HIV alters CD4/CXCR4 expression patterns in OP9-DL1-mediated differentiation of human cord-derived CD34+ cells

Tetsuo Tsukamoto 1,2,3

1 The Kirby Institute for infection and immunity in society, University of New South Wales, Sydney, Australia
2 Center for AIDS Research, Kumamoto University, Kumamoto, Japan
3 Department of Immunology, Kindai University Faculty of Medicine, Osaka, Japan

Author mailing address: Department of Immunology, Kindai University Faculty of Medicine, 377-2 Onohigashi, Osakasayama-shi, 589-8511 Osaka, Japan
Telephone: +81 72 366 0221
Fax: +81 72 367 7660
Email: ttsukamoto@med.kindai.ac.jp
Abstract

HIV-1 infects and depletes CD4+ T cells, leading to AIDS. The virus is also known to target thymocytes, resulting in decreased T-cell production. On the other hand, the impact of HIV infection upon the dynamics of hematopoietic CD34+ cells is still poorly understood, despite that HIV-positive patients frequently manifest myelosuppression. Here we utilized the OP9-DL1 coculture system that supports in vitro T-lineage differentiation of human CD34+ hematopoietic stem/progenitor cells. Using the system, we established an in vitro model to analyze the differentiation process of human CD34+ cells in the presence of HIV-1. First, we successfully infected cord-derived CD34+ cells with CXCR4-tropic HIV-1\textsubscript{NL4-3}. HIV-infected cocultures showed sustained HIV replication in both CD34+ and CD34− cells for 5 weeks, resulting in reduced growth of the whole, CD4+CD8+ thymocyte, and CD4+ T-cell counts at weeks 3-5. To further understand the dynamics of CD34+ cells, a short coculture assay was performed in which in vitro pre-cocultured cell mixtures were infected with HIV-1\textsubscript{NL4-3}, cocultured again for 1 week, and analyzed. This resulted in reduced CXCR4 expression in CD34+CD7+ lymphoid progenitor cells but not in CD34+CD7− or CD34− cells. We also detected possible CD4 upregulation of HIV-infected CD34+CD7+ cells. These results implicate the possible role of CXCR4-tropic HIV-1 strains in the AIDS pathogenesis by disrupting the CD34+CXCR4+ cell pools in hematopoiesis and T-lineage differentiation, although the underlining mechanisms remain unclear.

Keywords

human immunodeficiency virus (HIV), acquired immunodeficiency syndrome (AIDS), hematopoietic stem/progenitor cells (HSPC), C-X-C chemokine receptor type 4 (CXCR4)
Introduction

HIV infection is associated with hematological changes (Parinitha and Kulkarni, 2012). Antiretroviral therapy (ART) is effective in the control of viremia and the treatment of AIDS. However, some patients fail to show sufficient T-cell immune restoration despite being aviremic during treatment (Corbeau and Reynes, 2011). HIV-infected patients may show decreased thymopoiesis for generation of new T cells (Blom et al., 2011). Thymic dysfunction occurs during HIV disease and is associated with rapid progression in infants with perinatal HIV infection (Ye et al., 2004). A previous report tested coculture of CD34+ cells and fetal thymic epithelial cells in the presence or absence of HIV-1. This resulted in inhibition of thymocyte maturation at early stages (CD44+CD25−CD3−) (Knutsen et al., 1999). Pancytopenia may occur as a result of bone marrow abnormalities in HIV-infected individuals (Alexaki and Wigdahl, 2008; Tripathi et al., 2005). A previous study showed depletion of CD34+CD4+ cells in bone marrow from HIV-infected patients. However, the study failed to find any evidence for HIV infection of these cells (Banda et al., 1999).

The thymopoiesis environments can be mimicked in vitro by using an OP9-DL1 or OP9-DL4 cell line. These cell lines were derived from the OP9 mouse stromal cell line by transduction with a notch ligand called delta-like 1 or 4 (DL1 or DL4) (Nakano et al., 1994; Schmitt et al., 2004). The OP9-DL1’s functions to support thymopoiesis in vitro were first demonstrated in coculture with mouse cells (Nakano et al., 1994). The cell line is also known to support differentiation of human CD34+ hematopoietic stem/progenitor cells (HSPCs) to thymocytes and T cells (De Smedt et al., 2004). There is evidence for production of stromal derived factor-1 (SDF-1, also known as CXCL12),
a ligand for CXCR4, in OP9-DL1 (Janas et al., 2010). Although OP9-DL4 can induce both specific myeloid cells and T-lineage cells, OP9-DL1 only allows differentiation of T-lineage cells while inhibiting B cells and myeloid cells (Mohtashami et al., 2010). Thus, the OP9-DL1 coculture system is used for investigation of the events associated with T-lineage differentiation.

CXCR4 and CCR5 are common coreceptors of HIV-1 (Weiss, 1996). The control of CCR5-tropic strains of HIV-1 is usually considered to be a better correlate of good clinical outcomes than CXCR4-tropic HIV-1 strains (Grivel and Margolis, 1999). This is due to the fact that memory CD4+ T cells express higher levels of CCR5 and are susceptible to CCR5-tropic HIV infection and the following depletion (Schnittman et al., 1990). Because of this, CCR5 may appear to be more closely involved in the immunopathogenesis of the HIV disease than CXCR4 (Okoye and Picker, 2013). On the other hand, the biological functions of CXCR4 has been well documented in biological science fields such as developmental biology and hematology. CXCR4 interacts with SDF-1 and allows CXCR4-expressing cells to home to the loci where SDF-1 is highly expressed (Kucia et al., 2004). The roles of SDF-1 and CXCR4 are essential in human stem cell homing and repopulation of the host with differentiated hematopoietic cells (Kucia et al., 2005; Lapidot and Kollet, 2002). SDF-1 is also produced by thymic epithelial cells and plays an important role in migration of immature progenitors in the thymus (Plotkin et al., 2003).

Therefore, it may be important to better understand the influence of CXCR4-tropic HIV-1 infection upon CXCR4-associated biological events including hematopoiesis and T cell development. There was an attempt to see the impact of CXCR4-tropic simian-human immunodeficiency virus (SHIV) infection on production of T-lineage cells in the thymus of newborn rhesus macaques (Suzuki et al., 2005a). However, it is
not realistic to closely follow the in vivo bone marrow/thymus events in HIV-infected individuals. Instead, humanized mouse models can be beneficial for the purposes (Dudek and Allen, 2013; Marsden et al., 2012). Moreover, an easy-to-use ex-vivo model may be helpful for close monitoring of the differentiation of HSPCs to T-lineage cells in the presence of HIV-1. The present study was aimed at pursuing the in vitro fate of CD34+ progenitor cells and derivatives exposed to HIV-1 using the OP9-DL1 coculture system.
Materials and Methods

Virus stocks. Stocks of HIV-1_{NL4-3} were produced by transfection of the 293T cell line with the molecular clone DNA pNL4-3 (Adachi et al., 1986). After transfection, the culture supernatant was collected and viral loads were determined using an HIV p24 Enzyme-Linked ImmunoSorbent Assay (ELISA) kit (ZeptoMetrix, US).

Cells. Umbilical cord blood samples were collected at Fukuda Hospital, Kumamoto following informed consent. Cord blood mononuclear cells were isolated using Pancoll (PAN-Biotech GmbH, Germany) and by centrifugation at 800 rpm for 20 minutes. CD34\(^+\) cells were labeled and selected using human CD34 micro beads and LS columns (Miltenyi Biotec, Japan). The purity was constantly more than 92%. An OP9-DL1 cell line, generated by transduction of the OP9 cell line (ATCC CRL-2749) with human Delta-like 1, was provided by Prof. Seiji Okada (Center for AIDS Research, Kumamoto University, Japan). The cell line was maintained in α-MEM media supplemented with 10% heat inactivated fetal bovine serum (GE Healthcare, Japan).

Antibodies. The following antibodies were used for the flow cytometric analysis of primary cord-derived CD34\(^+\) cells and human cells cocultured with OP9-DL1. Anti-human CD8 Brilliant Violet (BV) 510 (clone RPA-T8), anti-human CD3 PE-Cy7 (clone UCHT1), and anti-human CD34 APC (clone 8G12) were purchased from BD Biosciences (Tokyo, Japan). Anti-human CD4 PE-Cy7 (clone OKT4), anti-human CD4 PerCP-Cy5.5 (clone OKT4), and anti-human CXCR4 BV421 (clone 12G5) were purchased from BioLegend (Tokyo, Japan). Anti-human CD3 ECD (clone UCHT1), and anti-HIV-1 p24 PE (clone FH190-1-1, also known as KC57 RD1) were purchased...
from Beckman Coulter (Tokyo, Japan). Anti-human CD7 FITC (clone CD7-6B7) was purchased from CALTAG Laboratories (CA, USA).

Coculture of human cells with OP9-DL1. The OP9-DL1 coculture experiment was performed following the previously published protocol with modifications (Holmes and Zuniga-Pflucker, 2009). Briefly, 2×10^5 HIV-infected or uninfected cord-derived CD34$^+$ cells were seeded in a 6-well plate containing a monolayer of OP9-DL1. The coculture was maintained for 5 weeks in the α-MEM media supplemented with 20% heat inactivated FBS, 5 ng/mL recombinant human FMS-like tyrosine kinase 3 ligand (Flt-3L), and 5 ng/mL recombinant human interleukin 7 (IL-7). Cells were passaged every week by vigorous pipetting and filtering through a 70-µm membrane, and cocultured again with a fresh monolayer of OP9-DL1. Part of collected cells were analyzed by flow cytometry.

HIV infection. The method for in vitro HIV infection of CD34$^+$ cells was described previously (Tsukamoto and Okada, 2017). For infection of primary cord-derived CD34$^+$ cells with HIV-1$_{NL4-3}$, a 48-well plate was treated overnight with RetroNectin (Takara Bio Inc., Tokyo, Japan) at a concentration of 10 µg/mL. CD34$^+$ cells were re-suspended in the OP9-DL1 media, seeded at 2×10^5 per well in the coated plate and infected with 200 ng (p24) of HIV-1$_{NL4-3}$ and using spinoculation at 1,200 g, 34 °C for 30 minutes. Cells were further cultured overnight and cocultured in a 6-well plate with a fresh monolayer of OP9-DL1. For HIV infection of OP9-cocultured human cells, the cell concentration was modified to 5×10^5 per well.
Flow cytometric analysis. Surface and intracellular antigen expression was analyzed with FACS LSR II (BD Biosciences), FACS Diva v6.0, and the FlowJo v10.3 (TreeStar). Dead cells were discriminated with Live/Dead Fixable Near-IR Dead Cell Stains (Thermo Fisher Scientific). Live cells were further gated to exclude doublets from the analysis by plotting FSC-W and FSC-A.

PCR analysis of the HIV DNA. Cellular DNA was extracted using Kaneka Easy DNA Extraction Kit (Kaneka, Takasago, Japan). DNA extraction was followed by the PCR analysis using an HIV gag primer set (sense: 5’-AGTGGGGGACATCAAGCAGCCATGCAAAT-3’, antisense: 5’-TACTAGTAGTTCTGCTATGTCACTTCC-3’) as described previously (Suzuki et al., 2005b).

Statistical analysis. Statistical analysis was performed using the Graphpad Prism software version 7.0. Statistical significance was defined as \(P < 0.05 \). Comparison between HIV-infected and uninfected samples was done by Wilcoxon matched-pairs signed rank test, unless otherwise stated. Multiple comparison analyses were done, if necessary, using the Dunn’s method. Spearman’s correlation coefficients were calculated for correlation analyses.
Results

Infection of primary human code-derived CD34+ cells with CXCR4-tropic HIV-1_{NL4-3}

Two separate in vitro experiments were performed in the study. The data for the first experiment (long coculture) are shown in Figures 1-3, and S1-3. To follow the in vitro fate of HIV-preexposed CD34+ cells and derivatives for several weeks, we attempted HIV infection of primary human code-derived CD34+ cells. Those cells were confirmed to be partially CD4+ and CXCR4+ after CD34 magnetic bead separation (Fig 1B). The cells were exposed to 200 ng (p24) of HIV-1_{NL4-3}. Following centrifugation and overnight incubation, the cells were cocultured with OP9-DL1 (Fig 1A). After a week of coculture, the cells were tested for HIV-1 p24 expression (Fig 1C). Intracellular HIV-1 p24 was detected in both CD34+ and CD34− cells (Fig 1C). HIV infection was further checked by magnetic bead separation of CD34+ and CD34− cells followed by DNA extraction and detection of HIV-1 gag DNA using PCR (Fig 1D). In this way, the HIV-preexposed cells were prepared for coculture with OP9-DL1.

Persistent HIV-1 infection observed in the OP9-DL1 cocultures with cord-derived CD34+ cells

The above cocultures of HIV-preexposed CD34+ cells and derivatives were maintained for five weeks. All the HIV-infected samples showed persistent HIV-1 p24 expression in 0.1-3.5% of the total cocultured human cells (Fig 1E). Both the HIV-1 p24+ percentages and the cell counts peaked at week 3 (Fig 1E and F). Viral replication levels were further confirmed by measuring HIV-1 p24 amounts in the coculture supernatants using ELISA (Fig 1G). Correlation was found between intracellular HIV-
1 p24+ cell counts and supernatant HIV-1 p24 concentrations by plotting data in Fig 1F and G (Fig 1H).

The dynamics of CD4+ cells in the OP9-DL1 cocultures with HIV-preexposed CD34+ cells

The influence of HIV preexposure of CD34+ cells upon post-coculture events was analyzed by flow cytometry every week until week 5. CD19+, CD20+, or CD33+ cells were not detected in the samples tested (data not shown). HIV-infected cocultures had significantly lower whole cell counts at weeks 3, 4, and 5 post-coculture than uninfected cocultures (Fig 2A). This demonstrates that HIV preexposure of CD34+ cells resulted in impaired cell growth in the cocultures. Similarly, the CD4+CD8− cell counts were significantly smaller in HIV+ cocultures than HIV− cocultures (Fig 2B and C). The CD4+CD8−CXCR4+ cell counts showed similar tendencies except that the average CD4+CD8−CXCR4+ cell counts at week 2 was higher in HIV+ than in HIV− samples (Fig 2D).

Next, the CD34− cells were gated and analyzed for the expression of CD7 and CD4 (Fig 2E). The CD34−CD7−CD4+ cell counts were not significantly different between HIV-infected and uninfected samples (Fig 2F). It may be noted that HIV+ samples showed higher average CD34−CD7−CXCR4+ cell counts than uninfected samples at weeks 1 and 2 (Fig 2F), as observed with CD4−CD8+CXCR4+ cells (Fig 2D). In contrast, there was a notable decline in the CD34−CD7−CD4+ cell counts in HIV+ samples compared to HIV− samples at week 3 (Fig 2G). Further analysis of CD34− cells revealed that the CD7−CD4+ cells contained CD4/CD8 double-positive cells and CD3−CD4+ cells, whereas the CD7−CD4+ cells were mostly CD3−CD4+ cells (Fig S1). In the analysis of CD34−CXCR4+, CD34−CD7−CXCR4+, and CD34−CD7−CXCR4+ cells, the
CD34^-CD7^-CXCR4^+ cells were most severely impaired in growth by HIV-1 infection (Figure S2 A-C).

The dynamics of CD34^+ cells in the OP9-DL1 cocultures with HIV-preexposed CD34^+ cells

HIV infection of CD34^+ cells were detected by intracellular p24^+ staining followed by flow cytometric analysis (Fig 3A-C). Interestingly, there was a steep decline in the average p24^+CD34^+ percentage at week 2 post infection (Fig 3A and B). Also, the p24^-CD34^+ cells failed to grow in number (Fig 3C) in contrast to the rapid growth of p24^- cell counts at week 2 (Fig 1F). The p24^-CD34^-CD7^+ frequencies didn’t show the decline at week 2 (Fig 3D and E). This was due to the low average CD34^-CD7^+ cell count at week 1 and its rapid increase at week 2 post infection (Fig 3H). Accordingly, the p24^-CD34^-CD7^+ cell counts increased at weeks 2 and 3 (Fig 3F).

There were nonsignificant differences in CD34^+ and CD34^-CD7^- cell counts between HIV^+ and HIV^- cocultures from week 3 until 5. The difference in the average CD34^+ and CD34^-CD7^- frequencies were greatest at week 3 (Fig 3G and H). Cells were further evaluated for CXCR4 expression in CD34^+ cells. Although the data didn’t show significant differences between HIV^+ and HIV^- samples, the average CD34^-CXCR4^+, CD34^-CD7^-CXCR4^+, and CD34^-CD7^-CXCR4^+ cell counts in HIV^- cocultures became lower than HIV^- cocultures at week 2 (Fig 3I-K). This was earlier than the time point (week 3) at which the average CD34^- and CD34^-CD7^- cell counts in HIV^+ samples became lower than HIV^- samples (Fig 3G and H). Therefore, CD34^-CXCR4^- cells may be affected by HIV-1 more quickly than the whole CD34^+ cells.

HIV-1_NL4-3 infection of HSPC-derived cells after 4-6 weeks’ coculture with OP9-DL1
Experiment 1 (Figs 1-4) suggested different cellular dynamics of CD34+CD7+CXCR4+ cells than the cells of other phenotypes. To better describe the effect of HIV infection on the short-term dynamics of CD34+ cells, experiment 2 was performed (short coculture, n=12, Fig 4A). The experiment 2 results are shown in Figures 4-6, S4-5, and Tables 1-2. Briefly, the OP9-DL1 coculture with cord-derived CD34+ cells, without HIV infection, produced a mixture of cells with different phenotypes as determined by the expression of CD34, CD4, CD8, CD7, and CXCR4, in 4-6 weeks. Cells were then harvested and infected with HIV-1NL4-3. The infected cells were cocultured again with a new OP9-DL1 monolayer and further incubated for 1 week. Cells were then collected, surface stained, intracellularly stained with anti-HIV-1 p24, and analyzed by flow cytometry. The CD4 expression levels in CD34+ cells before infection were limited and much lower than those in CD34− cells (Fig 4C). One week after infection, HIV replication was detected in all the HIV-infected samples (Fig 4D). The majority of HIV-1 p24+ cells were CD34− (Fig 4B). The p24+ cells were partly CD4lo, possibly due to CD4 down regulation in HIV infected cells (Fig 4B). The 9 samples tested here showed the average HIV p24+ frequency of 0.31%, the average p24+CD34+ frequency of 0.03%, and the average p24+CD34−CD7+ frequency of 0.02% (Fig 4D). This means that the majority of p24+CD34+ cells were CD7+ (Fig 4D, Table 1).

Partial loss of CD34+CD7+CXCR4+ cells after HIV-1NL4-3 infection of OP9-DL1-cocultured cells

The phenotypes of the cells in experiment 2 (short coculture) were analyzed 1 week after infection. The whole cell counts were obtained with part of the batches tested and not significantly different between HIV+ and HIV− samples (n=4, p=0.5000, Table
2). The CD4^+CD8^-, CD34^+, or CD34^+CD7^+ frequencies were not significantly different between HIV^+ and HIV^- cocultures (Fig. 5B). When we focused on CXCR4 expression levels in different subsets, the CD34^+CXCR4^+, or CD34^+CD7^-CXCR4^+ frequencies were not significantly different between HIV^+ and HIV^- cocultures (Fig. 5C left and right). However, the CD34^+CD7^-CXCR4^+ frequencies in HIV^+ samples were significantly reduced compared to HIV^- samples (Fig 5A and C middle). This may be in accordance with the results in Fig 3J in which the growth of CD34^+CD7^-CXCR4^+ cell counts slowed down earlier (at week 2) than the cell counts of other phenotypes (at week 3).

Increased number of CD34^+CD7^+CD4^+ cells after HIV-1 NL4-3 infection of OP9-DL1-cocultured cells

The Fig 5 results indicated distinct dynamics of CD34^+CD7^+CXCR4^+ cells in the presence of HIV-1. To better understand this, CD34^+CD7^+ cells were further analyzed for the expression of CD4. Surprisingly, HIV-infected samples had higher CD34^+CD7^-CD4^+ frequencies than uninfected samples (Fig 6A and B). These cells were found to be partially HIV p24^+ after careful adjustment of compensation matrices of the flow cytometry data (Fig 6A). One out of 9 batches were selected for further analyses of CD34^+CD7^-CD4^+ cells. Not only the frequencies but the CD4 fluorescence intensities (FIs) of CD34^+CD7^-CD4^+ cells were higher in HIV^+ than in HIV^- samples (Fig 6C). In addition, the CD4 FIs of CD34^+CD7^-CD4^+ cells may be inversely correlated with the CD34 FIs (Fig 6D).

The impact of HIV infection on the CD34^+CD7^-CD4^+ cells were further analyzed. As shown in Fig 6E, CD34^+CD7^-CD4^+ cells in HIV^+ samples had higher p24 mean fluorescence intensities than HIV^- samples, indicating that at least part of those cells
was producing HIV antigens. In addition, the CD34\(^+\)CD7\(^+\)CD4\(^+\)CXCR4\(^+\) frequencies correlated with the p24\(^+\) frequencies (Fig 6F).
Discussion

The impact of HIV infection on the bone marrow/thymus functions has been of great interest. The T-cell restoration by antiretroviral drug treatment appears to be critical in control of disease in HIV-infected patients. However, it has been unclear how HIV impacts the T-cell differentiation process. For this purpose, an in vitro model to mimic the process may be helpful. The present study demonstrates the way to utilize the OP9-DL1 coculture system that enables in vitro follow up of the early events in T-cell differentiation such as lymphoid progenitor cell generation, that normally occurs in the bone marrow, and CD4\(^+\) thymocyte differentiation in the thymus.

Human HSPC were not considered a major virus reservoir (Durand et al., 2012; von Laer et al., 1990). However, HIV-1 was shown to infect those cells (Carter et al., 2010). Although an article reported negative results on detection of HIV-1 DNA in CD34\(^+\) hematopoietic progenitor cells (Josefsson et al., 2012), another study showed that CD133\(^+\) hematopoietic stem cells could harbor HIV-1 DNA despite long-term viral control (McNamara et al., 2013). A report says there are preintegration mechanisms to limit HIV infection (Griffin and Goff, 2015). It is still debatable whether HSPCs are an unignorable viral reservoir (Pace and O'Doherty, 2013). There is also a concern for indirect modification of HSPCs and hematopoiesis dynamics through HIV infection and depletion of CD4\(^+\) cells. HIV disease is known to accompany bone marrow abnormalities (Tripathi et al., 2005). Some patients fail to show CD4\(^+\) T-cell recovery even after effective antiretroviral therapy and are called immunological nonresponders. Such immunological nonresponsiveness can be associated with immune activation and/or bone marrow impairment (Hunt et al., 2003; Isgro et al., 2008).
CXCR4 and its ligand SDF-1 have a variety of roles in biological events such as embryogenesis, angiogenesis, hematopoiesis, and lymphopoiesis. CXCR4 is abundantly expressed in mouse embryos and involved in neuronal, vascular, hematopoietic, cardiac, craniofacial, and gastric development (McGrath et al., 1999). The role of a CXCR4 homologue in zebrafish embryosis has been reported (Raz and Mahabaleshwar, 2009). Development of renal vasculature in mice requires the functions of SDF-1 and CXCR4 (Takabatake et al., 2009). CXCR4 acts as a co-stimulator during thymic β-selection (Trampont et al., 2010).

The events observed in the coculture of OP9-DL1 and human CD34+ cells are likely to involve interaction between SDF-1 and CXCR4, since mouse SDF-1 expressed by OP9-DL1 has high identity of amino acid sequence to human SDF-1 (Shirozu et al., 1995). The observation is in accordance with the previous reports showing that SDF-1/CXCR4 pair is crucially involved in homing and repopulation of HSPCs in the specific BM niches (Moll and Ransohoff, 2010) and also in the whole T-cell developmental process in the thymus (Petrie, 2003; Plotkin et al., 2003).

It has been reported that HSPCs and thymocytes express CXCR4 but their CCR5 expression is limited (Nixon et al., 2013; Taylor et al., 2001). Another report says that HIV utilizes CXCR4 when it infects multipotent progenitor cells (Carter et al., 2011). Although CCR5-tropic HIV-1 strains play an essential role in depletion of CCR5-tropic memory CD4+ T cells leading to AIDS (Schnittman et al., 1990), CXCR4-tropic HIV strains might also contribute to the pathogenesis by interfering with hematopoiesis and/or lymphopoiesis (Akkina, 2013; Bordoni et al., 2015; Ho Tsong Fang et al., 2008). Despite the increasing evidence and interests, it is not yet fully unveiled how CXCR4-tropic HIV-1 strains impair these processes.
The present study results give insights on the impact of HIV-1 persistence upon T-lineage differentiation of hematopoietic progenitor cells. In the first experiment (long coculture), as shown in Figs 1-3 and S1-3, HIV-infected samples showed similar CD4^+ cell production rates to uninfected samples at weeks 1 and 2, but reduced CD4^+ cell production rates from week 3 until week 5 (Fig 2). This was most clearly observed with the dynamics of CD34^-CD7^-CD4^+ cells (Fig 2G) that were mostly CD3^+ T cells (Fig S2). It is not clear how the reduction of cell growth at week 3 post infection was so accurately reproduced with all the 12 samples tested (Fig 2G, individual data not shown). However, in the following analyses on CD34^+ cells, the growth rates of CD34^-CD7^-CXCR4^+ cell counts showed a tendency to drop as early as week 2 (Fig 3J). This was observed with 7 out of 12 samples tested (data not shown), and earlier than the time point (week 3) of CD4^+ cell reduction. Because CD34^-CD7^- cells represent lymphoid progenitor cells (Hoebekke et al., 2007), their involvement in defining the production rates of CD4^+ cells was speculated.

The second experiment (short coculture, Figs 4-6, S4-5, and Tables 1-2) was carried out to check the effects of HIV-1 upon the short-term dynamics of T-lineage cells including progenitors. This resulted in significant alteration of the CD34^-CD7^-CXCR4^+ frequencies 1 week after infection (Fig 5C middle), which may be consistent with the results of the experiment 1 (Fig 3J). Because of the limitation of the present study, the fate of the lost CD34^-CD7^-CXCR4^+ cells in the HIV^+ cocultures are unknown. The differentiation capacity of the remaining CD34^-CD7^-CXCR4^+ cells also remain untested. Interestingly, a recent article reported that bone marrow CD34^+ progenitor cells from HIV-infected patients show an impaired T cell differentiation potential (Bordoni et al., 2017), which was related to proinflammatory cytokines.
Cytokine analyses may be applicable to the coculture assays we established in the present study.

The CD34⁺CD7⁻ lymphoid progenitors were further analyzed to better understand its association with HIV-1 infection. Interestingly, there was an increase in the CD34⁺CD7⁻CD4⁺ frequencies in HIV-infected samples compared to uninfected samples (Fig 6). In addition, those CD34⁺CD7⁻CD4⁺ cells were found to be partially HIV p24⁺ (Fig 6A and E). The compensation matrices of the flow cytometry data were checked carefully to exclude false positive results. It may be fascinating to interpret the results as CD4 upregulation following HIV infection, thereby driving the differentiation of T-lineage precursor cells. However, caution may be necessary because the limitation of the study didn’t allow exclusion of possible CD34 upregulation in the infected CD4⁺ cells (Fig S5), although the flow cytometry data didn’t indicate correlation between HIV p24 expression and CD34 upregulation in CD34^{low} cells (data not shown). Further studies may be designed to test shorter coculture period than 1 week and/or investigate on the association of HIV-1 infection with factors that regulate the expression of CD3, CD4, CD7, and CD34.

The findings in this article may highlight anti-HIV treatments such as a gene therapy of CD34⁺ HSPCs followed by transplantation, because in this way the whole hematopoietic events in the host can be placed under protection against HIV infection even in the absence of effective immune response (Savkovic et al., 2014). The problem is that, while CCR5 may be considered a good target for knockout or knockdown to prevent infection of CCR5-tropic HIV strains, the CXCR4 expression levels should not be altered in HSPCs because of the essential biological functions of the molecule (Liu et al., 2014). Therefore, instead of modulation of CXCR4 expression, anti-HIV modalities targeting an HIV gene or component may be desirable for protection of...
hematopoietic cells including T-lineage cells from CXCR4-tropic HIV infection (Suzuki et al., 2015; Suzuki et al., 2013).

In summary, the results of the long/short coculture of human CD34⁺ cells and derivatives with OP9-DL1 in the presence of HIV-1 indicate that the dynamics of CD34⁻CD7⁺ lymphoid progenitors may be affected more quickly by HIV-1 than CD34⁺CD4⁺ thymocytes and T cells despite the lower susceptibility of CD34⁺CD7⁺ cells to HIV-1 infection as suggested by their lower CD4 expression levels. Further studies may be directed against elucidation of the underlying mechanisms. In addition, the longer time necessary for the reduction of CD34⁻CD4⁺ cell growth in the HIV⁺ cocultures compared to the HIV⁻ cocultures may implicate the way in which lowered T-cell production rates influence the reduction of CD4⁺ T-cell counts in HIV-infected patients, in combination with other mechanisms of CD4⁺ T-cell depletion including the direct cytopathic effect, apoptosis, as well as antigen-specific immunological mechanisms (Costin, 2007; McMichael et al., 2000; Tsukamoto et al., 2016).
Author contributions

Designed the study: TT, SO. Provided cell lines and resources: TT, SO. Performed the experiments: TT. Analyzed the data: TT. Wrote the manuscript: TT. All authors read and approved the final manuscript.

Conflict of interest statement

The authors declare no conflict of interest associated with the present work.

Acknowledgements

We cordially thank Dr. Kazuo Matsui and Dr. Shoichi Kawakami of Fukuda Hospital, Kumamoto, Japan, for their help on cord blood sampling. This work was supported by the National Health and Medical Research Council, Australia (Project grant). It was also partially supported by grants from the following organizations: the Japan Agency for Medical Research and Development (Research program on HIV/AIDS, No. 16fk0410108h0001); Ministry of Education, Culture, Sports, Science and Technology, Japan (Grants-in-Aid for Science Research, No. 25114711); and Kumamoto University (AIDS International Collaborative Research Grant). We specially thank Prof. Anthony D. Kelleher and Dr. Kazuo Suzuki of the Kirby Institute for infection and immunity for society, UNSW Australia, for their support for the whole project, which was planned by UNSW Australia and hosted by Kumamoto University, Japan, from a distance.
References

cells in most patients on antiretroviral therapy. The Journal of infectious diseases 205, 1014-1018.

Isgro, A., Leti, W., De Santis, W., Marziali, M., Esposito, A., Fimiani, C., Luzi, G., Pinti, M., Cossarizza, A., Aiuti, F., Mezzaroma, I., 2008. Altered clonogenic capability and stromal cell function characterize bone marrow of HIV-infected

induced by siRNAs targeted to the HIV-1 promoter region. J RNAi Gene Silencing 1, 66-78.

Figure legends

Figure 1. Primary umbilical cord-derived CD34+ cells are partially susceptible to HIV infection. Coculture of HIV-infected primary cord-derived CD34+ cells with OP9-DL1 resulted in persistent viral replication for five weeks (n=12). (A) Schematic representation of the first experiment (long coculture). Cord-derived CD34+ cells were infected with HIV-1NL4-3 and cocultured with OP9-DL1 for 5 weeks. (B) CD34+ cells were gated and tested for expression of CD4 and CXCR4 by flow cytometry. Representative plots are shown. The CD4 signal levels were higher than those of the cells stained with a PE-conjugated mouse isotype control antibody. (C) Intracellular HIV p24 expression was tested 1 week after infection. HIV p24+ cells were found in both CD34+ and CD34− fractions of HIV-infected samples. Representative plots are shown. (D) CD34+ and CD34− fractions of an HIV-infected sample were separated by the CD34 microbead method. Total DNA was isolated and analyzed by PCR. HIV gag DNA was detected in both CD34+ and CD34− fractions. A PCR sample using an HIV molecular plasmid pNL4-3 was placed as a control. (E) HIV p24+ percentages in HIV+ OP9-DL1 coculture samples tested every week by intracellular staining and flow cytometry. (F) HIV p24+ cell counts were calculated from HIV p24+ percentages and whole cell counts. (G) Coculture supernatants of HIV-infected samples were tested for HIV p24 concentrations by using an ELISA at weeks 2-5. (H) Correlation analysis between HIV p24+ frequencies and HIV p24 concentrations. The week 2-5 data in F and G are included (n=48). Spearman’s correlation coefficient is shown.

Figure 2. Preexposure of primary cord-derived CD34+ cells to HIV-1 affected the dynamics of OP9-DL1 cocultured cells (n=12). (A) Whole cell counts were compared
between HIV\(^+\) and HIV\(^-\) cocultures. (B) Representative plots for those samples that showed reduced CD4\(^+\)CD8\(^-\) frequencies 3-5 weeks after HIV preexposure of primary CD34\(^+\) cells and coculture. The plots were selected from week 4 samples. (C-D) Cell counts were compared between HIV\(^+\) and HIV\(^-\) cocultures for (C) CD4\(^+\)CD8\(^+\) cells, and (D) CD4\(^+\)CD8\(^+\)CXCR4\(^+\) cell counts were compared between HIV\(^+\) and HIV\(^-\) cocultures. (E) Representative plots showing the loss of CD34\(^-\)CD7\(^-\)CD4\(^+\) cells in the HIV-infected cocultures. (F-G) Cell counts were compared between HIV\(^+\) and HIV\(^-\) cocultures for (F) CD34\(^-\)CD7\(^+\)CD4\(^+\) cells, and (G) CD34\(^-\)CD7\(^-\)CD4\(^+\) cells. Statistical analyses were performed by the Wilcoxon matched-pairs signed rank test. **: \(p < 0.01\), ***: \(p < 0.001\).

Figure 3. Preexposure of primary cord-derived CD34\(^+\) cells to HIV-1 affected the dynamics of CD34\(^+\) cells in the following OP9-DL1 cocultures (n=12). (A) HIV p24\(^+\)CD34\(^+\) percentages in HIV\(^+\)OP9-DL1 coculture samples. (B) The data in Fig 3A were converted to HIV p24\(^+\) percentages of CD34\(^+\) cells. (C) HIV p24\(^+\)CD34\(^+\) cell counts in HIV\(^+\) OP9-DL1 coculture samples. (D) HIV p24\(^+\)CD34\(^+\)CD7\(^+\) percentages in HIV\(^+\) OP9-DL1 coculture samples. (E) The data in Fig 3A were converted to HIV p24\(^+\) percentages of CD34\(^+\)CD7\(^+\) cells. (F) HIV p24\(^+\)CD34\(^+\)CD7\(^+\) cell counts in HIV\(^+\) OP9-DL1 coculture samples. (G-K) Cell counts were compared between HIV\(^+\) and HIV\(^-\) cocultures for (G) CD34\(^+\) cells, (H) CD34\(^+\)CD7\(^+\) cells, (I) CD34\(^+\)CXCR4\(^+\) cells, (J) CD34\(^+\)CD7\(^+\)CXCR4\(^+\) cells, and (K) CD34\(^+\)CD7\(^-\)CXCR4\(^+\) (right) cell counts. Statistical analyses were performed by the Wilcoxon matched-pairs signed rank test. *: \(p < 0.05\).

Figure 4. The experiment 2 (short coculture) was performed to further analyze the dynamics of CD34\(^+\) cell in the presence of HIV-1. (A) Schematic representation of the
experiment 2 (short coculture). Primary cord-derived CD34\(^+\) cells were cocultured with OP9-DL1 for 4-6 weeks. Cells were then collected and infected with HIV-1\(_{NL4-3}\). The infected cells were cocultured again with OP9-DL1 for 1 week, collected and analyzed. (B) CD4\(^+\) percentages in CD34\(^-\), CD34\(^-\)CD7\(^+\), CD34\(^-\)CD7\(^-\), CD34\(^+\), and CD34\(^+\)CD7\(^+\) subsets before infection. A multiple comparison test was performed to compare CD34\(^-\) and CD34\(^+\) cells, or CD34\(^-\)CD7\(^+\) and CD34\(^-\)CD7\(^-\) cells. (C) Representative plots showing HIV p24\(^+\) cells after the post-infection coculture and their phenotypes. The majority of p24\(^+\) cells were CD8\(^+\) and CD34\(^-\). (D) HIV p24\(^+\), p24\(^+\)CD34\(^-\)CD7\(^+\), p24\(^-\)CD34\(^+\)CD7\(^+\), p24\(^-\)CD34\(^+\)CD7\(^-\) frequencies measured 1 week after the post-infection coculture (n=9). Statistical analyses were performed by the Wilcoxon matched-pairs signed rank test, except for the multiple comparison test with the Dunn’s method.

Figure 5. CD34\(^+\) cells in the experiment 2 (short coculture, as described in Fig 4A) were analyzed after the second (1 week) coculture (n=9). (A) Representative plots showing the CD7/CXCR4 expression levels in CD34\(^+\) cells. An HIV\(^+\) sample is compared to its autologous uninfected counterpart. (B) CD34\(^+\)CXCR4\(^+\) (left), CD34\(^+\)CD7\(^+\)CXCR4\(^+\) (middle left), CD34\(^+\)CD7\(^+\)CD4\(^+\)CXCR4\(^+\) (middle right), and CD34\(^+\)CD7\(^-\)CXCR4\(^+\) (right) frequencies were compared between HIV\(^+\) and HIV\(^-\) samples. (C) CD4\(^+\)CD8\(^+\)CXCR4\(^+\) (left), CD34\(^-\)CXCR4\(^+\) (middle left), CD34\(^-\)CD7\(^+\)CXCR4\(^+\) (middle right), and CD34\(^-\)CD7\(^-\)CXCR4\(^+\) (right) frequencies were compared between HIV\(^+\) and HIV\(^-\) samples. Statistical analyses were performed by the Wilcoxon matched-pairs signed rank test.
Figure 6. CD34+CD7+ cells in the experiment 2 (short coculture, as described in Fig 4A) were analyzed after the second (1 week) coculture (n=9 unless otherwise noted). For these analyses, compensation matrices were checked repeatedly to exclude false positive events. (A) Representative plots showing the CD4/CXCR4 and CD4/p24 expression levels in CD34+CD7+ cells. An HIV+ sample is compared to its autologous uninfected counterpart. (B) Comparison of CD34+CD4+ (left), CD34+CD7+CD4+ (middle), and CD34+CD7+CD4+CXCR4+ (right) frequencies between HIV+ and HIV− samples. (C-D) CD34+CD7+CD4+ cells in sample ID 1 (presented in A) were further analyzed. (C) Fluorescence intensities (FIs) of CD34+CD7+CD4+ cells were compared between HIV+ and HIV− samples by the Mann-Whitney test. (D) Correlation between CD4 FI and CD34 FI of CD34+CD7+CD4+ cells in the HIV+ sample of ID 1 were analyzed (n=3 for HIV−; n=7 for HIV+). (E) p24 mean fluorescence intensities (MFIs) of CD34+CD7+CD4+ cells were compared between HIV+ and HIV− samples (n=7). (F) CD34+CD7+CD4+CXCR4+ cells were tested for correlation with p24+ (left), p24+CD34+ (middle), and p24+CD34+CD7+ (right) frequencies. Comparisons were done by the Wilcoxon matched-pairs signed rank test unless otherwise noted. Spearman’s correlation coefficients were calculated for correlation analyses.
Tables

<table>
<thead>
<tr>
<th>Subset</th>
<th>Cell count in infected samples (mean±SD, n=4)</th>
<th>% in the mean whole cell count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole</td>
<td>390,000±154,919</td>
<td>100</td>
</tr>
<tr>
<td>p24⁺</td>
<td>547±258</td>
<td>0.140</td>
</tr>
<tr>
<td>p24⁺CD34⁻CD7⁺</td>
<td>326±242</td>
<td>0.084</td>
</tr>
<tr>
<td>p24⁺CD34⁻CD7⁻</td>
<td>124±56</td>
<td>0.032</td>
</tr>
<tr>
<td>p24⁺CD34⁺</td>
<td>97±42</td>
<td>0.025</td>
</tr>
<tr>
<td>p24⁺CD34⁺CD7⁺</td>
<td>80±31</td>
<td>0.021</td>
</tr>
</tbody>
</table>

Table 1. Mean cell counts (n=4) in different HIV p24⁺ subsets of OP9-DL1 cocultured cells. The whole cell count data were obtained with 4 out of the 9 samples of experiment 2 (short coculture, Figs 4-6 and S4-5), in which cord-derived CD34⁺ cells were first cocultured with OP9-DL1 for 4-6 weeks, infected with HIV-1NL4-3, cocultured again for 1 week, and analyzed by flow cytometry. The percentages in the mean whole cell count are also shown. SD: standard deviation.
<table>
<thead>
<tr>
<th>Subset</th>
<th>Cell count (mean±SD, n=4)</th>
<th>% (infected−uninfected)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>uninfected</td>
<td>infected</td>
</tr>
<tr>
<td>Whole</td>
<td>400,000±168,721</td>
<td>390,000±154,919</td>
</tr>
<tr>
<td>CD4⁺CD8⁺</td>
<td>5,789±3,514</td>
<td>4,919±2,364</td>
</tr>
<tr>
<td>CD4⁺CD8⁺CXCR4⁺</td>
<td>3,287±1,757</td>
<td>3,047±1,842</td>
</tr>
<tr>
<td>CD34⁺</td>
<td>32,848±18,150</td>
<td>32,107±21,361</td>
</tr>
<tr>
<td>CD34⁺CD7⁺</td>
<td>16,715±9,521</td>
<td>16,106±12,126</td>
</tr>
<tr>
<td>CD34⁺CXCR4⁺</td>
<td>18,302±10,987</td>
<td>18,288±14,726</td>
</tr>
<tr>
<td>CD34⁺CD7⁺CXCR4⁺</td>
<td>12,135±7,813</td>
<td>11,892±11,141</td>
</tr>
<tr>
<td>CD34⁺CD7⁺CXCR4⁺</td>
<td>6,151±3,867</td>
<td>6,379±3,989</td>
</tr>
<tr>
<td>CD34⁺CD7⁺CD4⁺</td>
<td>129±42</td>
<td>178±74</td>
</tr>
<tr>
<td>CD34⁺CXCR4⁺</td>
<td>148,493±163,552</td>
<td>157,078±166,602</td>
</tr>
<tr>
<td>CD34⁺CD7⁺CXCR4⁺</td>
<td>131,461±161,042</td>
<td>138,810±162,033</td>
</tr>
<tr>
<td>CD34⁺CD7⁻CXCR4⁺</td>
<td>16,936±7,454</td>
<td>18,261±8,041</td>
</tr>
</tbody>
</table>

Table 2. Mean cell counts (n=4) in different subsets of OP9-DL1 cocultured cells. The whole cell count data were obtained with 4 out of the 9 samples of experiment 2 (short coculture, Figs 4-6 and S4-5), in which cord-derived CD34⁺ cells were first cocultured with OP9-DL1 for 4-6 weeks, infected with HIV-1NL4-3, cocultured again for 1 week, and analyzed by flow cytometry. Cell counts in HIV-infected samples were compared with uninfected control samples. Percent changes of the subset cell counts by HIV infection were calculated and shown in the last column. Percent changes > 10% or < −10% are shown in bold. SD: standard deviation.
HIV-1_{NL4-3}

Infect and culture overnight

Primary cord-derived CD34⁺ cells

Coculture for 5 weeks (long coculture)

OP9-DL1 monolayer

IL-7 Flt-3L

HIV p24
cell count

Weeks after infection

HIV p24 concentration (ng/mL)

Weeks after infection

HIV p24 concentration (ng/mL)

HIV p24 cell count

% HIV p24+

Weeks after infection

Weeks after infection

R = 0.6906

P < 0.0001
Figure 2

A. Whole cell count over 5 weeks after infection, showing a significant increase in HIV+ cells compared to HIV- cells. ** indicates p < 0.01, ** indicates p < 0.001.

B. CD4 and CD8 cell counts showing a significant decrease in CD4 cells and an increase in CD8 cells in HIV+ cells compared to HIV- cells. ** indicates p < 0.01.

C. CD4 and CD8 cell count over 5 weeks after infection, showing a significant increase in CD4 cells and a decrease in CD8 cells in HIV+ cells compared to HIV- cells. ** indicates p < 0.01, *** indicates p < 0.001.

D. CD4 and CD8+CXCR4 cell count over 5 weeks after infection, showing a significant decrease in CD4+CXCR4 cells in HIV+ cells compared to HIV- cells. ** indicates p < 0.01.

E. Scatter plot showing the distribution of CD34+ and CD7+ cells with HIV- and HIV+ infections.

F. CD34+CD7+ cell count over 5 weeks after infection, showing a significant increase in CD34+CD7+ cells in HIV+ cells compared to HIV- cells. *** indicates p < 0.001.

G. CD34+CD7- cell count over 5 weeks after infection, showing a significant decrease in CD34+CD7- cells in HIV+ cells compared to HIV- cells. *** indicates p < 0.001.
Figure 3

A. % HIV p24⁺CD34⁺ cells

B. % HIV p24⁺ of CD34⁺ cells

C. HIV p24⁺CD34⁺ cell count (x10³)

D. % HIV p24⁺CD7⁻ cells

E. % HIV p24⁺ of CD34⁺CD7⁻ cells

F. HIV p24⁺CD34⁺CD7⁻ cell count (x10³)

G. CD34⁺ cell count

H. CD34⁺CD7⁻ cell count

I. CD34⁺CD7⁻CXCR4⁺ cell count

J. CD34⁺CD7⁻CXCR4⁺ cell count

K. CD34⁺CD7⁻CXCR4⁺ cell count

* not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. doi: bioRxiv preprint
Figure 4

A

HIV-1_{NL4-3}

Infect and culture overnight

Coculture for 4-6 weeks

IL-7 Flt-3L

Coculture (CD34+/OP9-DL1)

Cocultured cells (CC)

Another coculture for 1 week (short coculture)

IL-7 Flt-3L

Coculture (CC/OP9-DL1)

B

HIV p24

CD34 0.63 0.02 0.34 0.31 0.11 0.54

CD4 18.7 7.75 22.2

CD8

C

% CD4+ in subset before infection

P=0.0369

P=0.0369

D

Percentage 1 week after infection

Figure 5

A

SSC

CD34

CD7

CXCR4

CD34* cells

HIV-

HIV+

24.6

13.7

30.6

8.19

7.93

5.21

B

P=0.4258

% CD4 CD8*

% CD34*

P=0.9999

% CD34-CD7

P=0.6523

% CD34-CD7

HIV

HIV-

HIV

HIV+

C

P=0.3594

% CD34-CD34-CD7-CD8*

% CD34-CD7-CD4

P=0.0117

% CD34-CD7-CD34-CD8*

% CD34-CD7-CD4

P=0.6145

% CD34-CD7-CD34-CD8*

% CD34-CD7-CD4

P=0.6145

% CD34-CD7-CD34-CD8*
Figure 6

A

CXCR4

HIV

CD4

HIV−

HIV+

CD34

CD7

CD34+CD7+ cells

B

P=0.7045

P=0.0156

P=0.0273

% CD34+CD4+

% CD34+CD7+CD4+

% CD34+CD7+CD4+CXCR4+

C

P=0.0209

5000

4000

3000

2000

1000

HIV−

HIV+

CD4 FI of CD34+CD7+CD4+ cells

D

R=-0.5714

P=0.2000

CD4 FI

CD34 FI

E

P=0.0156

p24 MFI of CD34+CD7+CD4+ cells

F

R=0.7167

P=0.0369

R=0.5764

P=0.1129

R=0.4171

p24+CD4

p24+CD34

p24+CD34+CD7+
Figure S1. CD34− cells were analyzed for expression of CD7 and intracellular HIV p24. (A) p24*CD34−CD7+ cell counts. (B) p24*CD34−CD7− cell counts.
Figure S2. (A) Flow cytometry plots that complement Fig 2E. They show the phenotype analysis of CD34+CD4+ cells in an OP9-DL1 coculture. Representative plots are shown. Cord-derived CD34+ cells were cocultured with OP9-DL1 for 4 weeks. Cells were collected and analyzed by flow cytometry. CD34− cells were gated by the expression of CD7 and CD4. CD7+CD4+ cells and CD7−CD4+ cells were further gated by the expression of CD8 and CD3. The analysis revealed that CD7+CD4+ cells contained different subsets including CD3−CD4+CD8+ and CD3+CD4+CD8− cells, whereas CD7−CD4+ cells were mostly CD3−CD4+CD8− cells. These results indicate that CD4/CD8 double-positive thymocytes, CD7+ CD4 T cells, and CD7− CD4 T cells were generated by the OP9-DL1 coculture of cord-derived CD34+ cells. (B) CD34−CD7+CD3+CD4+CD8− cell counts.
Figure S3. Part of the experiment 1 (long coculture) data. Phenotypes of CD34− cells in the OP9-DL1 cocultures HIV-1 infection were analyzed weekly from week 1 until week 5 post infection. Cell counts were compared with the samples without HIV-1 infection. These data complement Fig 2E-G. (A) CD34−CXCR4+ cell counts. (B) CD34−CD7+CXCR4+ cell counts. (C) CD34−CD7−CXCR4+ cell counts. Comparison was done by the Wilcoxon matched-pairs signed rank test. *: \(P<0.05 \), **: \(P<0.01 \), ***: \(P<0.001 \).
Figure S4. Part of the experiment 2 (short coculture) data. CXCR4+ cells in different subsets were compared between HIV-infected and uninfected samples. (A) Frequencies of CD4+CD8+CXCR4+ cells. (B) Frequencies of CD34+CXCR4+ cells (left), CD34−CD7+CXCR4+ cells (middle), and CD34−CD7−CXCR4+ cells (right). Comparison was done by the Wilcoxon matched-pairs signed rank test.
Figure S5. Part of the experiment 2 (short coculture) data. CD34⁺CD7⁺CD4⁺ cells in sample ID 1 were further analyzed for CD3 fluorescence intensities (FIs). (A) Comparison of CD3 FIs between HIV-infected and uninfected samples. (B) Correlation analysis between CD3 FIs and CD4 (left) or CD34 (right) FIs. Spearman’s rank correlation coefficients were calculated.