i > 0, the fully converged methods have less bias, but the difference is modest in absolute value; in
terms of MSE, the non-iterative one-step methods have just slightly worse performance. The first simulation also shows good
performance of fixed effect (31) estimation (Supplementary Figure 2). Both the non-iterative one-step and fully converged have
similar bias and MSE, with WLS-REML again closely following fully converged REML.

Simulations show that the false positive rates for the fixed effect score test for Hy : f; = 0 (Supplementary Figure 3a) are
nominal; for both simplified ML or REML functions, for all simulation settings considered, test statistic type and type of
random effect estimator, the false positive rates lay within the Monte Carlo confidence interval (MCCI) (See also Supplementary
Figures 4a & 4b).

The simulation results on the power of score test reveal negligible differences between the random effect estimation methods
(Supplementary Figure 3b). Similar findings are obtained for the power of LRT and Wald tests (Supplementary Figures 4c &
4d). Like the parametric approach, we found that both permutation schemes, free or permutation within exchangeability blocks,
control the false positives at the nominal level 5% (Figure 1a and Supplementary Figures 5a & 5b), and could provide nearly
equivalent power (Figure 1b, Supplementary Figures Sc & 5d) for all statistics either based on the simplified ML or REML
functions. However, for all test statistics and Gﬁ, the free permutation scheme is slightly more powerful than the constrained
permutation test when a kinship matrix is used.

Simulations show that the null distribution of the score test for Hy : f; = 0 based on the simplified models using the fully
converged and non-iterative variance component estimators are valid and indistinguishable (Figure 2 & Supplementary Figure
6). However, we stress that the latter is much faster to calculate. Based on all of these results, we selected the score test based
on the simplified REML function as the computationally most efficient test to be considered for genome-wide simulations and
real data analysis.
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Figure 1. Simulation 2, comparing rejection rates of the proposed fixed effects permutation inference, for the null f; = 0 (a)
and alternative (b) for a 5% nominal level based on simulation using a GRM from 300 unrelated individuals and 5000
realizations and 500 permutations each realizations; left column shows results for the free permutation scheme, right for the
exchangeability-block constrained method. Monte Carlo confidence interval is (4.40%, 5.60%). For non-iterative and fully
converged, both permutation schemes could control the error rate at the nominal level, however free permutation is slightly
more powerful than the constrained permutation.
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Figure 2. Simulation 3, comparing the distribution of null (8; = 0) parametric p-values from the fixed effects score statistic
derived from the simplified REML function using fully converged (left) and non-iterative (right) random effect estimator, for
the GRM from 300 unrelated individuals. There is no apparent difference between the two random effect estimators, and both
are consistent with a valid (uniform) P-value distribution. Confidence bounds created with the results of*! where ordered
P-values follow beta distribution.

Genome wide simulations were conducted to compare the parametric P-values from FaST-LMM and the score test based on
the simplified REML using non-iterative variance component estimator in terms of false positives and power. The simulation
results reveal that both approaches provide overall valid error rates (FaST-LMM=4.94% and the WLS-REML score test =
4.89%, Figure 3a). Power simulation shows that FaAST-LMM and the score test have largely similar power (FaST-LMM=15.25%,
WLS-REML score test=15.22%), however, FaST-LMM is slower (Figure 3b). Despite reasonable concordance of P-value and
fixed effect parameter estimates (f3;) between FaST-LMM and simplified REML (Supplementary Figure 7), FaST-LMM’s

A

estimates of parameter estimate variance (var(f3)) exhibits some systematic bias (Supplementary Figure 8).

Association Analysis of FA data

We performed GWA of whole brain fractional anisotropy (FA) data, using a whole brain parcellation of 42 regions of interest
(ROIs) as well as a voxel-wise analysis for 53,458 voxels (332 subjects, 1,376,877 SNPs; for full details see Supplementary
Methods), comparing the WLS-REML score test with the fully converged random effect estimators with FaST-LMM. We
also evaluate the use of ordinary least square (OLS) with MDS as nuisance fixed effects regressors for control of population
structure in GWA with unrelated individuals.

The random effect estimators, one-step and fully converged REML are compared directly in Figure (4) with a scatter plot,
showing an apparent trade-off between accuracy and running time as the non-iterative method has lower estimates of Gﬁ for
some regions.

Even with the tendency for genetic variance to be underestimated with the non-iterative method, the association statistic
show remarkable concordance, with both approaches having almost the same performance (Figure 5). FaST-LMM comparisons
with the score test using the simplified REML function shows slightly larger statistics consistently for all ROIs, regardless of
random effect estimation method (Supplementary Figures 10 & 11). Furthermore, comparing different approaches genomic
control shows that regardless of random effect estimation method, the score test based on the simplified REML has smaller
genomic control values than OLS with MDS nuisance regressors for all ROIs consistently. The genomic control of OLS with
MDS nuisance regressors is poor, while the score test using both fully converged, one-step estimators and FaST-LMM have
similar values close to unity (Supplementary Figure 9).

Figure 6 compares QQ-plot of association statistics between our model, FaST-LMM and OLS with MDS. These plots show
either an identical distribution or slightly larger values for the OLS approach; however, the OLS approach has poor genomic
control (Supplementary Figure 9,) and after adjustment we get essentially identical results (Supplementary Figures 12 & 13).

A permutation test was used to find FWE-corrected P-values for 42 ROIs and 1,376,877 SNPs to assess association
significance. Among the 42 x 1,376,877 ~ 57 million statistics, 8 passed the permutation based FWE threshold (x7 = 34.72).
Application of a Bonferroni correction for 42 tests to the usual GWA alpha level (5 x 10~%) yields to a more stringent threshold
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Figure 3. Simulation 4, comparing parametric p-values for simulated null data (a) and data with signal (b) using FaST-LMM’s
LRT and our score test based on one-step optimization of the simplified REML function, using 100 random markers and 5000
realizations. The overall error rates for FaST-LMM and the score test are 4.94% and 4.89%, respectively, for nominal 5%
where the Monte Carlo confidence interval is (4.40%,5.60%). While overall power is largely similar for both approaches (for
FaST-LMM 15.25% and, and our method 15.22%), FaST-LMM is 200-fold slower.

(9612 = 36.98) where only one association survives, indicating the potential improved power from a permutation-based inference
that accounts for dependency among the tests (Figure 7).

Finally we performed voxel-wise genome-wide association analysis of 53,458 voxels with 1,376,877 SNPs, using our
proposed WLS-REML score test for association. Cluster-wise inference was performed on each spatial association map; we
used a threshold corresponding to a 7512 P-value of 0.01 to create clusters, and 1000 permutations were used to compute the
maximum distribution of cluster size over space and SNPs, offering FWE control over the entire search space; voxel-wise FWE
thresholds were also computed. The level 5% FWE-corrected voxel-wise statistic threshold was 66.42, producing 6 significant
association out of 84 billion tests. The 5% FWE corrected cluster size threshold is 7370 but no SNP’s statistic map had a cluster
exceeding this value; the largest observed cluster size is 6,648, which had a image-, genome-wide FWE-corrected cluster size
P-value of 0.09.

Benchmarking and running times

We compared running time of our WLS-REML score test to that of FaST-LMM, which to our knowledge is the fastest
implementation of LMM. The comparison was done using simulated and read data with a Intel(R) core(TM) 3.4 GHz i7-2600
CPU and 16GB RAM. Parametric association testing of 5000 phenotypes with 6000 simulated markers using a sample of 300
individuals took 1 hour with FaST-LMM, however, our implementation of the score test (Eq. (4.12)) only took 3 seconds. On
real data, parametric whole genome association on 22 ROIs, required 756 minutes using FaST-LMM while our approach took
only 2 minutes.

Discussion

Neuroimaging genetics has moved from establishing a heritable phenotypes to finding genetic markers that are associated with
imaging phenotypes. Despite emerging world-wide consortia to boost GWA studies power using the largest possible sample
sizes, there is a compelling need for powerful and computationally efficient analytic techniques that control for population
structure at the site level.

Whether using the linear mixed model for controlling population structure or kinship, high dimensional imaging phenotypes
presents challenges in terms of computational intensity and elevated false positive risk; growing sample sizes and whole genome
sequence data add to the computational burden.

To tackle this problem, we used an orthogonal transformation that substantially reduced LMM complexity for GWA. The
equivalence between projected model and REML function helped us to reduce complexity of association testing. Specifically,
the projection reduces the information matrix to a scalar that enables efficient vectorized implementation of score test with time
complexity O(SNV). Further improvements in speed can be achieved by using the WLS-REML random effect estimator with
O(NV) that we found to be more accurate than the WLS-ML estimator.
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Figure 4. Real data analysis, comparing one-step and fully converged random effect estimators of 0'/% based on the simplified
REML function. Colors represent random effect estimation at different regions for all 22 chromosomes. The scatter plot show
consistent trend towards underestimation of random effect using non-iterative method, though this apparent increased accuracy
comes with a 10°-fold greater computation time.

We conducted intensive simulation studies, evaluating a broad set of test statistics for association testing using the simplified
ML and REML functions accompanied by one-step and fully converged random effect estimators. The one-step random effect
estimator using simplified REML function provides more accurate approximation of the fully converged one in comparison to
the WLS-ML variance component estimator. The simulation and real data analysis shows that only minor differences in marker
effect estimation and association test statistics between one-step and fully converged random effect estimator. However, the
former requires less computational resources. Also, we could not observe any appreciable differences in performances in terms
of the error rate and power using the GRM from unrelated individuals or kinship matrix from a family study.

The WLS-REML random effect estimator is fast enough to be used to estimate voxel-wise heritability. Although the
proposed one-step random effect estimator is not as accurate as fully converged one, it can be used for filtering a small number
of elements for further investigation with more computational intense tools. Furthermore, when restricted to individuals with
European ancestry we found LMM had genomic controls values closer to 1 than OLS values, indicating the success of the
LMM in dealing with population structure.

We selected the score test based on the simplified REML function for further investigations because it only requires a
single variance component estimate, common to all markers under the null hypothesis. Furthermore, efficient vectorized
implementation of score test for images accelerates association testing. The null distribution of WLS-REML score test P-values
was nearly as accurate as for the fully converged REML score test, meaning that permutation is not required for element-wise
inference.

Our contribution in the acceleration of the exact LMM can be seen at two steps. First, covariance matrix estimation using
WLS-REML random effect estimator reduces time complexity from O(N? +INV) to O(N* +NV). Further improvement in
speed is also obtained by using the score test based on simplified REML function. Our proposed method allows efficient
implementation that reduces running time complexity to O(SNV). In addition, the efficient implementation of score test is fast
enough to allow the permutation test to control family-wise error rate for number of elements in image and number of markers,
and allow the use of spatial statistics like cluster size or TFCE.

Software implementation of this method, Nonparametric Inference for Genetics Analysis (NINGA), is available at http:
//nisox.org/software/ninga/.

1 Online Methods

At each voxel/element, a LMM for the genetic association for N individuals can be written as:
Y=Xi1p+ X2 +g+e, ey

where Y is the N-vector of the measured phenotype; X is a N-vector of a given marker’s minor allele count, implementing an
additive genetic model; X, is the N x (P — 1) matrix containing an intercept and fixed effect nuisance variables like age and
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Figure 5. Real data analysis, comparing values of the score test for association testing (Hp : i = 0) using non-iterative and
fully converged random effect estimators and FaST-LMM’s LRT. Each plot represents a ROI where x-axis shows FaST-LMM’s
LRT and y-axis represents the score test. Despite strong concordance between the score test results using WLS or fully
converged random effect estimator, FaST-LMM is slightly more powerful, consistently for whole brain parcellation (see
Supplementary Figures ?? & ?? for the rest of the ROIs ).

sex; Py is the scalar genetic effect; 3, is the (P — 1)-vector of nuisance regression coefficients and g is the N-vector of latent
(unobserved) additive genetic effects; and € is the N-vector of residual errors. The trait covariance, var(Y) = var(g+¢€) =X
can be written

£ =07 (2®) + ofl, 2

where Gf and o7 are the additive genetic and the environmental variance components, respectively; 7 is the identity matrix; and
2® is the GRM matrix where element (i, j) is calculated as:

0 — 1 f (Xik — 2pi) (Xjx — 2pi)
R ] 2pk(1 = pr)

)

where x;j; is the minor allele count of the i-th subject’s k-th marker, coded as coded as O, 1 or 2; py is frequency of the k-th
marker; and M is the total number of markers.

Under the assumption that the the data follows a multivariate normal distribution, the model specified by Equations (2) and
(1) have a log-likelihood of

1 _
(B, EmL; Y, X) = -5 [Const +log(|Z)) + (Y —XB)Z~ (Y —XB)], 3)
and a Restricted Maximum likelihood (REML) function of
1
lrEML (ZREML; Y, X) = — 3 [Const —log |X'X | +log |Z| +log |[X'Z X | + “@

Y'PY],

where X = [X; Xp]land B=[B1 ] are the full design matrix of fixed effects and their parameter estimate vector, respectively,
and P=Xx"! (I —X(X'zIx)"1x! Z’l) , the projection matrix. The fixed effect parameters are estimated using generalized
least squares (GLS)

A a1 el
Bremr = (X Zgen X) ™ X Eremr Y

where iﬁéML comes from optimised REML function (Eq. (4)).
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Figure 6. Real data analysis, QQ plot for comparing FaST-LMM and the score test based on the simplified REML function
using the WLS-REML random effect estimator with the linear regression with MDS as nuisance fixed effects. Each plot
corresponds to different ROIs. These plots show either an identical distribution or slightly larger values for the OLS approach.
However the OLS approach has poor genomic control (Supplementary Figure 9).

Several algorithms have been proposed to accelerate ML or REML optimisation by transforming the model with the
eigenvectors of the GRM and/or using a different covariance matrix parametrisation®->#3340 Here we consider standard
additive model covariance matrix parametrisation (Eq. (2)) as we can efficiently estimate it with our one-step, regression based

40
approach™.

1.1 Simplified REML and ML Functions

The simplified ML function for LMM is discussed in*’. For completeness, we review shortly the simplified ML function, to
be next followed by development of the simplified REML function. The simplified ML function is obtained by transforming
the data and model with an orthogonal transformation S, the matrix of eigenvectors of 2@ that crucially coincide with the
eigenvectors of X:

SY = SXB+Sg+Se
which we write as
' = X'B+g+e, ©)

where Y* is the transformed data, X* is the transformed covariate matrix, g* and €* are the transformed random components.
The diagonalising property of the eigenvectors then gives a simplified form for the variance:

var(e*) = £* = 6Dy + 671,

where X* is the variance of the transformed data and D, = diag{A;} is a diagonal matrix of the eigenvalues of 2.
The log likelihood takes on the exact same form as Equation (3) for Y*, X*, B and L*, except is easier to work with since
¥* is diagonal:
1 N N (v — x*B)?
o (B, 05,053 X*) =~ | Nlog(2m) + Y. lo(ody + o)+ Y. DB |
2 i=1 =1 Oxhei+ 05
where y? is the i-th element of Y*, and x} is the i-th row of X*.
A simplified form of the REML function (Eq. (4)) is obtained by projecting the polygenic model (Eq. (1)) using eigenvector
matrix of the adjusted GRM for the fixed effect nuisance terms as follows:

M(2®)M = S:Dg,S,,
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Figure 7. Real data analysis, GWA of whole brain fractional anisotropy data, using a whole brain parcellation of 42 regions.
Permutation test was used to derive FWE corrected P-values of score test based on the simplified REML function using
one-step random effect estimator. Among the 42 x 1,376,877 ~ 57 million statistics, 8 passed the permutation based FWE
threshold (X12 = 34.72, blue line in Manhattan plot). Application of a Bonferroni correction for 42 tests to the usual GWA alpha
level (5 x 10~®) yields to a more stringent threshold (9612 = 36.98, black line in Manhattan plot) where only one association

survives, indicating the potential improved power from a permutation-based inference that accounts for dependency among the
tests.
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where M =1 —X(X'X)~'X' is the residual forming matrix based on the fixed effects regressors; Dy, = diag{2,,;} is the
(N — P) x (N — P) diagonal matrix of non-zero eigenvalues; and S; is the N X (N — P) matrix of eigenvectors that corresponds
to non-zero eigenvalues. The projected polygenic model is obtained by pre-multiplying S. to the both sides of polygenic model

(Eq. (1)):
SlY = S.X+S.g+S.e,
SIMY = S.MX+S,.Mg+S;Me.

which we write as:
' o= g +¢, (6)

where Y*, ¢! and &' are N — P projected phenotype, genetic and residual vectors, respectively. In this fashion, the projected
phenotype covariance matrix becomes diagonal:

cov(¥) = X
= 03Dy, +0fl.

That is, the projected data, Y., loglikelihood takes on a simpler form:

@)

s 1 N—P ) ) N—P y*Z
EREML(GA,O'E;Yr*) - —5 Const + Z log(lgr,»GA+GE)+ Z m .
i=1 i=1 "&IYA E

where y?? is the square of the i-th element of ;.

In the ?? we show that this is equivalent to Equation (4), and thus we can use the eigenvectors of the adjusted GRM for
nuisance fixed effects to build the REML log likelihood. It is clear from the Equation (7) that working with the simplified
version of REML is computationally easier than the original one (Eq. (4)). Beside accelerating the REML optimisation, this
approach facilitates performing likelihood ratio test for fixed effects (8s) and leads to a computationally efficient estimator and
test statistic, described below.

1.2 REML and ML Parameter Estimation

We choose Fisher’s scoring method to optimize the simplified ML and REML functions because it leads to computationally
efficient variance component estimators. The score and the expected Fisher information matrices for the simplified models can
be expressed as:

X*lz*flg*
SML(B7 9) - |: _% [U/Z*71 1— U/2*728*2] :l )
X*lz*flx* O
IML(ﬁ7 9) = |: 1 *—2 :| ’
0 ly's—2y
and
1 *— *—2yrk
SRemL(0) = —3 Uz -ulE
1 o
IRemL(0) = EUr’zr U,

where 6 = (62,03); U = [1, 4] and U; = [1;, g, ] are N x 2 and (N — P) x 2 matrices; and A, is the vector of eigenvalues of

(2®); Aqg, the vector of eigenvalues of M(2®)M; 1 and 1, are N and (N — P)-vectors of one, respectively; ¥;*2 is the element
wise product of Y*; and £*? is the element wise product of £*. Following Fisher’s scoring method it can be shown that at
each iteration, maximum likelihood estimation of B and 6 are updated based on WLS regression of Y* on X* and £*? on U,
respectively, as follows:

N k! k| — =1 Gl oy — 1y
BuLj1 = (X7E)TXY) T xTE) Y 8)
N s 1r =1 1 sy 1 ax
by = max{0, (U'EP V) UED e,
and restricted maximum likelihood estimation of 0 is updated based on WLS regression of Yr*2 on U; as follows:

1

OremL, j+1 = max{O, (Ur,(isz)flUr)i U;(2:})71K*2}7
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where j indexes iteration; ij and Zr*jz are constructed with Oy ; and OrgmL, ; Tespectively; 8}‘2 is the element-wise square of

& =Y —-X" Bmj; Y2 is the element-wise square of ¥*; and the variance parameters 8 must be positive, hence the maximum
operator. As usual, these updates are iterated until convergence criteria holds.

It has been shown that when the initial value is a consjstent estimator, the estimator based on the first iteration is
asymptotically normal and consistent*2. Such initial value for Pumr and éML could be derived from OLS regression coefficients
of Y* on X* and squared residuals on U, respectively:

BML,OLS = (X*,X*) 71X*,Y*,
OvLos = max {0, (U'U)_1 U’£*2} .

For REML, initial values for éREML,OLS can be found as OLS regression coefficient of Yr*2 on U;:
OrEmL.OLs = max {0, (v, Ur’Yr*z} .

Hence our one-step, non-iterative estimators are:

A sl 1Sk R Ry — 1y
Pvwes = (X (EoLs) X)X (EoLs) 'Y, )
a) $hk — -1 vk —1 %
s = ma{o, (U (EGs)'0) U ERs) ests (10)
R PR T -
OrEmMLWLS = max{O, (U (E6is,) "' U:) Ul (E6is,) erz}, (11)

where igLS and ié)LS,r are formed by 6w oLs and Oremr,o1s respectively, and éSZLs is the element-wise square of €5 ¢ =

yr—-X* BOLS- Going forward, we will use “ML” or “REML” to refer to the iterated estimators and “WLS” to refer to these
one-step estimators.

1.3 Association Testing
The Score, likelihood ratio (LRT) and the Wald tests can be used for the genetic association testing using either ML or REML
functions of the model in Equation (1).

The score statistic*? that requires the value of score and information matrices under the the null hypothesis constraint
(Hy : By = 0) for the simplified ML model (Eq. 5) can be written

Tsme = &y Xi [C/(X* Svl X)Xy B

where C is a P x 1 contrast vector; X* = [X rX; | encompasses the full transformed covariate matrix; E‘I(/IL and g are the
ML residual and covariance matrix estimates under the null hypothesis constraint. The score statistic for the projected model
(Eq. (6)) can be derived like Ts pmr. following the projection with respect to the Hy fixed effects, i.e. nuisance, terms X5,

J /o _ ! Sk —
TsremL =Y 5 X0 (X0 X)X sy (12)

where ¥;* = S, Y and X, = S} X, are (N — P+ 1)-vectors of the projected phenotype and allele frequency count, respectively;
and the projection matrix Sy, is comprised of the eigenvectors of M, (2®)M, with non-zero eigenvalues, M =1 —X, (XzXé) - 1Xé;
and £7~! is the projected model covariance matrix estimation under the null model constraint.

Likelihood Ratio Test The LRT* statistic is twice the difference of the optimised log-likelihoods, unrestricted minus
Hy-restricted. For ML this requires optimizing the likelihood function twice, once under the null Hy : B; = 0, once under the
alternative. We denote the test statistic for this test 71, mp. A well-known aspect of REML is that it cannot be used to tests of
fixed effects, since the null hypothesis would represent a change of the projection that defines the REML model. However, we
can consistently use the same projection S»;, under the unrestricted and restricted models, to diagonalise our covariance and
carry out such a hypothesis test. To be precise, the unrestricted model is

SerY = S/ZerBI + S/ng + S/2rg’
where S’2rX2 B> = 0 by the construction of Sy, and the restricted model is
SerY = S/ng + S,2r£'

Following the same procedure as ML, the test statistic is denoted by 71, Remr.-
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The Wald Test For a scalar parameter, the Wald test*’ is the parameter estimate divided by the standard deviation of the

estimate under an unrestricted model. For an vector parameter 3 and contrast C, it takes the form
Tw = CBCX'E X)) 'p'c

where B and £~! are the parameter estimations under the alternative hypothesis; this form holds for both ML and REML. A
test for genetic association testing can be calculated either using fully converged or one-step variance component estimators. In
the parametric framework, all of the aforementioned tests null distribution follow chi square distribution with one degree of
freedom asymptotically.

1.4 Inference Using Permutation Test

In neuroimaging the permutation test is a standard tool to conduct inference while controlling the family wise error rate (FWE)3°.
It only requires an assumption of exchangeability, that the joint distribution of the error is invariant to permutation, and can
be provide exact inference in the absences of nuisance variables, or approximately exact control with nuisance variables®.
Control of the FWE of a voxel-wise or cluster-wise statistic is obtained from a maximum distribution of the corresponding
statistic. However naive use of permutation test for the genetic association testing, ignoring dependence structure between
individuals, leads to invalid inferences*®#’. Here we propose two permutation schemes that account for dependence explained
by our model, one free and one constrained permutation approach.

Free Permutation

The genetic association testing in the context of LMM using a permutation test requires proper handling of fixed effect and
random effect nuisance variables in order to respect the exchangeablity assumption. While there are a variety of methods for
testing for a fixed effect when the errors are independent®’. However little work has been done for fixed effect inference using
permutation test in linear mixed models where the error term is correlated*®.

Free Permutation for the simplified ML Model: For the simplified model (Eq. 5) we create permuted data ¥* using the
reduced, Hy : B; = 0 null model residuals and use them to create surrogate null data,

V= X5 Bz + Pég,
where P is one of N! possible N x N permutation matrices; Bg is the reduced model nuisance estimate found with either
fully converged (Eq. (8)) or one-step (Eq (9)) methods; € denotes the reduced model residuals likewise found with either
fully converged or one-step estimators; and the tilde accent on the data (¥*) and permutation (P) denotes one of many null

hypothesis realisations. The reduced null model is not exchangeable due heteroscedasticity of X*, but we account for this in
each permutation step by fitting the simplified model (5) with the permuted covariance matrix

cov(P*) = PP = 63PD,P + Gil.

With this approach we obtain samples from the empirical null distribution of the maximum score, LRT and the Wald tests (or
cluster-size, after thresholding one of these test statistics), where the maximum is taken over all voxels and SNPs to control
FWE.

Free Permutation for Simplified REML model : While above, we created null hypothesis realizations by permuting the null-
model residuals and adding back on estimated nuisance, here we will permute data after reduced-model eigen-transformation.
We do this because projection removes the nuisance fixed effect covariates. In both cases, though, we must account for the
dependence existing under Hy.

An alternate permutation scheme could be built based on projecting the LMM model (Eq. (1)) to the lower dimension space
with respect to the null hypothesis reduced model, i.e. using only the nuisance fixed effect terms. Let M, be the residual forming
based on X, alone and, as Section 1.1, define Sy, as the transformation based on the non-trivial eigenvectors of M,(2®)M,,
creating a model with dimension N-(P-1):

Yo =XiBi+g +e,
where Y = ’2rY is the reduced transformed data; X|. = S’ZrX 1 is as above, the reduced transformed additive genetic effect;
g = S5.g and & = S € are the latent genetic effect and random error terms, respectively, after the reduced transformation.
Here we permute the data, producing ¥ = PY;*, with permuted covariance matrix

cov(¥) = 63PDg, P + o}l

fit in each permutation step. However, under the null hypothesis of no genetic effect, estimated random effects for permuted
phenotype are exactly as same as the un-permuted phenotype and hence the variance components only need to be estimated
once.
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Constrained Permutation: exchangeability blocks

In the free permutation approaches we permute despite the lack of exchangeability, but then permute the covariance structure
to account for this. An alternate approach is to define exchangeability blocks where observations within each block can be
regarded as exchangeable. Precisely, with exchangeability blocks, the assumption is that permutations altering the order of
observations only within each block preserve the null hypothesis distribution of the full data.

While not feasible for the original correlated model (1), in the simplified ML (5) or simplified REML (6) model we can
define approximate exchangeability blocks. In simplified models the sorted eigenvalues arrange the observations by variance
(increasing or decreasing, depending on software conventions). Hence blocks of contiguous observations Y* or ¥;* will have
variance that is as similar as possible and will be, under the null hypothesis, approximately exchangeable.

We propose to define exchangeability blocks such that the range of Dy or Dy, values within a block is no greater than 0.01.
This cut off ensured the eigenvalues did not vary by more than a factor of 10% within a block. Permutation is constrained
within these blocks and the test procedure is as described above for simplified ML and REML free permutation schemes above,
except that the test statistic is computed using the unpermuted covariance matrix.

1.5 Efficient score statistic implementation for vectorized images

To fully exploit the computational advantage of our non-iterative, reduced-dimension projected model estimation method
we require a vectorized algorithm. That is, even without iteration, the method will be relatively slow if the evaluation of the
estimates is so complex that each phenotype must be looped over one-by-one. For fast evaluation with a high-level language
like Matlab, the estimation process for a set of phenotypes must be cast as a series of matrix algebra manipulations.

In this section we develop the vectorized algorithm for association one chromosome’s worth of SNPs and all image
voxels/elements (subject to memory constraints). To avoid proximal contamination®* and efficient implementation of LMM, we
follow leave one chromosome out approach where all markers on a chromosome being tested are excluded from the GRM3%32,

Let Y; and X; be a (N — P) x V and (N — P) x G matrices of projected traits and allele frequencies respectively, where V
and G are number of elements in image and number of SNPs the tested chromosome, respectively. The score test requires
parameter estimation under the null hypothesis constraints, and since X5 is the same for all SNPs, the estimated covariance
matrix will be the same all markers the chromosome. Thus the covariance matrix only need to be estimated once as follows:

F = YrQYl‘v
6 = max((U/U,) 'UF,0),
W = le®((Ur9)®(Ur9)),

where F and Y; are (N — P) x V matrices, where each column of Y; is ¥;* (Eq. (6)) for one image element and F is the
element-wise squaring of Y;; ® denotes Hadamard product; @ denotes element-wise division; 6 is the 2 X V matrix of OLS
solutions which is matrix counterpart of éREML,OLS§ 0 is the 2 x V matrix of zeros; and here max(-,-) is an element-wise
maximum between the two operands, evaluating to a 2 x V matrix; W and 1yy are the (N — P) x V matrices, where each
column of W is diag(ﬁgiér) for the corresponding image element and 1yy is a matrix of ones. With the following notation,

A = 1LyW,
B = DyW,
o / /
C = (DgOA,)W,
D = 1,(WOF),
E = D,(WGOF),
where 1y is the length-V column vector of ones, we can compute the variance components of the vectorized image as:
06X = max((—BOD+AGE)®(A®C—B®B),0), (13)
o = max((COD-BOE)®(A®C—B®B),0), (14)
1y © 63
S = U b
[ west]

where Gi and G% are the length-V column vectors of genetic and environmental variance components, respectively; and S is a
(N — P) x V matrix which here each column of S is the element-wise reciprocal of the diagonal of the variance matrix of the
corresponding image element’s data Y, for each element of image. In this fashion, the score statistic matrix for all markers
being tested and the vectorized image can be expressed as:

Tsr = [X'(SOY,) 0 (X (SOY))] o [(XOX)S], (15)

where Ts g is a G x V matrix of score statistics for all SNPs and traits.
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1 Supplementary Methods
1.1 Simplified REML Function

At each voxel/element, a LMM for the genetic association for N individuals can be written as:
Y =X101 + Xof2 + 9+, (1)

where Y is the N-vector of the measured phenotype; X; is a N-vector of a given marker’s minor
allele count, implementing an additive genetic model; X is the N x (P — 1) matrix containing an
intercept and fixed effect nuisance variables like age and sex; (1 is the scalar genetic effect; 5o is
the (P — 1)-vector of nuisance regression coefficients and g is the N-vector of latent (unobserved)
additive genetic effects; and € is the N-vector of residual errors. The trait covariance, var(Y) =
var(g + €) = X can be written

5 = 0%(29) + 031, (2)

where 02 and 0%, are the additive genetic and the environmental variance components, respectively;
1 is the identity matrix; and 2® is the GRM matrix.

Under the assumption that the the data follows a multivariate normal distribution, the model
specified by Equations (2) and (1) have a Restricted Maximum likelihood (REML) function of

[Const — log | X' X | + log |Z] + log | X'S 71 X| + (3)
Y'PY],

1
lREML(ZREML; Y, X) = 3
where X = [X; Xs] and 8 = [B1 f2] are the full design matrix of fixed effects and their
parameter estimate vector, respectively, and P =X~ (I — X(X'S71X)"1X'S~1), the projection
matrix. The fixed effect parameters are estimated using generalized least squares (GLS)

BREML = (X/iﬁéMLX)_lxlif_{éMLYv

where ZAJEEML comes from optimised REML function (Eq. (3)).

It is clear from Equation (3) that computational burden of REML function is substantial even
for small datasets. Here we introduce an orthogonal transformation that accelerates the REML
function optimisation dramatically. To obtain such transformation, we first show that the likelihood
function of transformed data with any orthogonal residualising matrix, that is a matrix that maps
Y to the null space of X, is exactly the same as the REML function. Then, a simplifed form of
the REML function (Eq. (3)) can be obtained using a particular transformation that makes the
covariance matrix of transformed data diagonal.

Let M = I—X(X'X)71X’ be the residual forming matrix based on the fixed effects regressors.
Since M is idempotent, it can be diagonalised

M = AA
AA = 1,
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where A is the N x (N — P) matrix of the eigenvectors of M corresponding to the non-zero
eigenvalues. Crucially, A also residualises the data, because it is orthogonal to the design matrix
X:

AAA'X

AMX =0.

A'X

Hence A'Y ~ N (0, A’SA) and the log likelihood of the transformed data is
1
UAY,Y) = -5 [Const + log |A'SA| + Y A(A'SA)TAY] . (4)

Now we show that this (Eq. (4)) is equivalent to Equation (3), and thus we can use the
eigenvectors of the residual-forming matrix to build the REML log likelihood. Assuming that X is
a full column rank, then [A  X] is the N x N square non-singular matrix. To show that the project
data loglikelihood is the same as the REML function (Eq. (3)) we use the following identity:

A ATA A'SX
[X/}E[AX] - [X’ZA X’ZX]' 5)

Taking the determinant of LHS of the Equation (5) gives us:

L Jeta = |l

|l ]ia x) 0

ZI[ 4 X ]|

The RHS determinant of the Equation (5) using the block matrix determinant rule can be written
as

ATA ATX -
H X'nA X'nX ” = [A'SA||X'SX — X'SA(A'SA) T ASX]|. (7)

Hence taking the determinant from the identity in the Equation (5) gives us

AA AX

Y x| = JATAXEX - X'TAA'TA) T ATX],

|E|\

where using A’A =1, A’X =0, it can be shown that
log |A’SA| = log |X] + log | X' X | — log | X' X].

Finally, using A(A’YSA)~1A = P [Searle et al., 2009, M4.f p. 451], it is clear that Equations (3) and
(4) are equivalent. Hence, transformed data likelihood function is exactly as same as the REML
function.

As A is not unique, we seek to find one that diagonalises the covariance of the residualised
data. The transformation matrix could be derived from eigendecomposition of GRM adjusted for
the fixed effect covariates as follows:

M(2®)M = S.D,, S,

where D, = diag{\,,;} is the (N — P) x (N — P) diagonal matrix of non-zero eigenvalues; and S,
is the N x (N — P) matrix of eigenvectors that corresponds to non-zero eigenvalues. Firstly, S, is
a valid A, because its columns are orthogonal S.S, = I and M = S,.S]. [Kang et al., 2008]. Thus
we define the projected polygenic model by pre-multiplying S/ both sides of polygenic model (Eq.

(1)):

S'Y = S'X+8g+ S,
SIMY = SIMX + S.Mg+ S/ Me.
which we write as:
' = g +¢, (8)
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where Y.*, gF and €} are N — P projected phenotype, genetic and residual vectors, respectively. In
this fashion, the projected phenotype covariance matrix becomes diagonal:

cov(Y) =

= cov(SY)

= cov(SIMY)
S/ (MXM)S,
SH(o3 M (20)M + 0% M)S,
U?AS;(Sngr S:)S: + J%S;(STS;)S}
= 0-124Dgr +ogl,

where we have used the identity S/ M = S/. That is, therefore the projected data, Y,*, loglikelihood
takes on a simpler form:

N-—-P

CrenL (0}, 05 Y)") = —5 |Const + Y log(Ag,i0% + 0F) + Z X o 9)
i=1 i=1 grlUA+UE

where y*? is the square of the i-th element of Y,*.

1.2 Simulations

Intensive simulation studies are conducted to evaluate proposed methods for association estimation
and testing. The aim of the first study is to compare fully converged and one-step random effect
estimators based on the simplified ML and REML functions. In the second study, the performance
of various test statistics for the association testing are compared using a fully converged or one-step
random effect estimators for ML and REML functions. Finally, we compare FaST-LMM [Lippert
et al., 2011] to our preferred test, the score test based on the simplified REML function, Ts remL,
using both false positive error rates and empirical power using simulated genetic markers.

In all simulations the response variable is assumed to follow Y = X + €, where ¢ ~ N(0,X)
and ¥ = 03 (2®) + (1 — 03)I, giving a unit variance phenotype. As above, the design matrix is
partitioned X = [X;X5], where X is the allele count per subject for a given marker, and X are
all other non-genetic fixed effects. In our simulations, X7 is based on simulated marker, where
each marker has a reference allele frequency sampled from a uniform distribution on [0.1,0.9].
The X5 matrix has 3 columns, an intercept, a linear trend from -1 to 1, and the element-wise
square of the linear trend. Kinship matrices from a family study, genetic analysis workshop 10
(GAW10), and genetic similarity matrix from simulated genetic markers for a sample of unrelated
individuals with different sizes were chosen to set the covariance, for a range of genetic variances,
0% = 0,0.2,0.4,0.6&0.8. Specifically, the Cholesky decomposition of ¥ was used to premultiply
i.i.d normal random variables with 5000 realisations.

1.3 Genome wide simulations

FaST-LMM and the score test performances based on P-value, parameter estimate (31) and vari-
ance of parameter estimate (Var(ﬁa)) are compared using simulated SNPs and phenotype when
there is no population structure. 60,000 SNPs for 300 individuals with minor allele frequency
between (0.05,0.5) were simulated. 6000 null and 100 causal markers were used to compare the
false positive rates in 5000 realisations. In the null simulations 6000 markers were used to induce
different level of heritability under the additive model h% = 0.1,0.2,0.4,0.6&0.8 and crg = 1 where
markers are standardised to have mean zero and unit variance. Finally for power simulations 100
markers were explained 30% of phenotipic variance where the effect for each marker was drawn
from N(0,0.3/100).

1.4 Real Data

To validate our proposed methods for association estimation and inference for imaging data, we
applied them on a dataset from healthy and schizophrenic individuals to perform ROI and voxel-
wise genome wide association analysis using cluster wise inference. The sample was 54% healthy
individual (175 control/155 schizophrenic) and had a mean age of 39.12 (SD= 14.9) where 50% of
the sample is male.
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Diffusion Tensor Imaging

Imaging data was collected using a Siemens 3T Allegra MRI (Erlangen, Germany) using a spin-
echo, EPI sequence with a spatial resolution of 1.7 x 1.7 x 4.0 mm. The sequence parameters
were: TE/TR=87/5000ms, FOV=200mm, axial slice orientation with 35 slices and no gaps, twelve
isotropically distributed diffusion weighted directions, two diffusion weighting values (b=0 and 1000
s/mm?2), the entire protocol repeated three times.

ENIGMA-DTI protocols for extraction of tract-wise average FA values were used. These pro-
tocols are detailed elsewhere [Jahanshad et al., 2013] and are available online http://enignma.
ini.usc.edu/protocols/dti-protocols/. Briefly, FA images from subjects were non-linearly
registered to the ENIGMADTTI target brain using FSL’s FNIRT [Jahanshad et al., 2013]. This
target was created as a minimal de-formation target based on images from the participating
studies as previously described (Jahanshad et al., 2013b). The data were then processed us-
ing FSL’s tract-based spatial statistics (TBSS; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS)
analytic method [Smith et al., 2006] modified to project individual FA values on the hand-
segmented ENIGMADTTI skeleton mask. The protocol, target brain, ENIGMADTT skeleton mask,
source code and executables, are all publicly available (http://enigma.ini.usc.edu/ongoing/
dti-working-group/). The FA values are normalized across individuals by inverse Gaussian trans-
form [Servin and Stephens, 2007, Allison et al., 1999] to ensure normality assumption. Finally, we
analyzed the voxel and cluster-wise FA values with applying along the ENIGMA skeleton mask.

Genetic Quality Control

In this study only genotyped Single Nucleotide Polymorphisms (SNPs) from genome-wide infor-
mation were included in the analysis. Visual inspection of multi-dimensional scaling analysis was
used to extract individuals with European ancestry. SNPs from individuals with European ances-
try that do not meet any of the following quality criteria were excluded: genotype call rate 95%,
significant deviation from HardyWeinberg equilibrium p < 10~% and minor allele frequency 0.1 was
used to ensure that sufficient numbers of subjects would be found in our sample in each genotypic
group (homozygous major allele, heterozygous, homozygous minor allele) using an additive genetic
model. After all quality control steps, 962,885 out of 1000,000 SNPs remain for genome-wide
association analysis.
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Figure 1: Simulation 1 results, comparing the bias (left column) and mean squared error (right
column) of non-iterative and fully converged random effect estimators using the simplified ML or
REML for 5000 realizations, for different level of genetic random effect o3. The results are based
on a GRM constructed from 1200 unrelated individuals (top row) and kinship matrix from GAW 10
with 23 families and 1497 individuals (bottom row). While the one-step estimators generally (ML
or REML) have more bias than fully converged ones, WLS-REML has less bias than WLS-ML,
and in terms of MSE there is a relatively small difference in performance among all the methods.
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Figure 2: Simulation 1, comparing the bias (left column) and mean squared error (right column) of
the fixed effect (additive allelic effect, 81) using the simplified ML or REML for 5000 realizations,
for different level of genetic random effect 03 when B; = 0. The results are based on a GRM
constructed from 1200 unrelated individuals (top row) and kinship matrix from GAW 10 with 23
families and 1497 individuals (bottom row). These results show that fixed effect estimation using
WLS-REML variance component estimator has almost identical performance as the fully converged
one over different levels of genetic variance.
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Figure 3: Simulation 2, comparing the simplified ML and REML score test parametric rejection
rates using the one-step and the fully converged random effect estimator, 5% nominal (a) and power
(b) based on simulation using either a GRM from 300 unrelated individuals or a kinship from GOBS
study with 171 individuals and 10 families and 5000 realizations. Monte Carlo confidence interval is
(4.40%, 5.60%). Regardless of kinship matrix in the simulation and variance component estimator,
non-iterative or fully converged, all methods have similar performances.
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Figure 4: Simulation 2, comparing proposed statistics parametric error rates, 5% nominal (Top
panels) and power (bottom panels) based on simulation using either a GRM from 300 unrelated
individuals or a kinship from GOBS study with 171 individuals and 10 families and 5000 realisa-
tions. The panels (a) and (c) correspond to association statistics using the fully converged random
effect estimator and (b) and (d) show the result using the non-iterative random effect estimator.
Monte Carlo confidence interval is (4.40%, 5.60%). Regardless of kinship matrix in the simula-
tion and variance component estimator, non-iterative or fully converged, all statistic have similar

performances.
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(b) one-step random effect estimator
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(d) one-step random effect estimator

Figure 5: Simulation 2, comparing proposed statistics permutation based error rates, 5% nominal
(Top panels) and power (Bottom panels) based on simulation using either a GRM from 300 un-
related individuals or a kinship from GOBS study with 171 individuals and 10 families and 5000
realisations and 500 permutations each realisations. The panels (a) and (c) correspond to associ-
ation statistics using the fully converged random effect estimator and (b) and (d) show the result
using the non-iterative random effect estimator. Monte Carlo confidence interval is (4.40%, 5.60%).
Despite the kinship matrix in the simulation and variance component estimator, non-iterative or
fully converged, all statistic have similar performances. Both permutation schemes could control
the error rate at the nominal level, however free permutation is slightly more powerful than the
restricted permutation.
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Figure 6: Simulation 3, comparing score statistic parametric null distribution for Hy : 1 = 0
derived from the simplified REML function using non-iterative and fully converged random effect
estimator, for a kinship from GOBS study using 10 families and 171 individuals . There is no
apparent difference between the two random effect estimators, and both are consistent with a valid
(uniform) P-value distribution.
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Figure 7: Simulation 4, comparing fixed effect estimation bias between FaST-LMM and the sim-
plified REML function. Each point represents a simulated SNP bias where 6000 SNPs with MAF
range (0.05,0.5) are simulated. The x-axis shows parameter estimates bias (1) from Full REML
and y-axis represents parameter estimates bias over 5000 phenotype realisations using FaST-LMM
(blue points) and WLS-REML (red points).

10


https://doi.org/10.1101/179150
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/179150; this version posted August 21, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

-3
4.5 x10 T T T T
. . ¢ M 1)
4 . . ce ’.‘. Cples td, 1
L W 7t .
3 g!it . .-:;',' . .
¢ :: -:j!v .
tLE R
- 54, ~f .,
oy 35 9... oy e ,‘:-.:. : 1
S ik -
€ ol K
s 4 > og
= ; ¥ e
s y . - Full REML
3+ s ] . . _
r w WLS REML
3 o _
b i {' . FaST-LMM
.. s }" ’ .'l§ 5,
13§
25 .
2 1 1 1 1 1
2 2.5 3 3.5 4 4.5 5
Varyc(B) %107

Figure 8: Simulation 4, comparing the Monte Carlo (x-axis) and method-estimated (y-axis) vari-
ance of the fixed effect estimator, for FaST-LMM and the simplified REML function. There are
6000 points, one for each simulated SNP, MAF ranging from 0.05 to 0.5. For each SNP, 5000 real-
izations of data for 300 unrelated subjects are generated with 51 = 0. The Monte Carlo estimate
of variance is over the 5000 (31; each method’s produces one Var(f5;) for each realization, which are
averaged to obtain the y-axis value.
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Figure 9: Real data analysis, comparing the genomic control values of the score test based on the
simplified REML function using either fully converged random effect estimator (Fully Score, yellow
dots ) or the WLS-REML random effect estimator (WLS Score, red dots), FaASTLMM (purple dots)
with the linear regression with MDS as nuisance fixed effects (OLS, blue dots) for 42 ROIs in the
CEU sample. Our proposed method consistently gives smaller genomic factor regardless of random
effect estimation method and close to FaST-LMM.
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Figure 10: Real data analysis, Bland-Altman plot for comparing values of FaST-LMM and the score
test for association testing (Hp : 81 = 0) using non-iterative and fully converged random effect
estimators. Each plot represents a ROI where x-axis shows average statistics and y-axis represents
differences. The score tests are almost identical and slightly less powerful than FaST-LMM.
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Figure 11: Real data analysis, comparing values of the score test for association testing (Hy : f1 =
0) using non-iterative and fully converged random effect estimators. and Fast-LMM Each plot
represents a ROI where x-axis shows FaST-LMM LRT values score test using estimator and y-axis
represents score test using either WLS-REML or the fully converged random effect estimator. The
score tests are almost identical and slightly less powerful than FaST-LMM.
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Figure 12: Real data analysis, QQ plot for comparing FaST-LMM and the score test based on the
simplified REML function using the WLS-REML random effect estimator with the linear regression
with MDS as nuisance fixed effects. Each plot corresponds to different ROIs. These plots show
either an identical distribution or slightly larger values for the OLS approach. However the OLS
approach has poor genomic control (Figure 9).
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Figure 13: Real data analysis, QQ plot for comparing the adjusted association statistics for genomic
control values. Each plot corresponds to different ROIs. These plots show after adjustment we
get essentially identical results for the score test based on the simplified REML function using the
WELS REML random effect estimator and the OLS approach.
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