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Similarity search, such as identifying similar images in a database or similar

documents on the Web, is a fundamental computing problem faced by many

large-scale information retrieval systems. We discovered that the fly’s olfac-

tory circuit solves this problem using a novel variant of a traditional computer

science algorithm (called locality-sensitive hashing). The fly’s circuit assigns

similar neural activity patterns to similar input stimuli (odors), so that behav-

iors learned from one odor can be applied when a similar odor is experienced.

The fly’s algorithm, however, uses three new computational ingredients that

depart from traditional approaches. We show that these ingredients can be

translated to improve the performance of similarity search compared to tra-

ditional algorithms when evaluated on several benchmark datasets. Overall,

this perspective helps illuminate the logic supporting an important sensory

function (olfaction), and it provides a conceptually new algorithm for solving

a fundamental computational problem.
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An essential task of many neural circuits is to assign neural activity patterns to input stimuli,

so that different inputs can be uniquely identified (1, 2). Here, we study the circuit used by the

fruit fly olfactory system to process odors and uncover new computational strategies for solving

a fundamental machine learning problem: approximate similarity (or nearest-neighbors) search.

The fly olfactory circuit assigns each odor a “tag”, corresponding to a set of neurons that fire

when that odor is presented (3). This tag is critical for learning behavioral responses to different

odors (4). For example, if a reward (e.g., sugar water) or a punishment (e.g., electric shock) is

associated with an odor, that odor becomes attractive (a fly will approach the odor) or repulsive

(a fly will avoid the odor), respectively. The tags assigned to odors are known to be sparse —

only a small fraction of the neurons that receive odor information respond to each odor (5,6) —

and non-overlapping — tags for two randomly selected odors share few, if any, active neurons,

so that different odors can be easily distinguished (3).

The tag for an odor is computed using a three step procedure (Figure 1A). The first step

involves feed-forward connections from odorant receptor neurons (ORNs) in the fly’s nose to

projection neurons (PNs) in structures called glomeruli. There are 50 ORN types, each with a

different sensitivity and selectivity for different odors. Thus, each input odor has a location in

a 50-dimensional space determined by the 50 ORN firing rates. For each odor, the distribution

of ORN firing rates across the 50 ORN types is exponential with a mean that depends on the

concentration of the odor (7,8). For the PNs, this concentration-dependence is removed (8–12);

i.e., the distribution of firing rates across the 50 PN types is exponential with close to the same

mean for all odors and all odor concentrations (3). Thus, the first step in the circuit essentially

“centers the mean” — a standard pre-processing step in many computational pipelines — using

a technique called divisive normalization (13). This step is important so the fly does not mix up

odor intensity with odor type.
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The second step, where the main algorithmic insight begins, involves a 40-fold expansion

in the number of neurons: 50 PNs project to 2000 Kenyon cells (KCs), connected by a sparse,

binary random connection matrix (14). Each Kenyon cell receives and sums the firing rates

from about 6 randomly selected PNs (14). The third step involves a winner-take-all circuit using

strong inhibitory feedback from a single inhibitory neuron, called APL. As a result, all but the

highest firing 5% of Kenyon cells are silenced (3,5,6,15). The firing rates of the remaining 5%

corresponds to the tag assigned to the input odor.

Our contributions. From a computer science perspective, we view the fly’s circuit as a hash

function, whose input is an odor and whose output is a tag (called a hash) for that odor. While

tags should discriminate odors, it is also to the fly’s advantage to associate very similar odors

with similar tags (Figure 1B), so that conditioned responses learned for one odor can be applied

when a very similar odor, or a noisy version of the learned odor, is experienced. This led us to

conjecture that the fly’s circuit produces tags that are locality-sensitive; i.e., the more similar a

pair of odors, the more similar their assigned tags. Interestingly, locality-sensitive hash func-

tions (LSH (16–19)) serve as the foundation for solving numerous similarity search problems

in computer science. The fly’s algorithm, however, departs from traditional LSH algorithms in

three ways (discussed later): it uses sparse, binary random projections to expand the dimen-

sionality of the input, and it then sparsifies the tag using a winner-take-all circuit.

Here, we investigate this connection, offering the following contributions:

1. We translate insights from the fly’s circuit to develop a new class of LSH algorithms for

efficiently finding approximate nearest-neighbors of high-dimensional points (Figure 1).

2. We prove analytically that the fly’s circuit constructs tags that preserve the neighborhood

structure of inputs (as defined under the `2 norm). The fly’s approach, however, is much
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more computationally efficient than common approaches often used in the literature.

3. We show empirically that the fly’s algorithm improves performance or computational effi-

ciency of finding nearest neighbors versus traditional LSH algorithms on three benchmark

datasets (Figures 2 and 3).

We conclude by describing how the fly’s core procedure to construct odor tags might also illu-

minate the logic of several vertebrate neural circuits (Table 1).

The relationship amongst nearest-neighbor search, locality-sensitive hashing, and the fly

olfactory circuit. Imagine you are provided an image of an elephant and seek to find the

100 images — out of the billions of images on the Web — that look most similar to your

elephant image. This is called the nearest-neighbors search problem, which is of fundamental

importance in information retrieval, data compression, and machine learning (17). Each image

is typically represented as a d-dimensional feature vector that lies at a point in Rd space. (Recall

that each odor a fly processes is located at a point in 50-dimensional space, R50
+ .) A distance

metric is used to compute the similarity between two images (feature vectors), and the goal is

to efficiently find the nearest-neighbors of any query image. If the Web contained only a few

images, then brute force linear search could easily be used to find the exact nearest neighbors. If

the Web contained many images, but each image was represented by a low-dimensional vector

(e.g., 10 or 20 features), then space partitioning methods, such as kd-trees (20), would similarly

suffice. However, for large databases with high-dimensional data, neither approach scales (19).

Fortunately, in many applications, returning an approximate set of nearest-neighbors that

are “close enough” to the query is adequate, so long as they can be found quickly. This has mo-

tivated an approach for finding approximate nearest-neighbors using a probabilistic technique

called locality-sensitive hashing (LSH (17)). For the fly, the “tag” (or hash) of an odor corre-

sponds to the vector of Kenyon cell firing rates for that odor. The locality-sensitive property

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 25, 2017. ; https://doi.org/10.1101/180471doi: bioRxiv preprint 

https://doi.org/10.1101/180471
http://creativecommons.org/licenses/by-nc-nd/4.0/


states that two odors that are similar (e.g., methanol and ethanol) will be represented by two

tags that are themselves similar (Figure 1B). Likewise, for image search, the tag of an elephant

image will be more similar to the tag of another elephant image than to the tag of a skyscraper

image. Formally:

Definition 1. A hash function h : Rd → Rm is called locality-sensitive if for any two

points p, q ∈ Rd, Pr[h(p) = h(q)] = sim(p, q), where sim(p, q) ∈ [0, 1] is a similarity

function defined on two input points.

Unlike a traditional (non-LSH) hash function, where the input points are scattered randomly

and uniformly over the range, the LSH function h provides a distance-preserving embedding of

points from d-dimensional space into m-dimensional space (the latter corresponds to the tag).

Thus, points that are closer to one another in input space have a higher probability of being

assigned the same or similar tag than points that are far apart1.

To design a LSH function, one common trick is to compute random projections of the input

data (16–19) — i.e., to multiply the input feature vector by a random matrix. The Johnson-

Lindenstrauss lemma (16, 21–23), and its many variants (24–26), provide strong theoretical

bounds on how well locality is preserved when embedding data from d into m dimensions

using various types of random projections.

Strikingly, the fly also assigns tags to odors by using random projections (step 2, 50 PNs→

2000 KCs), which provides a key clue towards the function of this part of the circuit. There are,

however, three differences between the fly’s algorithm versus conventional LSH algorithms.

First, the fly uses sparse, binary random projections, whereas LSH functions typically use

dense, i.i.d. Gaussian random projections that are much more expensive to compute. Second,

1In practice, a second (traditional) hash function is used to place each m-dimensional point into a discrete bin
so that all similar images lie in the same bin, for easy retrieval. In this paper, we focus only on designs for the LSH
function, h.
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the fly expands the dimensionality of the input after projection (d � m), whereas LSH con-

tracts the dimension (d� m). Third, the fly sparsifies the higher-dimensionality representation

using a winner-take-all mechanism, whereas LSH preserves a dense representation.

Deriving the distance-preserving properties of the fly’s olfactory circuit. We can view the

mapping from projection neurons (PNs) to Kenyon cells (KCs) as a bipartite connection matrix,

with d = 50 PNs on the left and the m = 2000 KCs on the right. The nodes on the left take

values x1, . . . , xd while those on the right are y1, . . . , ym. Each value yj is equal to the sum of a

small number of the xi’s; we represent this relationship by an undirected edge connecting every

such xi with yj . This bipartite graph can be summarized by an m× d adjacency matrix M :

Mji =

{
1 if xi connects to yj
0 otherwise.

Moving to vector notation, with x = (x1, . . . , xd) ∈ Rd and y = (y1, . . . , ym) ∈ Rm, we have2:

y =Mx.

After feedback inhibition from the APL neuron, only the k highest firing KCs retain their values;

the rest are zeroed out. This winner-take-all mechanism produces a sparse vector z ∈ Rm (called

the tag) with:

zi =

{
yi if yi is one of the k largest entries in y
0 otherwise.

A simple model of M is a sparse, binary random matrix: each entry Mij is set independently

with probability p. Choosing p = 6/d, for instance, would mean that each row ofM has roughly

6 ones (and all of the other entries are 0), which matches experimental findings (14).

In the Supplement, we prove that the first two steps of the fly’s circuitry produces tags that

preserve `2 distances of input odors in expectation:
2In practice, an additional quantization step is used for discretization: y =

⌊
Mx
w

⌋
, where w is a constant, and

b·c is the floor operation.
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Lemma 1. If two inputs x, x′ ∈ Rd get projected to y, y′ ∈ Rm, respectively, we have

E‖y − y′‖2 = mp
(
(1− p)‖x− x′‖2

)
. (1)

The third step (winner-take-all) is then a simple method for sparsifying the representation while

preserving the largest and most discriminative coefficients (3, 27).

In the Supplement, we also prove that when m is large enough (i.e., the number of random

projections is O(d)), the variance ‖y‖2 is tightly concentrated around its expected value, such

that

(1− ε)E‖y‖2 ≤ ‖y‖2 ≤ (1 + ε)E‖y‖2,

with high probability, for small ε > 0.

Together, these results prove that the fly’s circuit represents a new LSH family.

Empirical evaluation on 3 benchmark datasets. To perform a fair comparison between the

fly’s algorithm and traditional LSH (16–19), we fixed the computational complexity of both

algorithms to be the same (Figure 1C). That is, the two approaches were fixed to use the same

number of mathematical operations to generate a hash of length k (i.e., a vector with k non-zero

values) for each input. See Materials and Methods for details.

We compared the two algorithms for finding nearest-neighbors on three benchmark datasets:

SIFT (28) (d = 128), GLOVE (29) (d = 300), and MNIST (30) (d = 784). SIFT and MNIST

both contain vector representations of images used for image similarity search, whereas GLOVE

contains vector representations of words used for semantic similarity search. We collected a

subset of each dataset with 10,000 inputs each, where each input was represented as a feature

vector in Rd. To test performance, we selected 1000 random query inputs from the 10,000

and compared true versus predicted nearest-neighbors. That is, for each query, we found the

top 2% (200) of its true nearest-neighbors in input space, determined based on the Euclidean
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distance between feature vectors. We then found the top 2% of predicted nearest-neighbors in

hash space (i.e., the range of h), determined based on Euclidean distance between tags (hashes).

We varied the length of the hash (k) and computed the overlap between the ranked lists of true

and predicted nearest-neighbors using the mean average precision (31, 32). We averaged the

mean average precision over 50 trials, where in each trial the random projection matrices and

the queries changed.

Below, we isolated each of the three differences between the fly’s algorithm and LSH to test

their individual effect on nearest-neighbors retrieval performance.

Sparse binary vs. dense Gaussian random projections (Figure 2A). First, we simply modi-

fied LSH to use sparse binary, instead of dense Gaussian, random projections. No other aspect

of the fly’s algorithm was used. We found that the two random projection types produced nearly

identical retrieval performance on all three datasets and across all hash lengths (Figure 2A).

These results support our theoretical calculations that the fly’s random projection is indeed

locality-sensitive. Moreover, the sparse, binary random projection achieved a computational

savings of a factor of 20 versus the dense, Gaussian random projection (SI Text).

We also varied the number of input indices (PNs) each Kenyon cell samples, from 1%, to

10% (6 out of 50, as the fly does), to 50%. We found the most consistent performance when

sampling 10%, with no improvement in performance at 50% (Figure S1).

Winner-take-all (WTA) vs. random tag selection following the expansion (Figure 2B). Sec-

ond, we implemented the full fly’s algorithm and compared different methods to select Kenyon

cells (KCs) that constitute the tag. Here, we used 20k random projections for the fly to equate

the number of mathematical operations used by both algorithms (SI Text). We found much

better performance using WTA, which selects the top k firing KCs as the tag, versus a selection
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of k random KCs (Figure 2). For example, on the SIFT dataset with hash length k = 4, random

selection yielded a 17.7% mean average precision versus roughly double that (32.4%) using the

WTA. Thus, selecting the top firing neurons best preserves relative distances between inputs;

the increased dimension also makes it easier to segregate dissimilar inputs. For random tag

selection we selected k random (but fixed for all inputs) KCs for the tag; hence, its performance

is effectively the same as just doing k random projections, as in LSH.

Overall comparison between the fly and LSH (Figure 3). Third, to more closely mimic

the fly’s circuitry, we implemented the full fly’s algorithm but with a further expansion of the

dimensionality from 20k to 10d Kenyon cells. Overall, we found significant gains compared to

LSH across all three datasets (Figure 3). The gains were highest for very short codes, where we

see an almost 3x improvement in mean average precision (e.g., for MNIST with k = 4, 16.0%

for LSH versus 44.8% for the fly).

We also used the fly’s algorithm to implement binary locality-sensitive hashing (33, 34),

where the LSH function h : Rd → Zm. In other words, instead of using the values of the top k

Kenyon cells as the tag, we used their indices. The fly’s method improved over a common prior

approach, which binarizes each Kenyon cell to 0 or 1 based on whether its value is ≤ 0 or > 0,

respectively (Figure S3). This suggests that the fly’s ingredients may also be useful across other

LSH families.

Finally, the fly’s algorithm is also scalable. While designed biologically for d = 50, our

datasets included dimensionality up to d = 784 (MNIST). We also tested the fly’s algorithm

on the GIST image dataset (28), where d = 960, and found a similar trend in performance

(Figure S2).

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 25, 2017. ; https://doi.org/10.1101/180471doi: bioRxiv preprint 

https://doi.org/10.1101/180471
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussion. Overall, we identified a new brain algorithm that supports an important sensory

function (olfaction); we derived its distance-preserving properties theoretically; and we empir-

ically evaluated its performance for finding nearest-neighbors on several benchmark datasets.

Our work offers a new synergy between strategies for similarity matching in the brain (35)

and algorithms for nearest-neighbor search in large-scale information retrieval systems. Our

work may also have applications in duplicate detection, clustering, and energy-efficient deep

learning (36).

There are numerous extensions to LSH (37), including using multiple hash tables (19) to

boost precision (we used just one here for both algorithms), using multi-probe (38) so that

similar tags can be grouped together into the same bin (which may be easier to implement

for the fly since tags are sparse), and various quantization tricks for discretizing hashes (39).

There are also methods to speed up the random projection multiplication — both for LSH,

using fast Johnson-Lindenstrauss transforms (40, 41), and for the fly, using fast sparse matrix

multiplication. Our goal here was to fairly compare two conceptually different approaches for

the nearest-neighbors search problem; in practical applications, all of these extensions will need

to be ported to the fly’s algorithm.

Following the fly, we focused on data-independent hashing; i.e., hash functions that do not

learn from prior data nor use prior data in any way when deriving the tag. Recently, many

classes of data-dependent LSH families have been proposed, including PCA hashing (42),

spectral hashing (43), semantic hashing (44), deep hashing (32), and others (45) (reviewed by

Wang et al (46)). Some of the fly’s ingredients have been used piece-meal before; for example,

MinHash (47) and winner-take-all hash (48) both use WTA-like components, though neither

propose expanding the dimensionality; similarly, random projections are used in many LSH

families, but none, to our knowledge, use sparse, binary projections. The combination of these

computational ingredients thus appears novel, and it seems remarkable to us that evolution has
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discovered them for fly olfaction.

Finally, while the fly olfactory system has been extensively mapped experimentally, there is

some evidence that the three hallmarks used in the fly’s circuit motif may also appear in other

brain regions and species (Table 1). Thus, locality-sensitive hashing may be a general principle

of computation used in the brain (49).
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Step 1
Centers the mean

~50 odorant receptor 
neuron (ORN) types

~50 projection
neurons (PNs)

Step 2
Random projection

⇒Odor

~2000 Kenyon cells 
(KCs)

APL

A B

~5% KCs active for each odor = “tag”

Ethanol
CH3CH2OH

Methanol
CH3OH

Dimethyl Sulfide
C2H6S

Step 3
Winner-take-all

C

Fly

=

�
x1 + x4

w

⌫

=

�
x4 + x5

w

⌫

LSH

=

�P
xiri

w

⌫ ⇒

Input

Figure 1: Mapping between the fly olfactory circuit and locality-sensitive hashing (LSH). A)
Schematic of the fly olfactory circuit. In Step 1, 50 ORNs in the fly’s nose send axons to 50 PNs in
the glomeruli; as a result of this projection, each odor is represented by an exponential distribution of
firing rates, with the same mean for all odors and all odor concentrations. In Step 2, the PNs expand
the dimensionality, projecting to 2000 KCs, connected by a sparse, binary random projection matrix. In
Step 3, the KCs receive feedback inhibition from the anterior paired lateral (APL) neuron, which leaves
only the top 5% of KCs to remain firing spikes for the odor. This 5% corresponds to the tag (hash) for
the odor. B) Illustrative odor responses. Similar pairs of odors (e.g., methanol and ethanol) are assigned
more similar tags than dissimilar odors. Darker shade denotes higher activity. C) Differences between
conventional LSH and the fly’s algorithm. In the example, the computational complexity for LSH and the
fly are the same. The input dimension d = 5. LSH computes m = 3 random projections, each of which
requires 10 operations (5 multiplications + 5 additions). The fly computes m = 15 random projections,
each of which requires 2 addition operations. Thus, both require 30 total operations.
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A
SIFT (d=128) MNIST (d=784)

B

GLOVE (d=300)

Figure 2: Empirical comparison of different random projection types and tag-selection methods.
In all plots, the x-axis is the length of the hash, and the y-axis is the mean average precision (higher
is better). A) Sparse, binary random projections offer near-identical performance as dense, Gaussian
random projections, but the former provide a large savings in computation. B) The expanded-dimension
(from k → 20k) plus winner-take-all sparsification further boosts performance versus non-expansion.
Results are consistent across all three benchmark datasets. Error bars indicate standard deviation over 50
trials.
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SIFT (d=128) MNIST (d=784)GLOVE (d=300)

Figure 3: Overall comparison between the fly’s algorithm and locality-sensitive hashing (LSH).
In all plots, the x-axis is the length of the hash, and the y-axis is the mean average precision (higher is
better). A 10d expansion was used for the fly. Across all three datasets, the fly’s method outperforms
LSH, most prominently for short codes. Error bars indicate standard deviation over 50 trials.
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Tables

Table 1: The generality of locality-sensitive hashing in the brain.

Step 1 Random Proj. Step 2 (Expansion) Step 3 (WTA)

Fly olfaction
Antennae lobe
50 glomeruli

Sparse, binary
Samples 6

Mushroom body
2000 Kenyon cells

APL neuron
top 5%

Mouse olfaction
Olfactory bulb
1000 glomeruli

Dense, weak
Samples all

Piriform cortex
100K semi-lunar cells

Layer 2A
top 10%

Rat cerebellum
Pre-cerebellar

nuclei
Sparse, binary

Samples 4
Granule cell layer

100M granule cells
Golgi cells

top 10–20%

Rat hippocampus
Entorhinal cortex

30K grid cells Unknown
Dentate gyrus

1.2M granule cells
Hilar cells

top 2%

The steps used in the fly olfactory circuit and their potential analogs in vertebrate brain regions.

15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 25, 2017. ; https://doi.org/10.1101/180471doi: bioRxiv preprint 

https://doi.org/10.1101/180471
http://creativecommons.org/licenses/by-nc-nd/4.0/


References and Notes

1. S. Ganguli, H. Sompolinsky, Annu. Rev. Neurosci. 35, 485 (2012).

2. P. T. Sadtler, et al., Nature 512, 423 (2014).

3. C. F. Stevens, Proc. Natl. Acad. Sci. U.S.A. 112, 9460 (2015).

4. T. Hige, Y. Aso, M. N. Modi, G. M. Rubin, G. C. Turner, Neuron 88, 985 (2015).

5. G. C. Turner, M. Bazhenov, G. Laurent, J. Neurophysiol. 99, 734 (2008).

6. A. C. Lin, A. M. Bygrave, A. de Calignon, T. Lee, G. Miesenbock, Nat. Neurosci. 17, 559

(2014).

7. E. A. Hallem, J. R. Carlson, Cell 125, 143 (2006).

8. C. F. Stevens, Proc. Natl. Acad. Sci. U.S.A. 113, 6737 (2016).

9. V. Bhandawat, S. R. Olsen, N. W. Gouwens, M. L. Schlief, R. I. Wilson, Nat. Neurosci. 10,

1474 (2007).

10. S. R. Olsen, R. I. Wilson, Nature 452, 956 (2008).

11. C. M. Root, et al., Neuron 59, 311 (2008).

12. K. Asahina, M. Louis, S. Piccinotti, L. B. Vosshall, J. Biol. 8, 9 (2009).

13. S. R. Olsen, V. Bhandawat, R. I. Wilson, Neuron 66, 287 (2010).

14. S. J. Caron, V. Ruta, L. F. Abbott, R. Axel, Nature 497, 113 (2013).

15. R. A. Campbell, et al., J. Neurosci. 33, 10568 (2013).

16

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 25, 2017. ; https://doi.org/10.1101/180471doi: bioRxiv preprint 

https://doi.org/10.1101/180471
http://creativecommons.org/licenses/by-nc-nd/4.0/


16. P. Indyk, R. Motwani, Proc. of the 30th Annual ACM Symposium on Theory of Computing,

STOC’98.

17. A. Andoni, P. Indyk, Commun. ACM 51, 117 (2008).

18. M. Datar, N. Immorlica, P. Indyk, V. S. Mirrokni, Proceedings of the Twentieth Annual

Symposium on Computational Geometry, SCG ’04 (ACM, New York, NY, USA, 2004),

pp. 253–262.

19. A. Gionis, P. Indyk, R. Motwani, Proc. of the 25th Intl. Conf. on Very Large Data Bases,

VLDB’99.

20. H. Samet, Foundations of Multidimensional and Metric Data Structures (The Morgan Kauf-

mann Series in Computer Graphics and Geometric Modeling) (Morgan Kaufmann Publish-

ers Inc., San Francisco, CA, USA, 2005).

21. W. Johnson, J. Lindenstrauss, Contemporary Mathematics 26, 189 (1984).

22. P. Frankl, H. Maehara, Journal of Combinatorial Theory Series B 44, 355 (1988).

23. S. Dasgupta, A. Gupta, Random Structures and Algorithms 22, 60 (2003).

24. D. Achlioptas, Journal of Computer and System Sciences 66, 671 (2003).

25. Z. Allen-Zhu, R. Gelashvili, S. Micali, N. Shavit, Proc. Natl. Acad. Sci. U.S.A. 111, 16872

(2014).

26. D. Kane, J. Nelson, Journal of the Association for Computing Machinery 61 (2014).

27. D. L. Donoho, IEEE Trans. Inf. Theor. 52, 1289 (2006).

28. H. Jegou, M. Douze, C. Schmid, IEEE Trans Pattern Anal Mach Intell 33, 117 (2011).

17

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 25, 2017. ; https://doi.org/10.1101/180471doi: bioRxiv preprint 

https://doi.org/10.1101/180471
http://creativecommons.org/licenses/by-nc-nd/4.0/


29. J. Pennington, R. Socher, C. D. Manning, Empirical Methods in Natural Language Pro-

cessing (EMNLP) (2014), pp. 1532–1543.

30. Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Proc. of the IEEE 86, 2278 (1998).

31. Y. Lin, R. Jin, D. Cai, S. Yan, X. Li, 2013 IEEE Conference on Computer Vision and Pattern

Recognition 00, 446 (2013).

32. H. Zhu, M. Long, J. Wang, Y. Cao (2016).

33. M. S. Charikar, Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of

Computing, STOC ’02 (ACM, New York, NY, USA, 2002), pp. 380–388.

34. J. Wang, H. T. Shen, J. Song, J. Ji, CoRR abs/1408.2927 (2014).

35. C. Pehlevan, D. B. Chklovskii, ArXiv e-prints (2015).

36. R. Spring, A. Shrivastava, ArXiv e-prints (2016).

37. M. Slaney, Y. Lifshits, J. He, Proc. of the IEEE 100, 2604 (2012).

38. Q. Lv, W. Josephson, Z. Wang, M. Charikar, K. Li, Proc. of the 33rd International Confer-

ence on Very Large Data Bases, VLDB ’07 (VLDB Endowment, 2007), pp. 950–961.

39. P. Li, M. Mitzenmacher, A. Shrivastava, Proc. of the 31th Intl. Conf. on Machine Learning,

ICML’14.

40. A. Dasgupta, R. Kumar, T. Sarlos, Proc. of the 17th ACM SIGKDD Intl. Conf. on Knowl-

edge Discovery and Data Mining, KDD ’11 (ACM, New York, NY, USA, 2011), pp. 1073–

1081.

18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 25, 2017. ; https://doi.org/10.1101/180471doi: bioRxiv preprint 

https://doi.org/10.1101/180471
http://creativecommons.org/licenses/by-nc-nd/4.0/


41. A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, L. Schmidt, Proc. of the 28th Intl. Conf.

on Neural Information Processing Systems, NIPS’15 (MIT Press, Cambridge, MA, USA,

2015), pp. 1225–1233.

42. Y. Gong, S. Lazebnik, A. Gordo, F. Perronnin, IEEE Transactions on Pattern Analysis and

Machine Intelligence 35, 2916 (2013).

43. Y. Weiss, A. Torralba, R. Fergus, Advances in Neural Information Processing Systems 21,

D. Koller, D. Schuurmans, Y. Bengio, L. Bottou, eds. (Curran Associates, Inc., 2009), pp.

1753–1760.

44. R. Salakhutdinov, G. Hinton, Int. J. Approx. Reasoning 50, 969 (2009).

45. K. Zhao, H. Lu, J. Mei, Proc. of the 28th AAAI Conference on Artificial Intelligence,

AAAI’14 (AAAI Press, 2014), pp. 2874–2880.

46. J. Wang, T. Zhang, J. Song, N. Sebe, H. T. Shen, A survey on learning to hash (2016).

47. A. Broder, Proc. of the Compression and Complexity of Sequences, SEQUENCES ’97

(IEEE Computer Society, Washington, DC, USA, 1997), pp. 21–.

48. J. Yagnik, D. Strelow, D. A. Ross, R.-s. Lin, Proc. of the 2011 Intl. Conf. on Computer

Vision, ICCV ’11 (IEEE Computer Society, Washington, DC, USA, 2011), pp. 2431–2438.

49. L. G. Valiant, Curr. Opin. Neurobiol. 25, 15 (2014).

19

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 25, 2017. ; https://doi.org/10.1101/180471doi: bioRxiv preprint 

https://doi.org/10.1101/180471
http://creativecommons.org/licenses/by-nc-nd/4.0/

