1	Type 2 diabetes promotes cell centrosome amplification and the role				
2	of	AKT-ROS-dependent signalling of ROCK1 and 14-3-3 σ			
3					
4	Pu	Wang ¹ , Yu Cheng Lu ¹ , Jie Wang ² , Lan Wang ¹ , Hanry Yu ³ , Yuan Fei Li ⁴ , Alice			
5	Ko	ng ⁵ , Juliana Chan ⁵ , Shao Chin Lee ^{1,*}			
6					
7	¹ :	School of Life Sciences, Shanxi University, Taiyuan, Shanxi, PR China			
8	² :	Shanxi College of Traditional Chinese Medicine, Taiyuan, Shanxi, PR China,			
9	3:	Department of Physiology, National University of Singapore, Singapore.			
10	⁴ :	Department of Oncology, the First Clinical Hospital of Shanxi Medical			
11		University, Taiyuan, Shanxi, PR China			
12	⁵ :	Department of Medicine and Therapeutics, the Chinese University of Hong Kong,			
13		HKSAR, PR China			
14					
15	*:	Correspondence: Dr. Shao Chin Lee, School of Life Sciences, Shanxi University,			
16		Taiyuan, Shanxi, PR China. Email: lee_shao@hotmail.com; Telephone: (86)			
17		13485376021;			
18					
19	Ru	inning title:			
20	Ce	ntrosome amplificationin type 2 Diabetes and its mechanisms			
21 22					

23 Abstract

Type2 diabetes is associated with oxidative stress which can cause cell centrosome 24 amplification. The study investigated centrosome amplification in type 2 diabetes and 25 the underlying mechanisms. We found that centrosome amplification was increased in 26 the peripheral blood mononuclear cells (PBMC) from the type 2 diabetic patients, 27 which correlated with the levels of fasting blood glucose and HbA1c. High glucose, 28 insulin and palmitic acid, alone or in combinations, induced ROS production and 29 30 centrosome amplification. Together, they increased AKT activation as well as the expression, binding and centrosome translation of ROCK1 and $14-3-3\sigma$. Results from 31 further analyses showed that AKT-ROS-dependent upregulations of expression, 32 binding and centrosome translocation of ROCK1 and 14-3-3 σ was the molecular 33 pathway underlying the centrosome amplification induced by high glucose, insulin 34 and palmitic acid. Moreover, the increases in AKT activation and ROS production as 35 well as expression, binding and centrosome distribution of ROCK1 and 14-3-3 σ were 36 confirmed in the PBMC from the patients with type 2 diabetes. In conclusion, our 37 38 results show that type 2 diabetes promotes cell centrosome amplification, and suggest that the diabetic pathophysiological factors-activated AKT-ROS-dependent signalling 39 of ROCK1 and 14-3-3 σ is the underlying molecular mechanism. 40 41 Key words: Centrosome amplification; Type 2 diabetes; AKT; ROS; ROCK1; 42 14-3- 3σ ; Pathophysiological factors. 43

44

45 INTRODUCTION

Type 2 diabetes is a common non-communicable disease. At certain stage of the 46 disease development, patients present pathophysiological features such as 47 hyperglycemia, hyperinsulinemia and increased plasma level of free fatty acids. At 48 49 latter stage, patients may develop insulin deficiency, but continue to have hyperglycemia and increased plasma level of free fatty acids. These 50 pathophysiological factors are able to trigger the production of reactive oxygen 51 species (ROS) (Inoguchi et al., 2000; May and de Haen, 1979) and DNA damage (Lee 52 and Chan, 2015) in vitro, which may explain why oxidative stress and DNA damage 53 are increased in vivo in patients with type 2 diabetes (Lee and Chan, 2015; Orie et al., 54 1999). 55 56 Cell centrosome amplification refers to a cell with more than two centrosomes. There 57 is evidence that oxidative stress and DNA damage can cause centrosome 58 amplification (Chae et al., 2005; Dodson et al., 2004). At the molecular level, many 59 signal mediators for cell centrosome amplification have been identified, which 60 61 include those inside or outside the centrosomes. Overexpression of PLK4 (Basto et al., 2008) or aurora A (Castellanos et al., 2008), both are centrosome proteins, can cause 62 centrosome amplification. Wang and co-workers show that Chk2 is located in 63 64 centrosome, which controls centrosome amplification induced by sub-toxic concentrations of hydroxyurea (Wang et al., 2015). Overexpression of cyclin E 65 (Bagheri-Yarmand et al., 2010) which can be in centrosome was also to promote 66 centrosome amplification. Ras (Zen et al., 2010) which is a protein outside the 67 centrosomes has been shown to cause centrosome amplification. Interestingly, 68 BRCA1 promotes centrosome amplification when is translocated to centrosome (Zou 69 et al., 2014), which shows a dynamic communication between centrosome and its 70 surrounding environment for centrosome amplification. At the cellular and organismal 71 72 levels, centrosome amplification regulates cell division, movement and intracellular transport (Anderhub et al., 2012), and increases cancer invasion potential (Godinho et 73

al., 2014). While robust centrosome amplification results in multipolar division follow

by mitosis catastrophe (Pannu et al., 2012), there is evidence that moderate

centrosome amplification can induce genome instability (Ganem et al., 2009) and

tumorigenesis (Levine et al., 2017).

78

79 Since type 2 diabetes is associated with oxidative stress (Inoguchi et al., 2000; May

and de Haen, 1979; Lee and Chan, 2015; Orie et al., 1999) which can cause

centrosome amplification (Chae et al., 2005; Dodson et al., 2004), in the present study,

we investigate cell centrosome amplification in type 2 diabetes and the underlying

83 mechanisms.

84

85 **RESULTS**

Cell centrosome amplification is increased in patients with type 2 diabetes, which is in correlation with fasting blood glucose and HbA1c

88 To investigate whether centrosome amplification is associated with type 2 diabetes, first of all, we compared the extent of centrosome amplification in PBMCs from 32 89 patients with type 2 diabetes and 12 healthy subjects. The clinical characteristics of 90 the volunteers were summarized in Table 1. Compared with the healthy subjects, the 91 diabetic patients had higher body mass index, fasting blood glucose, HbA1c and 92 triglyceride. Moreover, we compared the level of centrosome amplification between 93 the healthy subject and diabetic patients. The images of centrosome and centrosome 94 amplification were shown in Fig. 1A. The patients had a greater degree of cell 95 96 centrosome amplification than the healthy subjects (8.7 % v.s.3.4%; p<0.01) (Fig. 1B); there was a 2.6-fold increase in centrosome amplification in PBMCs from the patients. 97 When the diabetic patients were divided into two groups according to their fasting 98 blood glucose level less or greater than 10mM, there was a step-wise increase in 99 centrosome amplification (p<0.01; Fig. 1C). Indeed, in all the volunteers, correlation 100 analysis showed that the extent of cell centrosome amplification was correlated with 101 the fasting blood glucose level ($R^2 = 0.7$; p<0.01; Fig. 1D) and HbA1c ($R^2=0.7$; 102

- p<0.01; Fig. 1E). Similarly, in the patients alone, the level of centrosome
- amplification was also correlated with fasting blood glucose ($R^2 = 0.5$; p <0.01; Fig.

105 1F) and HbA1c (R²=0.4; p<0.01; Fig. 1G).

106

107 Suggested Table 1 here

108 Suggested Figure 1 here

109

110 High glucose, insulin and palmitic acid, alone or in combinations, induce

111 centrosome amplification via ROS production

We then investigated whether the pathophysiological factors in type 2 diabetes could 112 induce centrosome amplification via specific molecular pathway using colon cancer 113 cells as an experimental model. Some results were verified in normal human breast 114 epithelial cells wherever it was considered to be meaningful, which was to verify 115 findings from experiments using cancer cells in non-cancerous cell model. Palmitic 116 acid, the most common saturated free fatty acid, was used to represent free fatty acids. 117 118 We tested ROS pathway to start with. Fluorescent spectrophotometry was used to quantify the level of ROS when experiments involved more than three samples. 119 Otherwise, flow cytometry analysis was employed. The results showed that high 120 glucose, insulin and palmitic acid, alone or in combinations, significantly induced 121 ROS production (Fig. 2A) and centrosome amplification (Figs. 2C) in the cancer cells. 122 High glucose, insulin and palmitic acid individually induced centrosome amplification 123 in concentration-dependent manners (figures not shown). They, together, also 124 triggered ROS production (Fig. 2B) and centrosome amplification (Fig. 2D) in the 125 126 normal human breast epithelial cells. Antioxidant N-acetylcysteine (NAC) was able to inhibit the ROS production and the centrosome amplification (Figs. 2A -2D). The 127 potential of high glucose, insulin and palmitic acid in inducing centrosome 128 amplification was three factors > two factors > single factor (all at p<0.05; Fig. 2C). 129 130

131 Suggested Figure 2 here

133 Functional transcriptomic analysis identifies AKT, ROCK1 and 14-3-3σas signal

134 mediators for the centrosome amplification

To further identify the molecular signals for the centrosome amplification, we 135 performed a functional transcriptomic analysis between the control samples and those 136 treated with high glucose, insulin and palmitic acid. The differentially expressed 137 genes were summarized in the supplementary data sheet (Table S1). In total, 729 138 genes were differentially expressed, with 508 upregulated and 221 downregulated. 139 140 Results of bioinformatic annotation were included in supplementary figures S1-S5. Functional enrichment using GO analysis assigned the genes to 37 terms in three 141 categories of molecular component, molecular function and biological process (Fig. 142 S1). The top terms were molecular function, cellular component, biological process 143 and cell, which had 9%, 9%, 8.4% and 8.3% of the genes, respectively. KEGG 144 annotation identified 37 pathways which were related to different functional groups 145 (Fig. S2). The top pathways were signal transduction, infectious diseases, cancer, 146 immune system and endocrine system, which had 15.6%, 11.6%, 11.1%, 7.4% and 7.0% 147 148 of the genes, respectively. Notably, AKT (Fig.S3), ROCK (Fig. S4) and 14-3- 3σ (Fig.S5) pathways were activated, which were chosen for further functional analysis. 149 Western blot analyses confirmed that high glucose, insulin and palmitic acid activated 150 AKT, which was inhibited by AKT inhibitor Ly294002 or siRNA (Fig. 3A). Similarly, 151 ROCK1 (Fig. 3B) and 14-3-3 σ (Fig. 3C) protein levels were upregulated, which were 152 inhibited their specific siRNA (Figs. 3B and 3C). We then performed functional 153 analyses to examine whether AKT, ROCK1 and 14-3-3^o mediated the centrosome 154 amplification. Indeed, inhibition of AKT using chemical inhibitor or siRNA could 155 156 inhibit the centrosome amplification (Fig. 3D). Similarly, siRNA for ROCK1 (Fig. 3E) and siRNA for 14-3-3 σ (Fig. 3F) were also able to inhibit the centrosome 157 amplification. Moreover, AKR chemical inhibitor, AKT siRNA, ROCK1 siRNA and 158 14-3-3σsiRNA individually were all able to inhibit the centrosome in the normal 159 human breast epithelial cells (Figs. 3G and 3H). 160 161

162 Suggested Figure 3 here

163

AKT-ROS-dependent signaling of ROCK1 and 14-3-3σ is the molecular pathway for the centrosome amplification

166	We next delineated the signal transduction pathway for the centrosome amplification
167	in the colon cancer cells. The logic was that inhibition of an upstream signal would
168	inhibit downstream one(s), while inhibition of a downstream signal would not affect
169	the upstream one(s). We observed that inhibition of AKT using chemical inhibitor
170	(Fig. 4A) orsiRNA (Fig. 4B) was able to inhibit ROS production as well as the
171	upregulations of ROCK1 (Figs. 4C) and 14-3-3 σ (Fig. 4D). NAC was able to inhibit
172	the upregulation of ROCK1 (Fig. 4E) and 14-3-3 σ (Fig. 4F), but did not affect the
173	activation of AKT (figure not shown). ROCK1 or 14-3- 3σ siRNA did not affect AKT
174	activation or ROS production (figures not shown).
175	
176	Suggested Figure 4 here
177	
178	High glucose, insulin and palmitic acid increase the binding between ROCK1
179	and 14-3-3 σ as well as their centrosome translocation
180	Next, we investigated the relationships amongst ROCK1, 14-3-3 σ and centrosome in
181	the cancer cells by using ROCK1 and 14-3-3 σ antibodies to pull down their binding
182	partners, as well as to analyse the centrosome translocation of the two proteins. In
183	pull-down samples using ROCK1 antibody, 14-3-3 σ protein was detected, which was
184	increased in the cells treated with high glucose, insulin and palmitic acid (Fig. 5A).
185	Similarly, high glucose, insulin and palmitic acid increased the pull down of ROCK1
186	using 14-3-3 σ antibody (Fig. 5A). AKT inhibitor and NAC were able to inhibit the
187	increase in co-precipitation of ROCK1 and 14-3-3 σ from the cells treated by high
188	glucose, insulin and palmitic acid (Figs. 5A). These observations on the Western blot
189	analysis images were confirmed when the images were quantified (Figs. 5B and 5C.
190	As shown in confocal images in Figs. 5D and 5E respectively, ROCK1 and 14-3-3 σ
191	were localized in the centrosome in all the treated samples. In the cells with more than
	and an transmission of the left of the construction of the DOCK1 with an other half of

193	centrosomes free of ROCK1 (Fig. 5D). The fluorescent intensity of ROCK1 staining,
194	which indicates the level of ROCK1 in the centrosomes, was higher in the treated
195	cells compared to that in the control cells, which was inhibited by AKT inhibitor or
196	NAC but not 14-3-3 σ siRNA (Fig. 5F). Comparing with that only 1% of the control
197	cells had 14-3-3 σ in the centrosomes, approximately 20% of the cells treated with
198	high glucose, insulin and palmitic acid had 14-3-3 σ in the centrosomes, which was
199	inhibited by AKT inhibitor, NAC or ROCK1 siRNA (all at p< 0.01; Figs. 5E and 5G).
200	
201	Suggested Figure 5 here
202	
203	The increases in AKT activation and ROS production as well as expression,
204	binding and centrosome distribution of ROCK1 and 14-3-3 σ in vitro are verified
205	in the PBMC from the volunteers
206	Finally, we investigated whether the molecular signalling events found in vitro
207	occurred in vivo in patients with type 2 diabetes. We compared these molecular events
208	between the PBMC from healthy volunteers and those from type 2 diabetic patients.
209	The results showed that PBMC from the diabetic patients had increased level of AKT
210	activation (Fig. 6A) and ROS production (Fig. 6B). The PBMC from the patients also
211	had increased expression (Fig. 6A), binding (Figs. 6C) and centrosome distribution of
212	ROCK1 and 14-3-3σ (Figs. 6D and 6E).
213	
214	Suggested Figure 6 here
215	
216	DISCUSSION
217	Our results showed that patients with type 2 diabetes had 2.6-fold increase in cell
218	centrosome amplification in vivo in PBMC, which correlated with poor glycemic

- control (Fig. 1). Pathophysiological factors in type 2 diabetes, i.e., high glucose,
- insulin and palmitic acid, could trigger centrosome amplification (Figs. 2C and 3D).
- 221 AKT-ROS-dependent upregulation of expression, binding and centrosome

translocation of ROCK1 and 14-3-3 σ was the underlying molecular pathway (Figs.

223 3-6).

224

225	Type 2 diabetes increases the risk of developing all-site cancer, with the exception of
226	prostate cancer (Giovannucci et al., 2010). Cancer patients with type 2 diabetes have
227	poorer prognosis than those without diabetes (Mills et al., 2013). However, it remains
228	unknown why and how type 2 diabetes favours cancer development. Centrosome
229	amplification can initiate in animal model (Levine et al., 2017) and increase cancer
230	cell invasion potential (Godinho et al., 2014). In the present study, we showed that
231	patients with type 2 diabetes had increased level of cell centrosome amplification in
232	vivo (Fig. 1). Thus, we speculate whether there is a link between the
233	diabetes-associated centrosome amplification (Fig. 1) and the increased cancer risk in
234	type 2 diabetes.
235	
236	Our results (Figs. 3-6) support the findings that AKT (Na et al., 2015) and ROS (Chae
237	et al., 2005) can mediate centrosome amplification, and further place AKT upstream
238	of ROS. In an apoptosis model, activation of ROCK1 causes AKT inactivation (Zhang
239	et al., 2016), which is different from our results that placed ROCK1 downstream of
240	AKT activation (Figs. 4C). Our result (Fig. 4E) showed that ROS was upstream of
241	ROCK1, which is in agreement with the observations by Shen and Wang (Shen and
242	Wang, 2015). Oh and Jang showed that AKT can be upstream of 14-3-3 σ (Oh and
243	Jang, 2009), which is supported by our result (Figs. 4D) that AKT was upstream of
244	14-3-3σ.
245	

As shown in Fig. 4, inhibition of AKR inhibits all other signals. Inhibition of ROS

inhibits ROCK1 and 14-3-3 σ but not AKT. Inhibition of ROCK1 or 14-3-3 σ did not

affect any other signals. This suggests that AKT-ROS-dependent signalling of

249 ROCK1 and 14-3-3σis the pathway underlying the centrosome amplification by the

experimental treatment. Our results (Figs. 5D and 5E) showed that ROCK1, but not

 $14-3-3\sigma$, was a centrosome protein. ROCK1 was present in half of the centrosomes

252 when a cell had two or more centrosomes. Whether it is present only in the mother centrosomes remains to be clarified. In most cases, $14-3-3\sigma$ was present in the 253 centrosomes only in the treated cells (Fig. 5E). Knockdown of ROCK1 inhibited 254 14-3-3 σ translocation to centrosome, while knockdown of 14-3-3 σ did not affect the 255 translocation of ROCK1 to the centrosomes (Figs. 5F and 5G), which suggests that 256 ROCK1 transports 14-3-3 σ to centrosome or is involved in 14-3-3 σ translocation to 257 centrosome after treatment. Downregulation of either ROCK1 or 14-3-30 inhibited 258 259 the centrosome amplification (Figs. 3E and 3F), which suggests that the integrity of ROCK1 and 14-3-3 σ complex is required for the centrosome amplification. These 260 data suggest that the pathophysiological factors of type 2 diabetes activate AKT-ROS 261 signalling which promotes the expression and binding of ROCK1 and 14-3-3 σ as well 262 as their translocation to centrosome to promote centrosome amplification. 263 264 High glucose, insulin and palmitic acid, alone or in combinations, did not affect the 265 cell viability under the experimental conditions, with the exception that high glucose 266 267 treatment increased cell viability (data not shown). In some cell line models, centrosome amplification is associated with cell cycle arrest (Yih et al., 2006). In our 268 study, high glucose, insulin and palmitic acid, alone or in combination, did not disturb 269

the cell cycle (data not shown), which suggests that cell cycle arrest is not a

271 prerequisite for centrosome amplification under our experimental conditions. At the

concentrations of 10, 20 and 30 μ M, linoleic acid did not significantly affect the

centrosome amplification (figure not shown), suggesting that unsaturated free fatty

acids are unable to suppress the centrosome amplification.

275

In our study, 3.4% of the PBMC from the healthy subjects displayed centrosome

amplification (Fig. 1B), which agrees with the finding by Dementyeva and

do-workers that approximately 3% of the peripheral blood cells from healthy donors

display centrosome amplification (Dementyeva et al., 2010).

280

It is known that obesity increases the risk for cancer (Mazzarella, 2005). There is also

282	evidence that type 1 diabetes modestly increases the risk for cancer (Zendehdel et al.,
283	2003). Obesity is associated with increased plasma levels of insulin and free fatty
284	acids (Golay et al., 1986). Type 1 diabetes is associated with hyperglycaemia and
285	increased free fatty acid level. All these pathophysiological factors were able to cause
286	centrosome amplification (Figs. 2C-2D). Thus, we speculate whether centrosome
287	amplification could play a role the cancer development in obesity and type 1 diabetes.
288	Moreover, our results (Figs. 3B and 3C) showed that the diabetic pathophysiological
289	factors could upregulate ROCK1 and 14-3-3 σ which are associated with
290	neurodegeneration (Joo et al., 2015; Hu et al., 2016), upon which we further speculate
291	whether ROCK1 and/or 14-3-3 σ could be new clues for the development of
292	Alzheimer's disease which shows an increased risk in type 2 diabetes (Zhang et al.,
293	2016).
294	
295	The study involved limited number of subjects. Further analysis with large cohorts is
296	required to confirm the findings. In the study, we used PBMC to demonstrate the
297	increase in centrosome amplification in type 2 diabetes. This raises a concern of
298	whether centrosome amplification occurs in other tissues prone to diabetes-related
299	cancer.
300	
301	In conclusion, our results show that type 2 diabetes promotes cell centrosome
302	amplification, and suggest that activation of AKT-ROS-dependent upregulations in
303	expression, binding and centrosome translocation of ROCK1 and 14-3-3 σ by the
304	pathophysiological factors in type 2 diabetes is the underlying molecular mechanism.
305	
306	MATERIALS AND METHODS
307	Chemicals, antibodies and cells
308	All chemicals were purchased from Sigma (St. Louis, MO, USA). Gama-tubulin
309	antibody (No. ab27074; mouse antibody) was purchased from Abcam (Cambridge,
310	UK). Rock1 antibody (No. 4035; rabbit antibody) was provided by cell signaling
311	technology (Boston, MA, USA). 14-3-3σ antibody (No. PLA0201; rabbit antibody)

312 was purchased from Sigma (St. Louis, MO, USA). Other antibodies were provided by

Cell Signalling Technology (Boston, MA, USA). HCT116 colon cancer cells were 313 kindly provided by Dr. B. Vogelstein of the Johns Hopkins University School of 314 Medicine, who produced the cell line. Normal human breast epithelial cells 315 (PCS-600-010) and culture medium were purchased from the American Type Culture 316 Collection (ATCC, Manassas, VA, USA). The culture medium and reagents for the 317 colon cancer cells were purchased from Gibco (Beijing, China). The palmitic acid 318 stock was conjugated to fatty acid-free bovine albumin in a 3:1 molar ratio at 37 °C 319 for 1 hour before use. Anti-gamma tubulin antibody was used to detect centrosome by 320 321 innumofluorescent staining. ROCK1 siRNA treatment largely reduced the staining of ROCK1. 14-3-3 was seen in the centrosome only after experimental treatment. These 322 observations showed that non-specific staining by the antibodies would not affect the 323 324 experimental observations.

325

326 **Clinical study**

Institutional approval and written informed consent were obtained from the medical 327 328 ethics committee and all participating subjects, respectively. All the volunteers were consecutively recruited during 2014 and 2016 at the Shanxi Hospital of Integrative 329 330 Western and Chinese Medicine and Shanxi Medical University without any selection bias. Type 2 diabetes was diagnosed according to the 1999 WHO criteria. All healthy 331 subjects were free hypertension. Each volunteer donated 5-ml blood sample. All the 332 clinical data were collected by clinical doctors responsible for the clinical study. 333

334

Cell culture 335

HCT116 cells were maintained in DMEM (low glucose, 5mM) supplemented with 50 336 U/ml penicillin, 50 g/ml streptomycin and 10% (v/v) foetal calf serum. Human 337 primary breast epithelial cells were cultured in basal medium (PCS-600-030) with a 338 growth kit (PCS-600-040, ATCC, Manassas, USA) according to ATCC instructions. 339 Epithelial cells from the second passage in our lab were used in the study. In cell 340 model studies, cells treated for 12 hours were used for ROS quantification. Cells 341 treated for 24 hours were harvested for co-immunoprecipitation assay. Those treated 342 for 30 hours were used for transcriptomic analysis. Cells treated for 48 hours were 343 used for quantification of centrosome number and protein distribution in centrosomes. 344 We performed time course assays and the time points were chosen, since these time 345 points produced the highest level of differences for the measurements between the 346 12

347 control and the treated samples.

348

349 **Quantification of ROS**

350 Changes in the intracellular ROS levels were determined using the

- 351 2,7'-dichlorofluorescein (DCFH-DA, Beyotime, Shanghai, China) probe on a
- 352 spectrofluorometer (SpectraMax M5, Molecular Devices, Silicon Valley USA). Cells
- grown in a 24-well plate were treated, washed twice with PBS, and incubated with
- 354 DCFH-DA for 20 min at 37 oC. Then, the cells were harvested, washed once in PBS,
- and transferred to a 96-well plate. Optical density values were obtained at an
- excitation wavelength of 488 nm and an emission wavelength of 525 nm.
- 357 Alternatively, the ROS levels were quantified using a flow cytometer (FACSCalibur,
- BD, New Jersey, USA) according to the manufacturer's instructions.
- 359

360 Confocal microscopy

- A cover slip was placed in a well of a 6-well plate. Cells were plated at a density of
- 50,000 cells per well. Cells grown on the cover slips were fixed in cold methanol and
- acetone (1:1; v:v) for 6 min at -20 $^{\circ}$ C, followed by three washes with PBS (10 min
- each time). Then, the cells were incubated with 0.1% Triton X-100 for 15 minutes and
- 365 3% BSA for 1 hour. The cells were incubated with a primary antibody in 3% BSA in
- PBS overnight at 4 °C, washed twice with PBS, and incubated with a
- FITC-conjugated secondary antibody in 3% BSA in 1×PBS for 1 hour at room
- temperature in the dark. Finally, the cells were mounted with mounting medium.
- 369 Confocal microscopy was performed using the Zeiss LSM880 microscope
- 370 (Oberkochen, Germany) with a 1.4 NA oil-immersion lens, and image processing was
- performed with Zen software (Oberkochen, Germany). One hundred cells were
- counted for their centrosome numbers for the percentage of centrosome amplification.
- 5/5

To separate peripheral blood mononuclear cells (PBMC), we loaded a 5-ml blood

- sample on the top of separation medium (LTS1077; TBD, Tianjin, China) in a
- centrifuge tube and centrifuged at 250 g for 20 min. The cells on the top were
- collected, washed twice in PBS, smeared onto a cover slip, and air dried for 24 hours
- at room temperature.
- 379
- 380

Transcriptomic profiling and bioinformatic annotation

- The cells were harvested after treatment and total RNA was extracted. Two cDNA 382 libraries (control or treatment with high glucose, insulin, and palmitic acid) were 383 constructed using the Illumina TruSeq RNA Sample Preparation Kit (Illumina, USA) 384 according to the manufacturer's instructions. After several steps of purification, 385 adapter addition, and cDNA length selection, the two libraries were sequenced 386 independently using an Illumina HiSeqTM500 platform (Shanghai Personal 387 Biotechnology Co., Shanghai, China). Pathway assignments were generated using GO 388 389 (geneontology.org) and KEGG databases (www.kegg.jp).
- 390

391 Western blot analysis

- 392 The cells were lysed in RIPA buffer. Proteins were separated by polyacrylamide gel
- electrophoresis and transferred onto PVDF membrane. After blocking for 1 hour at
- room temperature with TBST containing 0.05% (v/v), Tween-20 and 5% (w/v)
- non-fat milk, the membranes were incubated with primary antibodies overnight at
- 4 °C, followed by washes with TBST containing 0.05% Tween-20.The membranes
- were then incubated with a horseradish peroxidase-conjugated secondary antibody for
- 1 hour at room temperature. ECL reagents (Thermo Biosciences, Massachusetts, USA)
- were used to visualize the protein bands which were captured on X-ray film.
- 400

401 **Co-immunoprecipitation**

- 402 Cells were harvested under non-denaturing conditions, washed by ice-cold PBS for 3
 403 times, lysed in 0.5 ml ice-cold cell lysis buffer and centrifuged. Supernatant was
- 404 collected to a new tube and incubated with 20 ul Protein G Plus /Protein A agarose
- 405 (Miliproe, IP05 USA) with gentle shaking for 2 hours at 4 oC. Protein G Plus /Protein
- 406 A agarose was then removed by centrifuge for 10 min at 4 oC, and supernatant was
- 407 incubated with primary antibody overnight at 4 oC with gentle shaking. After that,
- 408 30ul Protein G Plus /Protein A agarose were added and incubated under gentle
- shaking for 4 hours at 4 oC. Finally Protein G Plus /Protein A agarose was collectedby centrifuge.
- 411

412 Knockdown of protein level

- The pre-designed siRNA oligonucleotides (Songon Technology, Shanghai, China) for
- 414 Akt1, ROCK1 and 14-3-3 σ were:

- 415 GAGUUUGAGUACCUGAAGCUGUU (sense) and
- 416 AACAGCUUCAGGUACUCAAACUC (antisense);
- 417 UGAUCUUGUAGCUCCCGCAUGUGUC (sense) and
- 418 ACUAGAACAUCGAGGGCGUACACAG (antisense); and
- 419 ACCTGCTCTCAGTAGCCTA (sense) and TAGGCTACTGAGAGCAGGT
- 420 (antisense), respectively. HCT116 cells (5×104 cells per well) were seeded in 6-well
- 421 plates and cultured for 24 hours, and then were transfected with 200 pM siRNA
- 422 oligonucleotides using Lipofectamine 2000 transfection reagent (Invitrogen,
- 423 California, USA), according to the manufacturer's instructions. The total AKT protein
- level was evaluated by Western blot analysis 24 hours after transfection.
- 425

426 Statistical analysis

- 427 All the experiments including the transcriptomic profiling were performed in triplicate.
- 428 The data are expressed as the mean \pm SD. Student's t-test was performed to compare
- the difference between two groups. Multi-group comparisons were performed using
- 430 one-way ANOVA analysis. Linear regression analysis was performed for correlations.
- 431 The statistical analysis software package SPSS21 was employed for the statistical
- 432 comparisons. A p value < 0.05 was considered statistically significant.
- 433

434 Acknowledgement

- The authors thank Dr. ZY Li for her help in establishing our cell culture facility.
- 436

437 **Competing interests**

- The authors declare that there is no conflict of interest.
- 439

440 Author contribution

- 441 P Wang and YC Lu performed most of the experiments. J Wang and YF LI
- 442 contributed the clinical studies. L Wang provided the technologies. H Yu was involved
- in grant applications and the study design. A Kong and J Chan contributed the ROS
- data set and were involved in designing the study. SC Lee was the principal
- investigator, who was in charge the whole project, from grant application and study
- 446 design to manuscript preparation.

447 Funding

- This work was supported by Shanxi University (No. 113533901005 and 113545017;
- 449 Talent Recruitment Fund) and the Department of Science and Technology of Shanxi
- 450 Province (2015081034 and 201601D11066).
- 451

452 **References**

- Anderhub, S.J., Krämer, A., Maier, B. (2012). Centrosome amplification in
 tumorigenesis. *Cancer Lett.* 322, 8-17.
- Bagheri-Yarmand, R., Biernacka, A., Hunt, K.K., Keyomarsi, K. (2010). Low
- 456 molecular weight cyclin E overexpression shortens mitosis, leading to
- chromosome missegregation and centrosome amplification. *Cancer Res.* 70,
 5074-5084.
- Basto, R., Brunk, K., Vinadogrova, T., Peel, N., Franz, A., Khodjakov, A., Raff, J.W.
 (2008). Centrosome amplification can initiate tumorigenesis in flies. *Cell* 133,
 1032-1042.
- 462 Castellanos, E., Dominguez, P., Gonzalez, C. (2008). Centrosome dysfunction in
- Drosophila neural stem cells causes tumors that are not due to genome
 instability. *Curr. Biol.* 118, 1209-1214.
- Chae, S., Yun, C., Um, H., Lee, J.H., Cho, H. (2005). Centrosome amplification and
 multinuclear phenotypes are induced by hydrogen peroxide. *Exp. Mol. Med.* 37,
 467 482-487.
- Dementyeva, E., Nemec, P., Kryukov, F., Muthu, K.R., Smetana, J., Zaoralova, R.,
 Kupska, R., Kuglik, P., Hajek, R. (2010). Centrosome amplification as a
 possible marker of mitotic disruptions and cellular carcinogenesis in multiple
- 471 myeloma. *Leuk. Res.* **34**, 1007-1011.
- Dodson, H., Bourke, E., Jeffers, L.J., Vagnarelli, P., Sonoda, E., Takeda, S., Earnshaw,
 W.C., Merdes, A., Morrison, C. (2004). Centrosome amplification induced by
- 474 DNA damage occurs during a prolonged G2 phase and involves ATM. *EMBO J*.
 475 23, 3864-3873.
- 476 Ganem, N.J., Godinho, S.A., Pellman, D. (2009). A mechanism linking extra

477	centrosomes to chromosomal instability. Nature 460, 278-82.		
478	Giovannucci, E., Harlan, D.M., Archer, M.C., Bergenstal, R.M., Gapstur, S.M., Habel,		
479	L., Pollak, M., Regensteiner, J.G., Yee, D. (2010) Diabetes and cancer: a		
480	consensus report. CA Cancer J. Clin. 60, 207-221.		
481	Godinho, S.A., Picone, R., Burute, M., Dagher, R., Su, Y., Leung, C.T., Polyak, K.,		
482	Brugge, J.S., Théry, M., Pellman, D. (2014). Oncogene-like induction of cellular		
483	invasion from centrosome amplification. Nature 510, 167-171.		
484	Golay, A., Swislocki, A.L., Chen, Y.D., Jaspan, J.B., Reaven, M. (1986). Effect of		
485	obesity on ambient plasma glucose, free fatty acid, insulin, growth hormone,		
486	and glucagon concentrations. J. Clin. Endocrinol. Metab. 63, 481-484.		
487	Hu, Y.B., Zou, Y., Huang, Y., Zhang, Y.F., Lourenco, G.F., Chen, S.D., Halliday, G.M.,		
488	Wang, G., Ren, R.J. (2016). ROCK1 is associated with Alzheimer's		
489	disease-specific plaques, as well as enhances autophagosome formation but not		
490	autophagic Aβ clearance. Front. Cell Neurosci. 10, 253.		
491	Inoguchi, T., Li, P., Umeda, F., Yu, H., Kakimoto, M., Imamura, M., Etoh, T.,		
492	Hashimoto, T., Naruse, M., Sano, H., Utsumi, H., Nawata, H. (2000). High		
493	glucose level and free fatty acid stimulate reactive oxygen species production		
494	through protein kinase Cdependent activation of NAD(P)H oxidase in cultured		
495	vascular cells. <i>Diabetes</i> 49 , 1939-1945.		
496	Joo, Y., Schumacher, B., Landrieu, I., Bartel, M., Smet-Nocca, C., Jang, A., Choi,		
497	H.S., Jeon, N.L., Chang, K.A., Kim, H.S., Ottmann, C., Suh, Y.H. (2015).		
498	Involvement of 14-3-3 in tubulin instability and impaired axon development is		
499	mediated by Tau. FASEB J. 29, 4133-4144.		
500	Lee, S.C., Chan, J. (2015). Evidence for DNA damage as a biological link between		
501	diabetes and cancer. Chin. Med. J. (Engl). 128, 1543-1548.		
502	Levine, M.S., Bakker, B., Boeckx, B., Moyett, J., Lu, J., Vitre, B., Spierings, D.C.,		
503	Lansdorp, P.M., Cleveland, D.W., Lambrechts, D., Foijer, F., Holland, A.J.		
504	(2017). Centrosome amplification is sufficient to promote spontaneous		
505	tumorigenesis in mammals. Dev. Cell doi: 10.1016/j.devcel.2016.12.022.		
506	May, J., de Haen, C. (1979). Insulin-stimulated intracellular hydrogen peroxide		

507	production in rat epididymal fat cells. J. Biol. Chem. 254, 2214-2220.			
508	Mazzarella, L. (2015). Why does obesity promote cancer? Epidemiology, biology, and			
509	open questions. <i>Ecancermedicalscience</i> 10 , 3332/ecancer2015.554.			
510	Mills, K.T., Bellows, C.F., Hoffman, A.E., Kelly, T.N., Gagliardi, G. (2013) Diabetes			
511	mellitus and colorectal cancer prognosis: a meta-analysis. Dis. Colon Rectum.			
512	56 , 1304-1319.			
513	Na, H.J., Park, J.S., Pyo, J.H., Jeon, H.J., Kim, Y.S., Arkin, R., Yoo, M.A. (2015).			
514	Metformin inhibits age-related centrosome amplification in Drosophila midgut			
515	stem cells through AKT/TOR pathway. Mech. Ageing Dev. 149, 8-18.			
516	Oh, J.E., Jang, D.H. (2009). Alpha3beta1 integrin promotes cell survival via multiple			
517	interactions between 14-3-3 isoforms and proapoptotic proteins. Exp. Cell Res.			
518	315 , 3187-3200.			
519	Orie, N.N., Zidek, W., Tepe, IM. (1999). Reactive oxygen species in essential			
520	hypertension and non-insulin-dependent diabetes mellitus. Am. J. Hypertens. 12,			
521	1169-1174.			
522	Pannu, V., Rida, P.C., Ogden, A., Clewley, R., Cheng, A., Karna, P., Lopus, M.,			
523	Mishra, R.C., Zhou, J., Aneja, R. (2012). Induction of robust de novo			
524	centrosome amplification, high-grade spindle multipolarity and metaphase			
525	catastrophe: a novel chemotherapeutic approach. Cell Death Dis. 3, e346.			
526	Shen, K., Wang, Y. (2015). Cocktail of four active components derived from Sheng			
527	Mai San inhibits hydrogen peroxide-induced PC12 cell apoptosis linked with			
528	the caspase-3/ROCK1/MLC pathway. Rejuvenation Res. 18, 517-527			
529	Wang, C.Y., Huang, E.Y., Huang, S.C., Chung, B.C. (2015). DNA-PK/Chk2 induces			
530	centrosome amplification during prolonged replication stress. Oncogene 34,			
531	1263-1269.			
532	Yih, L.H., Tseng, Y.Y., Wu, Y.C., Lee, T.C. (2006). Induction of centrosome			
533	amplification during arsenite-induced mitotic arrest in CGL-2 cells. Cancer Res.			
534	66 , 2098-2106.			
535	Zen, X., Shaikh, F.Y., Harrison, M.K., Adon, A.M., Trimboli, A.J., Carroll, K.A.,			
536	Sharma, N., Timmers, C., Chodosh, L.A., Leone, G., Saavedra, H.I. (2010). The			

537	Ras oncogene signals centrosome amplification in mammary epithelial cells
538	through cyclin D1/Cdk4 and Nek2. Oncogene 29, 5103-5112.
539	Zendehdel, K., Nyrén, O., Ostenson, C.G., Adami, H.O., Ekbom, A., Ye, W. (2003).
540	Cancer incidence in patients with type 1 diabetes mellitus: a population-based
541	cohort study in Sweden. J. Natl. Cancer Inst. 95, 1797-1800.
542	Zhang, J., Chen, C., Hua, S., Liao, H., Wang, M., Xiong, Y., Cao, F. (2016). An
543	updated meta-analysis of cohort studies: Diabetes and risk of Alzheimer's
544	disease. Diabetes Res. Clin. Pract. 124, 41-47.
545	Zhang, Y., Fu, R., Liu, Y., Li, J., Zhang, H., Hu, X., Chen, Y., Liu, X., Li, Y., Li, P.,
546	Liu, E., Gao, N. (2016). Dephosphorylation and mitochondrial translocation of
547	cofilin sensitizes human leukemia cells to cerulenin-induced apoptosis via the
548	ROCK1/Akt/JNK signaling pathway. Oncotarget 7, 20655-20668.
549	Zou, J., Zhang, D., Qin, G., Chen, X., Wang, H., Zhang, D. (2014). BRCA1 and Fancl
550	cooperatively promote interstrand cross linker induced centrosome
551	amplification through the activation of polo-like kinase 1. Cell Cycle 13,
552	3685-3697.
553	
554	Figure Legends

555

556 **<u>Fig. 1.</u>**

Cell centrosome amplification is increased in patients with type 2 diabetes, which 557 is in correlation with fasting blood glucose and HbA1c. (A): image of centrosome 558 amplification; (**B**): cell centrosome amplification is increased in patients with type 2 559 560 diabetes; (C): evidence that centrosome amplification correlates with the fasting blood 561 glucose; (D) and (E): correlation analysis shows that the centrosome amplification correlates with the fasting blood glucose and HbA1c in all the volunteers; (F) and (G): 562 in the diabetic patients alone, centrosome amplification also correlates with fasting 563 blood glucose and HbA1c.Student t-test was used to compare the means between two 564 groups. One way ANOVA analysis was used to compare multiple groups. Linear 565 regression was performed for correlations. *: p < 0.05; **: p < 0.01, compared with 566

567 that in the control group.

-	~	C
5	h	×
-	v	L

569 **<u>Fig. 2.</u>**

	TT 1 1	• •	1 1 • 4 •	• • •	•	1 • 4 •	• •
570	HIGH GINCASE	inculin ar	nd natmitic	acid alon	e or in co	mbingfions	induce
570	Ingh Stucobe	, mounn ai	ia painine	acia, aion	c or m co	momations	muuce

centrosome amplification via ROS production. (A): high glucose, insulin and
palmitic acid, alone or in combinations, triggers ROS production in the cancer cells;
(B): the pathophysiological factors, together, trigger ROS production in normal
human breast epithelial cell; (C): high glucose, insulin and palmitic acid, alone or in
combinations, can promote centrosome amplification in the cancer cells; (D): high
glucose, insulin and palmitic acid can trigger centrosome amplification in the normal
human breast epithelial cells. (A)-(D): NAC inhibits the ROS production and the

centrosome amplification. Glu: glucose, 15 mM; Ins: insulin, 5 nM; Pal: palmitic acid,

579 150 μ M; NAC: 3 mM. One way ANOVA analysis was used to compare multiple

580 581

582 **Fig. 3**.

groups. *: p < 0.05; **: p < 0.01.

583 Functional transcriptomic analysis identifies AKT, ROCK1 and 14-3-3σ as signal

584 mediators for the centrosome amplification. (A), (B) and (C): the diabetic

pathophysiological factors activate of AKT, ROCK1 and 14-3-3 σ , respectively; (**D**):

586 inhibition of AKT using chemical inhibitor or siRNA blocks the centrosome

amplification in the colon cancer cells; (E): ROCK1 siRNA inhibits the centrosome

amplification; (**F**): 14-3-3 σ siRNA inhibits the centrosome amplification in normal

human breast epithelial cells. (G): AKT inhibitor inhibits centrosome amplification;

590 (H): AKT siRNA, ROCK1 siRNA and 14-3-3 σ siRNA inhibit centrosome

amplification in normal human breast epithelial cells. One way ANOVA analysis was

used to compare multiple groups.**: p < 0.01, compared with that in the control group;

593 ##: p < 0.01, compared with that in the samples treated with Glu, Ins and Pal.Glu:

594 glucose, 15 mM; Ins: insulin, 5 nM; Pal: palmitic acid, 150 μM; Ly294002: 30 μM.

595

<u>Fig. 4.</u>

598	AKT-ROS-dependent signaling of ROCK1 and 14-3-3 σ is the molecular pathway			
599	for the centrosome amplification. (A) and (B): AKT chemical inhibitor and siRNA			
600	inhibit ROS production, respectively; (C): AKT chemical inhibitor or siRNA inhibits			
601	ROCK1 upregulation; (D): AKT chemical inhibitor or SiRNA inhibits 14-3-3 σ			
602	upregulation; (E) and (F): NAC inhibits the upregulation of ROCK1 and 14-3- 3σ ,			
603	respectively. Glu: glucose, 15 mM; Ins: insulin, 5 nM; Pal: palmitic acid, 150 μ M;			
604	Ly294002, 30 µM; NAC: 3 mM.			
605				
606	<u>Fig. 5.</u>			
607	High glucose, insulin and palmitic acid increase the binding between ROCK1			
608	and 14-3-3 σ as well as their centrosome translocation. (A): use of ROCK1 or			
609	14-3-3 σ antibodies to pull down their binding partner, and the influences of Ly294002			
610	and NAC; (\mathbf{B}) and (\mathbf{C}) : quantification of the gel images of Western blot analysis			
611	shown in Fig. 5A; (D): confocal image of ROCK1 localization in the centrosomes;			
612	(E): confocal image of 14-3-3 σ localization in the centrosomes; (F): high glucose,			
613	insulin and palmitic acid increases level of ROCK1 localization in the centrosomes,			
614	which is inhibited by AKT inhibitor and NAC but not 14-3-3 σ siRNA; (G):			
615	experimental treatment increases the localization of 14-3-3 σ to the centrosomes,			
616	which is inhibited by AKT inhibitor, NAC or ROCK1 siRNA. One way ANOVA			
617	analysis was used to compare multiple groups.**: $p < 0.01$, compared with that in the			
618	control group; ##: $p < 0.01$, compared with that in the samples treated with Glu, Ins			
619	and Pal.Glu: glucose, 15 mM; Ins: insulin, 5 nM; Pal: palmitic acid, 150 μ M;			
620	Ly294002, 30 µM; NAC, 3 mM.			
621				
622	Fig. 6.			
623	The increases in AKT activation and ROS production as well as expression,			
624	binding and centrosome distribution of ROCK1 and 14-3-3 σ are confirmed in			
625	the PBMC from the patients with type 2 diabetes. (A): AKT activation as well as			
626	expressions of ROCK1 and 14-3-3 σ are increased in PBMC from the patients; (B):			

- 627 ROS production is increased in the PBMC from the patients; (C): binding between
- 628 ROCK1 and 14-3-3 σ is increased in PBMC from the diabetic patients; (**D**) and (**E**):
- centrosome distributions of ROCK1 and 14-3-3 σ are increased in the PBMC from the
- type 2 diabetic patients, respectively. For Western blot analyses and
- 631 co-immunoprecipitation, five clinical samples were randomly selected and combined
- 632 for the experiments. ROS quantification was performed in triplicate using different
- samples. One way ANOVA analysis was used to compare multiple groups. **: p < p
- 634 0.01.

	Healthy	Diabetic
	subject	patient
n	12	32
Age (years)	57±2	55±2
Sex ratio (male:female)	1:1	1:1
Body mass index (kg/m ²)	19.8 ± 2.7	26.7±5*
Systolic blood pressure (mmHg)	133.3±5.7	131.7±17.2
Diastolic blood pressure (mmHg)	76.6±11.5	83.3±10.3
Fasting blood glucose (mmol/l)	5.3±0.3	10.1±3.7*
HbA1c (%)	5.6±	8.5±2.2*
Total cholesterol (mmol/l)	2.8 ± 1.4	4.9±1.4
Triglyceride (mmol/l)	0.66(0.2-1.1)	2.3(1.2-3.5)*

Table 1. Clinical and biochemical characteristics of the volunteers

Data are means \pm SD, or medians (range). *p<0.05

Fig. 1A

Fig. 1C

Fig. 1D

Fig. 1E

Fig. 1F

Fig. 1G

Fig. 2A

FL1-H

Fig. 2C

Fig. 2D

Fig. 3E

Fig. 3F

Fig. 3G

Fig. 3H

Fig. 5D

Treatment

with Glu, Ins and Pal Fig. 5E

Fig. 5F

Fig. 5G

Fig. 6A

Fig. 6D

Fig. 6E

Table S1. Differentially expressed genes and KEGG pathway analysis

Metabolism			
Overview			
ko01200	Carbon meta	abolism	
	ko:K00036	G6PD, zwf; glucose-6-phosphate 1-dehydrogenase	T up
ko01210	2-Oxocarbox	xylic acid metabolism	
ko01212	Fatty acid m	etabolism	
	ko:K08765	CPT1; carnitine O-palmitoyltransferase 1	T up
ko00030	Pentose phos	sphate pathway	
-	ko:K00036	G6PD, zwf; glucose-6-phosphate 1-dehydrogenase	T up
ko00040	Pentose and	glucuronate interconversions	
	ko:K00011	E1.1.1.21, AKR1; aldehyde reductase	T up
ko00051	Fructose and	l mannose metabolism	
	ko:K00846	KHK; ketohexokinase	T up
	ko:K00011	E1.1.1.21, AKR1; aldehyde reductase	T up
ko00052	Galactose m	etabolism	
	ko:K00011	E1.1.1.21, AKR1; aldehyde reductase	T up
ko00500	Starch and s	sucrose metabolism	
	ko:K01513	ENPP1_3; ectonucleotide pyrophosphatase/phosphodiesterase family	Tun
	K0.K01313	member 1/3	I up
ko00520	Amino sugar	r and nucleotide sugar metabolism	
	ko·K00820	E2.6.1.16, glmS; glucosaminefructose-6-phosphate	Tun
	K0.1100020	aminotransferase	I up
ko00620	Pyruvate me	etabolism	
	ko:K00011	E1.1.1.21, AKR1; aldehyde reductase	T up
ko00630	Glyoxylate a	nd dicarboxylate metabolism	
	ko:K15788	GLYCTK; glycerate kinase	C up
Energy m	etabolism		
ko00190	Oxidative ph	nosphorylation	
	ko:K02148	ATPeV1C, ATP6C; V-type H+-transporting ATPase subunit C	T up
ko00910	Nitrogen me	tabolism	
	ko:K01672	E4.2.1.1; carbonic anhydrase	Tup
ko00920	Sulfur metal	bolism	
	ko:K17218	sqr; sulfide:quinone oxidoreductase	Tup
Lipid met	tabolism		
K000061	Fatty acid bi		
K000062	Fatty acid el		T
100071	K0:K10248	ELOVL3; elongation of very long chain fatty acids protein 3	I up
K0000/1		CDT1. comiting O nolmitovitronoferance 1	Т
1.00140	K0:K08/65	CP11; carnitine O-palmitoyitransferase 1	I up
K000140	Sterola horn	CVD1A1. system share parts	Τ
	K0:KU/4U8	AKD1C2: aldo kato reductors family 1 member C2	1 up
	K0:K04119	AKKIUS; aldo-kelo reductase family 1 member US	1 up
	ко:к01015	SUL12B1; alconol sulfotransferase	1 up

ko00561	Glycerolipid	metabolism	
	ko:K01080	PPAP2; phosphatidate phosphatase	T up
	ko:K11160	DGAT2; diacylglycerol O-acyltransferase 2	T up
	ko:K00011	E1.1.1.21, AKR1; aldehyde reductase	T up
	ko:K15788	GLYCTK; glycerate kinase	C up
ko00564	Glycerophos	pholipid metabolism	
	ko:K01080	PPAP2; phosphatidate phosphatase	T up
	ko:K06124	PHOSPHO1; phosphoethanolamine/phosphocholine phosphatase	T up
	ko:K01049	ACHE; acetylcholinesterase	T up
ko00565	Ether lipid n	netabolism	
	ko:K01080	PPAP2; phosphatidate phosphatase	T up
ko00600	Sphingolipid	metabolism	
	ko:K04718	SPHK; sphingosine kinase	T up
	ko:K12350	SMPD1, ASM; sphingomyelin phosphodiesterase	T up
	ko:K01080	PPAP2; phosphatidate phosphatase	T up
ko00590	Arachidonic	acid metabolism	
	ko:K00509	PTGS1, COX1; prostaglandin-endoperoxide synthase 1	T up
	ko:K04119	AKR1C3; aldo-keto reductase family 1 member C3	T up
	ko:K07418	CYP2J; cytochrome P450, family 2, subfamily J	T up
	ko:K01832	TBXAS1, CYP5A; thromboxane-A synthase	T up
ko00591	Linoleic acid	metabolism	
	ko:K07418	CYP2J; cytochrome P450, family 2, subfamily J	T up
Nucleotid	e metabolism		
ko00230	Purine meta	bolism	
	ko:K01513	ENPP1_3; ectonucleotide pyrophosphatase/phosphodiesterase family member 1/3	T up
	ko:K01509	E3.6.1.3; adenosinetriphosphatase	T up
	ko:K01487	E3.5.4.3, guaD; guanine deaminase	C up
	ko:K13762	PDE5; cGMP-specific 3',5'-cyclic phosphodiesterase	T up
	ko:K08045	ADCY5; adenylate cyclase 5	T up
ko00240	Pyrimidine r	netabolism	
Amino ac	id metabolism	l	
ko00250	Alanine, asp	artate and glutamate metabolism	
	ko:K00820	E2.6.1.16, glmS; glucosaminefructose-6-phosphate aminotransferase (isomerizing)	T up
ko00260	Glycine, seri	ne and threonine metabolism	
	ko:K15788	GLYCTK; glycerate kinase	C up
	ko:K00314	SARDH; sarcosine dehydrogenase	T up
ko00330	Arginine and	l proline metabolism	
	ko:K00472	E1.14.11.2; prolyl 4-hydroxylase	T up
ko00380	Tryptophan	metabolism	
	ko:K07408	CYP1A1; cytochrome P450, family 1, subfamily A, polypeptide 1	T up
Metabolis	m of other an	nino acids	

ko00480	Glutathione	metabolism	
	ko:K00799	GST, gst; glutathione S-transferase	T up
	ko:K00036	G6PD, zwf; glucose-6-phosphate 1-dehydrogenase	T up
Glycan bi	osynthesis and	d metabolism	
ko00513	Various type	es of N-glycan biosynthesis	
	ko.V00791	SIAT6; N-acetyllactosaminide alpha-2,3-sialyltransferase	Cum
	K0:K00/81	(sialyltransferase 6)	Cup
ko00512	Mucin type	O-glycan biosynthesis	
	ko.K00727	GCNT1; beta-1,3-galactosyl-O-glycosyl-glycoprotein	Tun
	KU.KUU727	beta-1,6-N-acetylglucosaminyltransferase	1 up
	ko:K00710	GALNT; polypeptide N-acetylgalactosaminyltransferase	T up
	ko.K00780	SIAT4A; beta-galactoside alpha-2,3-sialyltransferase	Tun
	KU.KUU780	(sialyltransferase 4A) [EC:2.4.99.4]	1 up
ko00514	Other types	of O-glycan biosynthesis	
	ko:K05948	FNG; fringe [EC:2.4.1.222]	T up
	kovK00791	SIAT6; N-acetyllactosaminide alpha-2,3-sialyltransferase	Cup
	KO.KUU/81	(sialyltransferase 6) [EC:2.4.99.6]	Cup
ko00532	Gly	ycosaminoglycan biosynthesis - chondroitin sulfate / dermatan sulfate	,
	ko:K00771	XYLT; protein xylosyltransferase [EC:2.4.2.26]	T up
ko00534	Glycosamino	oglycan biosynthesis - heparan sulfate / heparin	
	ko:K00771	XYLT; protein xylosyltransferase [EC:2.4.2.26]	T up
ko00533	Glycosamino	oglycan biosynthesis - keratan sulfate	
	ko·K00780	SIAT4A; beta-galactoside alpha-2,3-sialyltransferase	Tup
	K0.1K00780	(sialyltransferase 4A) [EC:2.4.99.4]	1 up
	ko·K00741	B3GNT1, B3GNT2; N-acetyllactosaminide	Tup
	KO.IKOO7 II	beta-1,3-N-acetylglucosaminyltransferase [EC:2.4.1.149]	ιup
	ko:K09664	B3GNT7; beta-1,3-N-acetylglucosaminyltransferase 7 [EC:2.4.1]	T up
	ko:K04745	CHST2; carbohydrate 6-sulfotransferase 2 [EC:2.8.2]	T up
	ko·K00781	SIAT6; N-acetyllactosaminide alpha-2,3-sialyltransferase	Cun
	K0.1K00701	(sialyltransferase 6) [EC:2.4.99.6]	Cup
ko00601	Glycosphing	olipid biosynthesis - lacto and neolacto series	
	ko·K00741	B3GNT1, B3GNT2; N-acetyllactosaminide	Tun
		beta-1,3-N-acetylglucosaminyltransferase [EC:2.4.1.149]	- "P
	ko:K00781	SIAT6; N-acetyllactosaminide alpha-2,3-sialyltransferase	Cup
		(sialyltransferase 6) [EC:2.4.99.6]	e up
ko00603	Glycosphing	olipid biosynthesis - globo series	
	ko:K00780	SIAT4A; beta-galactoside alpha-2,3-sialyltransferase	T սո
		(sialyltransferase 4A) [EC:2.4.99.4]	- ~ ľ
	ko:K01988	A4GALT; lactosylceramide 4-alpha-galactosyltransferase	T up
		[EC:2.4.1.228]	- "ľ
ko00604	Glycosphing	olipid biosynthesis - ganglio series	
	ko:K03373	SIAT7C, ST6GalNAc III; N-acetylgalactosaminide	T iin
	K0:K03373	alpha-2,6-sialyltransferase (sialyltransferase 7C) [EC:2.4.99]	- up

	1 1/200700	SIAT4A; beta-galactoside alpha-2,3-sialyltransferase	m
	ko:K00/80	(sialyltransferase 4A) [EC:2.4.99.4]	Tup
-		B4GALNT1, GALGT;	
	ko:K00725	(N-Acetylneuraminyl)-galactosylglucosylceramide	T up
		N-acetylgalactosaminyltransferase [EC:2.4.1.92]	-
Metabolis	m of cofactor	s and vitamins	
ko00730	Thiamine me	etabolism	
ko00740	Riboflavin n	netabolism	
	ko.V01512	ENPP1_3; ectonucleotide pyrophosphatase/phosphodiesterase family	Tue
	KO:KU1515	member 1/3 [EC:3.1.4.1 3.6.1.9]	I up
ko00750	Vitamin B6	metabolism	
ko00760	Nicotinate an	nd nicotinamide metabolism	
	ko:K01513	ENPP1_3; ectonucleotide pyrophosphatase/phosphodiesterase family	Tun
	K0.K01313	member 1/3 [EC:3.1.4.1 3.6.1.9]	i up
ko00770	Pantothenat	e and CoA biosynthesis	
	ko·K01513	ENPP1_3; ectonucleotide pyrophosphatase/phosphodiesterase family	Tun
	K0.K01515	member 1/3 [EC:3.1.4.1 3.6.1.9]	1 up
ko00830	Retinol meta	bolism	
	ko:K12664	CYP26B; cytochrome P450, family 26, subfamily B	T up
	ko:K07408	CYP1A1; cytochrome P450, family 1, subfamily A, polypeptide 1	T up
	nonito / roo	[EC:1.14.14.1]	r «p
Metabolism of terpenoids and polyketides			
ko00980	Metabolism	of xenobiotics by cytochrome P450	
	ko:K07408	CYP1A1; cytochrome P450, family 1, subfamily A, polypeptide 1	T up
	1	[EC:1.14.14.1]	
1 0000	ko:K00/99	GST, gst; glutathione S-transferase [EC:2.5.1.18]	Tup
ko00982	Drug metabo	olism - cytochrome P450	
	ko:K00/99	GST, gst; glutathione S-transferase [EC:2.5.1.18]	Tup
Enzyme f	amilies		
		•	
Genetic II	niormation Pr	ocessing	
	Suliassame		
KUUJU4U	ko:K03283	HSPA1 8: heat sheek 70kDa protain 1/8	Tun
ko03041	KU.KU3283	TISPA1_6, heat shock /0KDa protein 1/8	1 up
KUUJU41 Translati	spiceosome		
ko03010	Rihosomo		
1002010	ko·K02020	RP-I 44e RPI 44: large subunit ribosomal protein I 44e	Cup
ko03011	Rihosome	Ki Ette, Ki Ett, large subunit hoosoniai protein Ette	Cup
ko03011	Transfer RN	A hiogenesis	
ko00970	Aminoacvl-t	RNA hiosynthesis	
A000770	ko:K01867	WARS, trpS: tryptophanyl-tRNA synthetase [EC:6.1.1.2]	Cup
ko03013	RNA transp	nrt	Cup
1002012			

		I		
	ko:K03257	EIF4A; translation initiation factor 4A	C up	
	ko:K03250	EIF3E, INT6; translation initiation factor 3 subunit E	C up	
	ko:K00784	rnz; ribonuclease Z [EC:3.1.26.11]	C up	
	ko:K03245	EIF3J; translation initiation factor 3 subunit J	C up	
Folding, s	orting and de	gradation		
ko03060	Protein expo	prt		
	ko:K09490	HSPA5, BIP; heat shock 70kDa protein 5	C up	
ko04141	Protein proc	essing in endoplasmic reticulum		
	ko:K09487	HSP90B, TRA1; heat shock protein 90kDa beta	C up	
	ko:K04452	DDIT3, GADD153; DNA damage-inducible transcript 3	C up	
	ko:K14019	PPP1R15A, GADD34; protein phosphatase 1 regulatory subunit 15A	C up	
	ko:K09490	HSPA5, BIP; heat shock 70kDa protein 5	C up	
	ko:K11863	ATXN3, MJD; Ataxin-3 [EC:3.4.22]	C up	
	ko. K14027	HERPUD1, HERP; homocysteine-responsive endoplasmic	Cum	
	K0:K14027	reticulum-resident ubiquitin-like domain member 1 protein	Cup	
	ko:K03283	HSPA1_8; heat shock 70kDa protein 1/8	T up	
ko04120	Ubiquitin me	ediated proteolysis		
	ko:K10605	BRCA1; breast cancer type 1 susceptibility protein	C up	
ko03440	Homologous	recombination		
	ko:K10865	MRE11; double-strand break repair protein MRE11	C up	
	ko:K08775	BRCA2, FANCD1; breast cancer 2 susceptibility protein	C up	
ko03450	Non-homologous end-joining			
	ko:K10865	MRE11; double-strand break repair protein MRE11	C up	
	ko:K10886	XRCC4; DNA-repair protein XRCC4	C up	
ko03460	Fanconi ane	mia pathway		
	ko:K10605	BRCA1; breast cancer type 1 susceptibility protein	C up	
	ko:K08775	BRCA2, FANCD1; breast cancer 2 susceptibility protein	C up	
Environm	nental Informa	ation Processing		
Membran	e transport			
ko02000	Transporter	8		
ko02010	ABC transp	orters		
	ko:K05675	ABCD1, ALD; ATP-binding cassette, subfamily D (ALD), member 1	T up	
	ko:K05679	ABCG1; ATP-binding cassette, subfamily G (WHITE), member 1	T up	
	ko:K05680	ABCG4; ATP-binding cassette, subfamily G (WHITE), member 4	T up	
Signal tra	nsduction			
ko04014	Ras signaling	g pathway		
	1 X04542	GNG7; guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit	Τ	
	KU:KU4343	gamma-7	1 up	
	ko:K12361	RASGRP2; RAS guanyl-releasing protein 2	T up	
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up	
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up	
	ko:K05466	ANGPT2; angiopoietin 2	C up	

	1 W17625	DCI 1 DCI and an an an all of the discontration of models and the 1	Τ
	k0:K1/035	RGL1, RGL; rai guanne nucleotide dissociation stimulator-like 1	T up
	K0:K04349	RASORF1; Ras-specific guannie nucleotide-releasing factor 1	C up
	ko:K05453	CSE1 MCSE: macrophage colony stimulating factor 1	Tup
	ko:K05453	EENA: ophrin A	Tup
	ko.K05462	EFNA, epinin-A	Tup
	K0:K03402	EFNA; epiinii-A NCED, normal grouth factor record or (TNED superfemily member 16)	T up
104015	K0:K02585	NGFR; herve growth factor receptor (TNFR superfamily member 16)	I up
K004015	kapi signali	ng patnway	Τ
	K0:K05453	CSF1, MCSF; macrophage colony-stimulating factor 1	T up
	K0:K05462	EFNA; ephrin A	T up
	K0:K05462	EFNA; ephrin-A	T up
	K0:K02585	NGFR; nerve growth factor receptor (TNFR superfamily member 16)	I up
	K0:K08045	ADCY5; adenylate cyclase 5 [EC:4.6.1.1]	I up
	ko:K12361	RASGRP2; RAS guanyl-releasing protein 2	Tup
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	Tup
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	Tup
	ko:K05466	ANGP12; angiopoietin 2	C up
	ko:K04266	ADORA2A, ADOR; adenosine receptor A2a	T up
1 0 40 4 0	ko:K16859	PGF; placenta growth factor	Tup
ko04010	MAPK signa	ling pathway	
	ko:K04434	MAPK8IP1, JIP1; mitogen-activated protein kinase 8 interacting protein 1	T up
	ko:K04859	CACNA2D2; voltage-dependent calcium channel alpha-2/delta-2	T up
	1 770 4 4 4 7	MAP3K8, COT; mitogen-activated protein kinase kinase kinase 8	1
	ko:K04415	[EC:2.7.11.25]	Tup
	ko:K04349	RASGRF1; Ras-specific guanine nucleotide-releasing factor 1	C up
	ko:K12361	RASGRP2; RAS guanyl-releasing protein 2	T up
	ko:K03283	HSPA1_8; heat shock 70kDa protein 1/8	T up
	ko:K04445	MSK1, RPS6KA5; ribosomal protein S6 kinase alpha-5 [EC:2.7.11.1]	C up
	ko:K04452	DDIT3, GADD153; DNA damage-inducible transcript 3	C up
	ko:K04854	CACNA1G; voltage-dependent calcium channel T type alpha-1G	T up
ko04012	ErbB signali	ng pathway	
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
ko04310	Wnt signalin	ng pathway	
	ko:K00445	WNT6; wingless-type MMTV integration site family, member 6	T up
	ko:K01384	WNT11; wingless-type MMTV integration site family, member 11	T up
	ko:K00572	WNT7; wingless-type MMTV integration site family, member 7	T up
	ko:K03213	NKD; naked cuticle	T up
	ko:K02354	FZD4, fz4; frizzled 4	T up
	ko:K10162	BAMBI; BMP and activin membrane-bound inhibitor	T up
ko04330	Notch signal	ing pathway	
	ko:K06058	DTX; deltex	T up

	ko:K05948	FNG; fringe [EC:2.4.1.222]	T up		
	ko:K06051	DLL; delta	T up		
	ko:K02599	NOTCH; Notch	T up		
ko04340	Hedgehog signaling pathway				
	ko:K00445	WNT6; wingless-type MMTV integration site family, member 6	T up		
	ko:K16798	GLI2; zinc finger protein GLI2	T up		
	ko:K01384	WNT11; wingless-type MMTV integration site family, member 11	T up		
	ko:K00572	WNT7; wingless-type MMTV integration site family, member 7	T up		
ko04350	TGF-beta si	gnaling pathway			
	ko:K04657	CHRD; chordin	T up		
	ko:K04514	Rock1; Rho-associated protein kinase 1 [EC:2.7.11.1]	T up		
	ko:K04677	SMAD6_7; mothers against decapentaplegic homolog 6/7	T up		
	ko:K10162	BAMBI; BMP and activin membrane-bound inhibitor	T up		
ko04390	Hippo signal	ling pathway			
	ko:K16798	GLI2; zinc finger protein GLI2	T up		
	ko:K02354	FZD4, fz4; frizzled 4	T up		
	ko:K16819	AMOT; angiomotin	T up		
	ko:K00445	WNT6; wingless-type MMTV integration site family, member 6	T up		
	ko:K01384	WNT11; wingless-type MMTV integration site family, member 11	T up		
	ko:K00572	WNT7; wingless-type MMTV integration site family, member 7	T up		
ko04391	Hippo signa	ling pathway -fly			
	ko:K09851	RASSF2_4; Ras association domain-containing protein 2/4	T up		
	ko:K16669	FAT4; protocadherin Fat 4	T up		
ko04370	VEGF signa	ling pathway			
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up		
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up		
	ko:K04718	SPHK; sphingosine kinase [EC:2.7.1.91]	T up		
	ko:K08273	SH2D2A, VRAP; SH2 domain protein 2A	C up		
ko04630	Jak-STAT si	ignaling pathway			
	ko:K05134	IL10RA; interleukin 10 receptor alpha	T up		
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up		
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up		
	ko:K11222	STAT4; signal transducer and activator of transcription 4	T up		
	ko:K05138	IL22RA1; interleukin 22 receptor alpha 1	T up		
	ko:K05433	IL15; interleukin 15	T up		
ko04064	NF-kappa B	signaling pathway			
	ko:K18052	PRKCQ; novel protein kinase C theta type [EC:2.7.11.13]	T up		
	ko:K10030	IL8, CXCL8; interleukin 8	T up		
ko04668	TNF signalii	ng pathway			
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up		
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up		
	ko:K05141	TNFRSF1B, TNFR2; tumor necrosis factor receptor superfamily	T up		

	ko:K05453	CSF1, MCSF; macrophage colony-stimulating factor 1	T up
	1 770 4 4 1 5	MAP3K8, COT; mitogen-activated protein kinase kinase kinase 8	<u>_</u>
	ko:K04415	[EC:2.7.11.25]	Tup
	ko:K04445	MSK1, RPS6KA5; ribosomal protein S6 kinase alpha-5 [EC:2.7.11.1]	C up
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up
	ko:K05433	IL15; interleukin 15	T up
ko04066	HIF-1 signal	ing pathway	
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K16451	TIMP1; metallopeptidase inhibitor 1	T up
	ko:K05466	ANGPT2; angiopoietin 2	C up
ko04068	FoxO signali	ing pathway	
	ko:K08861	PLK2; polo-like kinase 2 [EC:2.7.11.21]	C up
	ko:K08863	PLK4; polo-like kinase 4 [EC:2.7.11.21]	C up
	ko:K13302	SGK1; serum/glucocorticoid-regulated kinase 1 [EC:2.7.11.1]	T up
	ko:K17845	KLF2; krueppel-like factor 2	C up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K06623	CDKN2D, P19, INK4D; cyclin-dependent kinase inhibitor 2D	T up
	ko:K08336	ATG12; ubiquitin-like protein ATG12	C up
ko04020	Calcium sigr	naling pathway	
	ko:K04633	GNAL; guanine nucleotide-binding protein G(olf) subunit alpha	T up
	ko:K04854	CACNA1G; voltage-dependent calcium channel T type alpha-1G	T up
	ko:K00907	MYLK; myosin-light-chain kinase [EC:2.7.11.18]	T up
	ko:K04718	SPHK; sphingosine kinase [EC:2.7.1.91]	T up
	ko:K04266	ADORA2A, ADOR; adenosine receptor A2a	T up
ko04070	Phosphatidy	linositol signaling system	
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
ko04151	PI3K-Akt sig	gnaling pathway	
	ko:K06236	COL1AS; collagen, type I/II/III/V/XI/XXIV/XXVII, alpha	T up
	ko:K16859	PGF; placenta growth factor	T up
	ko:K06484	ITGA5; integrin alpha 5	T up
	ko:K05466	ANGPT2; angiopoietin 2	C up
	ko:K10605	BRCA1; breast cancer type 1 susceptibility protein	C up
	ko:K13302	SGK1; serum/glucocorticoid-regulated kinase 1 [EC:2.7.11.1]	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K04543	GNG7; guanine nucleotide-binding protein $G(I)/G(S)/G(O)$ subunit	T up
		gamma-7	- "r
	ko:K06240	LAMA3_5; laminin, alpha 3/5	T up
	ko:K09487	HSP90B, TRA1; heat shock protein 90kDa beta	C up

	ko:K06250	SPP1, BNSP, OPN; secreted phosphoprotein 1	T up
	ko:K02583	NGFR; nerve growth factor receptor (TNFR superfamily member 16)	T up
	ko:K06237	COL4A; collagen, type IV, alpha	T up
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up
	ko:K05462	EFNA; ephrin-A	T up
	ko:K05462	EFNA; ephrin-A	T up
	ko:K05717	FN1; fibronectin 1	T up
	ko:K05453	CSF1, MCSF; macrophage colony-stimulating factor 1	T up
	ko:K06591	ITGB8; integrin beta 8	C up
ko04150	mTOR signa	ling pathway	
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
ko04080	Neuroactive	ligand-receptor interaction	
	ko:K04153	HTR1; 5-hydroxytryptamine receptor 1	T up
	ko:K04132	CHRM4; muscarinic acetylcholine receptor M4	T up
	ko:K04139	ADRA2B; adrenergic receptor alpha-2B	T up
	$k_{0}K04200$	LGR4, GPR48; leucine-rich repeat-containing G protein-coupled	Tun
	K0:K04309	receptor 4	i up
	ko:K04266	ADORA2A, ADOR; adenosine receptor A2a	T up
	ko:K04295	S1PR5, EDG8; sphingosine 1-phosphate receptor 5	T up
	ko:K05205	GRIK5; glutamate receptor, ionotropic kainate 5	T up
	ko:K05206	GRID1; glutamate receptor delta-1 subunit	T up
	ko:K04607	GRM4; metabotropic glutamate receptor 4	T up
	ko:K05184	GABRD; gamma-aminobutyric acid receptor subunit delta	T up
	ko:K08362	NR1A2, THRB; thyroid hormone receptor beta	T up
	ko:K04265	ADORA1; adenosine A1 receptor	T up
ko04060	Cytokine-cyt	tokine receptor interaction	
	ko:K10030	IL8, CXCL8; interleukin 8	T up
	ko:K05433	IL15; interleukin 15	T up
	ko-K05155	TNFRSF19, TROY; tumor necrosis factor receptor superfamily	Tun
	K0.K03133	member 19	1 up
	ko:K05141	TNFRSF1B, TNFR2; tumor necrosis factor receptor superfamily	Tun
	K0.K03141	member 1B	1 up
	ko:K05453	CSF1, MCSF; macrophage colony-stimulating factor 1	T up
	ko:K04175	IL8RA, CXCR1; interleukin 8 receptor alpha	T up
	ko:K04189	CXCR4; C-X-C chemokine receptor type 4	T up
	ko:K05134	IL10RA; interleukin 10 receptor alpha	T up
	ko:K05138	IL22RA1; interleukin 22 receptor alpha 1	T up
	ko:K02583	NGFR; nerve growth factor receptor (TNFR superfamily member 16)	T up
	ko:K05146	TNFRSF9, CD137; tumor necrosis factor receptor superfamily	T up
	10.V05400	member 9 EDA: actodycelesin A	т
	KU:KU348U	EDA, ectouyspiasiii-A	i up

ko04052	Cytokines		
ko04512	ECM-recept	or interaction	
	ko:K06250	SPP1, BNSP, OPN; secreted phosphoprotein 1	T up
	ko:K06236	COL1AS; collagen, type I/II/III/V/XI/XXIV/XXVII, alpha	T up
	ko:K06591	ITGB8; integrin beta 8	C up
	ko:K05717	FN1; fibronectin 1	T up
	ko:K06267	HMMR, RHAMM; hyaluronan-mediated motility receptor	C up
	ko:K06237	COL4A; collagen, type IV, alpha	T up
	ko:K06484	ITGA5; integrin alpha 5	T up
	ko:K06240	LAMA3_5; laminin, alpha 3/5	T up
ko04514	Cell adhesion	n molecules (CAMs)	
	ko:K06591	ITGB8; integrin beta 8	C up
	ko:K06759	CNTN1; contactin 1	T up
	ko:K16360	LRRC4B, NGL3; netrin-G3 ligand	T up
	ko:K06550	L1CAM; L1 cell adhesion molecule	T up
	ko:K16359	NTNG2; netrin-G2	T up
Cellular I	Processes		
Transpor	t and cataboli	sm	
ko04144	Endocytosis		
	ko:K13649	FOLR; folate receptor	T up
	ko:K04677	SMAD6_7; mothers against decapentaplegic homolog 6/7	T up
	ko:K03283	HSPA1_8; heat shock 70kDa protein 1/8	T up
	ko:K05126	RET; proto-oncogene tyrosine-protein kinase Ret [EC:2.7.10.1]	T up
	ko:K04175	IL8RA, CXCR1; interleukin 8 receptor alpha	T up
	ko:K12958	CAV2; caveolin 2	C up
	ko:K06278	CAV1; caveolin 1	C up
	ko:K04189	CXCR4; C-X-C chemokine receptor type 4	T up
ko04147	Exosome		
ko04145	Phagosome		
	ko:K02148	ATPeV1C, ATP6C; V-type H+-transporting ATPase subunit C	T up
	ko:K03990	C3; complement component 3	T up
	ko:K07375	TUBB; tubulin beta	T up
	ko:K07375	TUBB; tubulin beta	T up
	ko:K06484	ITGA5; integrin alpha 5	T up
	ko:K06560	MRC; mannose receptor, C type	T up
	ko:K07898	RAB7B; Ras-related protein Rab-7B	T up
ko04142	Lysosome		
	ko:K12350	SMPD1, ASM; sphingomyelin phosphodiesterase [EC:3.1.4.12]	T up
	K0:K12383	GMI2A; ganglioside GM2 activator	Tup
	KO:K1239/	AP3B; AP-3 complex subunit beta	Tup
1 . 0 41 47	KO:K12394	AP1S1_2; AP-1 complex subunit sigma 1/2	C up
ко04146	Peroxisome		T
	ко:К05675	ABCD1, ALD; ATP-binding cassette, subtamily D (ALD), member 1	Tup

	ko:K13339	PEX6, PXAAA1; peroxin-6	T up
ko04140	Regulation o	f autophagy	
	ko:K08336	ATG12; ubiquitin-like protein ATG12	C up
Cell motil	lity		
ko04810	Regulation o	f actin cytoskeleton	
	ko:K00907	MYLK; myosin-light-chain kinase [EC:2.7.11.18]	T up
	ko:K04132	CHRM4; muscarinic acetylcholine receptor M4	T up
	ko:K10351	MYL2; myosin regulatory light chain 2	C up
	ko:K06591	ITGB8; integrin beta 8	C up
	ko:K05717	FN1; fibronectin 1	T up
	ko:K06484	ITGA5; integrin alpha 5	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K04514	Rock1; Rho-associated protein kinase 1 [EC:2.7.11.1]	T up
Cell grow	th and death		
ko04110	Cell cycle		
	ko:K06671	STAG1_2, SCC3, IRR1; cohesin complex subunit SA-1/2	C up
	ko:K06623	CDKN2D, P19, INK4D; cyclin-dependent kinase inhibitor 2D	T up
	ko:K06622	CDKN2C, P18, INK4C; cyclin-dependent kinase inhibitor 2C	T up
	ko:K06669	SMC3, CSPG6; structural maintenance of chromosome 3 (chondroitin	C up
		sulfate proteoglycan 6)	F
	ko:K06644	SFN; stratifin	T up
ko04114	Oocyte meio	sis	
	ko:K08045	ADCY5; adenylate cyclase 5 [EC:4.6.1.1]	T up
	ko:K06669	SMC3, CSPG6; structural maintenance of chromosome 3 (chondroitin sulfate proteoglycan 6)	C up
ko04210	Apoptosis		
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
ko04115	p53 signaling	g pathway	
	ko:K06509	KAI1, CD82, TSPAN27; CD82 antigen	T up
	ko:K10131	PMAIP1; phorbol-12-myristate-13-acetate-induced protein 1	C up
	ko:K10141	SESN; sestrin	T up
	ko:K06644	SFN; stratifin	T up
Cell comr	nunication		
ko04510	Focal adhesi	on	
	ko:K06250	SPP1, BNSP, OPN; secreted phosphoprotein 1	T up
			m
	ko:K00907	MYLK; myosin-light-chain kinase [EC:2.7.11.18]	Tup
	ko:K00907 ko:K06237	MYLK; myosin-light-chain kinase [EC:2.7.11.18] COL4A; collagen, type IV, alpha	T up T up
	ko:K00907 ko:K06237 ko:K04514	MYLK; myosin-light-chain kinase [EC:2.7.11.18] COL4A; collagen, type IV, alpha Rock1; Rho-associated protein kinase 1 [EC:2.7.11.1]	T up T up T up
	ko:K00907 ko:K06237 ko:K04514 ko:K12958	MYLK; myosin-light-chain kinase [EC:2.7.11.18] COL4A; collagen, type IV, alpha Rock1; Rho-associated protein kinase 1 [EC:2.7.11.1] CAV2; caveolin 2	T up T up T up C up
	ko:K00907 ko:K06237 ko:K04514 ko:K12958 ko:K06278	MYLK; myosin-light-chain kinase [EC:2.7.11.18] COL4A; collagen, type IV, alpha Rock1; Rho-associated protein kinase 1 [EC:2.7.11.1] CAV2; caveolin 2 CAV1; caveolin 1	T up T up T up C up C up

	ko:K06591	ITGB8; integrin beta 8	C up
	ko:K05717	FN1: fibronectin 1	Tup
	ko:K04349	RASGRF1; Ras-specific guanine nucleotide-releasing factor 1	Cup
	ko:K16859	PGF; placenta growth factor	T up
	ko:K06236	COL1AS; collagen, type I/II/III/V/XI/XXIV/XXVII, alpha	T up
	ko:K06484	ITGA5; integrin alpha 5	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K06240	LAMA3_5; laminin, alpha 3/5	T up
ko04520	Adherens ju	nction	
	ko:K06086	SORBS1, SH3D5, PONSIN, CAP; sorbin and SH3 domain containing 1	T up
ko04530	Tight junction	Dn	
	ko:K18052	PRKCQ; novel protein kinase C theta type [EC:2.7.11.13]	T up
	ko:K10351	MYL2; myosin regulatory light chain 2	C up
ko04540	Gap junction	1	
	ko:K08045	ADCY5; adenylate cyclase 5 [EC:4.6.1.1]	T up
	ko:K07375	TUBB; tubulin beta	T up
	ko:K07375	TUBB; tubulin beta	T up
Organismal Systems			
Immune system			
ko04640	Hematopoiet	tic cell lineage	
	ko:K06484	ITGA5; integrin alpha 5	T up
	ko:K05453	CSF1, MCSF; macrophage colony-stimulating factor 1	T up
	ko:K04012	CR2, CD21; complement receptor type 2	Tup
ko04610	Complement	t and coagulation cascades	
	ko:K03913	SERPINA5, PCI; protein C inhibitor	T up
	ko:K04012	CR2, CD21; complement receptor type 2	T up
	ko:K03909	TFPI; tissue factor pathway inhibitor	C up
	ko:K03990	C3; complement component 3	Tup
	ko:K01314	F10; coagulation factor X [EC:3.4.21.6]	T up
1 04/14	KO:K03984	SERPINA1, AAT; alpha-1-antitrypsin	Tup
ko04611	Platelet activ		Е
	ko:K00907	MYLK; myosin-light-chain kinase [EC:2.7.11.18]	Tup
	ko:K06236	COLIAS; collagen, type I/II/III/V/XI/XXIV/XXVII, alpha	Tup
	KO:KU1832	IBAASI, CYPSA; thromboxane-A synthase [EC:5.3.99.5] PTCS1_CON1, constrained in the second synthase [EC:5.3.99.5]	Tup
	ko:K00509	FIGSI, COXI; prostagiandin-endoperoxide synthase 1	T up
	ko·K12261	[LC.1.14.77.1] RASGRP2: RAS guanyl_releasing protein 2	Tun
	ko·K02640	PIK3R: phosphoinositide_3-kinase_regulatory subunit	Tup
	ko·K02649	PIK3R: phosphoinositide-3-kinase, regulatory subunit	Tup
	ko.K02047	ADCV5: adenvlate cyclase 5 [EC:4.6.1.1]	Tup
	KU.IKU0U4J	ADC 13, autilylate cyclase 3 [EC.4.0.1.1]	i up
	ko:K04514	Rock1; Rho-associated protein kinase 1 [EC:2.7.11.1]	T up
---------	---------------	---	------
ko04620	Toll-like rec	eptor signaling pathway	
	ko:K10030	IL8, CXCL8; interleukin 8	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K04415	MAP3K8, COT; mitogen-activated protein kinase kinase kinase 8 [EC:2.7.11.25]	T up
	ko:K06250	SPP1, BNSP, OPN; secreted phosphoprotein 1	T up
ko04621	NOD-like re	ceptor signaling pathway	1
	ko:K09487	HSP90B, TRA1; heat shock protein 90kDa beta	C up
	ko:K10030	IL8, CXCL8; interleukin 8	T up
ko04622	RIG-I-like r	eceptor signaling pathway	
	ko:K10030	IL8, CXCL8; interleukin 8	T up
	ko:K08336	ATG12; ubiquitin-like protein ATG12	C up
ko04623	Cytosolic DN	NA-sensing pathway	
ko04650	Natural kille	er cell mediated cytotoxicity	
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K07987	RAET1; retinoic acid early transcript 1	T up
ko04612	Antigen pro	cessing and presentation	
	ko:K03283	HSPA1_8; heat shock 70kDa protein 1/8	T up
ko04660	T cell recept	or signaling pathway	
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K18052	PRKCQ; novel protein kinase C theta type [EC:2.7.11.13]	T up
	ko:K04415	MAP3K8, COT; mitogen-activated protein kinase kinase kinase 8 [EC:2.7.11.25]	T up
ko04662	B cell recept	or signaling pathway	
	ko:K04012	CR2, CD21; complement receptor type 2	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
ko04664	Fc epsilon R	I signaling pathway	
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
ko04666	Fc gamma R	-mediated phagocytosis	
	ko:K01080	PPAP2; phosphatidate phosphatase [EC:3.1.3.4]	T up
	ko:K04718	SPHK; sphingosine kinase [EC:2.7.1.91]	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
ko04670	Leukocyte tr	ansendothelial migration	
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K04189	CXCR4; C-X-C chemokine receptor type 4	T up

	ko:K04514	Rock1; Rho-associated protein kinase 1 [EC:2.7.11.1]	T up
	ko:K10351	MYL2; myosin regulatory light chain 2	C up
ko04672	Intestinal im	mune network for IgA production	
	ko:K04189	CXCR4; C-X-C chemokine receptor type 4	T up
	ko:K05433	IL15; interleukin 15	T up
ko04062	Chemokine s	signaling pathway	
	ko.K04542	GNG7; guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit	Tun
	KU. K 04343	gamma-7	1 up
	ko:K08045	ADCY5; adenylate cyclase 5 [EC:4.6.1.1]	T up
	ko:K10030	IL8, CXCL8; interleukin 8	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K12361	RASGRP2; RAS guanyl-releasing protein 2	T up
	ko:K12365	PREX1; phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchanger 1 protein	T up
	ko:K04175	IL8RA, CXCR1; interleukin 8 receptor alpha	T up
	ko:K04189	CXCR4; C-X-C chemokine receptor type 4	T up
	ko:K04514	Rock1; Rho-associated protein kinase 1 [EC:2.7.11.1]	T up
Endocrin	e system		
ko04911	Insulin secre	tion	
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up
	ko:K04944	KCNN3; potassium intermediate/small conductance calcium-activated channel subfamily N member 3	T up
	ko:K08045	ADCY5: adenvlate cyclase 5 [EC:4.6.1.1]	T up
	ko:K16882	PCLO; protein piccolo	Tup
ko04910	Insulin signa	ling pathway	1
	ko:K07192	FLOT; flotillin	C up
	ko:K06086	SORBS1, SH3D5, PONSIN, CAP; sorbin and SH3 domain containing 1	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
ko04920	Adipocytoki	ne signaling pathway	
	ko:K18052	PRKCQ; novel protein kinase C theta type [EC:2.7.11.13]	T up
	ko:K08765	CPT1; carnitine O-palmitoyltransferase 1 [EC:2.3.1.21]	T up
	ko:K05141	TNFRSF1B, TNFR2; tumor necrosis factor receptor superfamily member 1B	T up
ko03320	PPAR signal	ling pathway	
	ko:K06086	SORBS1, SH3D5, PONSIN, CAP; sorbin and SH3 domain containing 1	T up
	ko:K08765	CPT1; carnitine O-palmitoyltransferase 1 [EC:2.3.1.21]	T up
	ko:K08755	FABP6; fatty acid-binding protein 6, ileal (gastrotropin)	T up
ko04912	GnRH signa	ling pathway	

	ko:K08045	ADCY5; adenylate cyclase 5 [EC:4.6.1.1]	T up
ko04913	Ovarian Ste	roidogenesis	
	ko:K07418	CYP2J; cytochrome P450, family 2, subfamily J [EC:1.14.14.1]	T up
	ko:K07408	CYP1A1; cytochrome P450, family 1, subfamily A, polypeptide 1	Tun
	K0.1K07400	[EC:1.14.14.1]	rup
	ko·K04119	AKR1C3; aldo-keto reductase family 1 member C3 [EC:1.1.1.64	Tun
		1.1.1.188 1.1.1.213]	ı «p
	ko:K08045	ADCY5; adenylate cyclase 5 [EC:4.6.1.1]	T up
ko04915	Estrogen sig	naling pathway	
	ko:K08045	ADCY5; adenylate cyclase 5 [EC:4.6.1.1]	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K03283	HSPA1_8; heat shock 70kDa protein 1/8	T up
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up
	ko:K09487	HSP90B, TRA1; heat shock protein 90kDa beta	C up
ko04914	Progesteron	e-mediated oocyte maturation	
	ko:K08045	ADCY5; adenylate cyclase 5 [EC:4.6.1.1]	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
ko04917	Prolactin sig	naling pathway	
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
ko04921	Oxytocin sig	naling pathway	
	ko:K04859	CACNA2D2; voltage-dependent calcium channel alpha-2/delta-2	T up
	ko:K00907	MYLK; myosin-light-chain kinase [EC:2.7.11.18]	T up
	ko:K08045	ADCY5; adenylate cyclase 5 [EC:4.6.1.1]	T up
	ko:K04514	Rock1; Rho-associated protein kinase 1 [EC:2.7.11.1]	T up
	ko:K05005	KCNJ12; potassium inwardly-rectifying channel subfamily J member 12	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	Tup
ko04918	Thyroid hor	mone synthesis	1
	ko:K09487	HSP90B, TRA1; heat shock protein 90kDa beta	C up
	ko:K08045	ADCY5; adenylate cyclase 5 [EC:4.6.1.1]	T up
	ko:K09490	HSPA5, BIP; heat shock 70kDa protein 5	C up
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up
ko04919	Thyroid hor	mone signaling pathway	
	ko:K08362	NR1A2, THRB; thyroid hormone receptor beta	T up
	ko:K02599	NOTCH; Notch	T up
	ko:K17903	RCAN2, ZAKI4; calcipressin-2	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up

	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
ko04916	Melanogenesis		
	ko:K02354	FZD4, fz4; frizzled 4	T up
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up
	ko:K01384	WNT11; wingless-type MMTV integration site family, member 11	T up
	ko:K00445	WNT6; wingless-type MMTV integration site family, member 6	T up
	ko:K08045	ADCY5; adenylate cyclase 5 [EC:4.6.1.1]	T up
	ko:K00572	WNT7; wingless-type MMTV integration site family, member 7	T up
ko04614	Renin-angio	tensin system	
Circulato	ry system		
ko04260	Cardiac mus	cle contraction	
	ko:K04859	CACNA2D2; voltage-dependent calcium channel alpha-2/delta-2	T up
	ko:K10351	MYL2; myosin regulatory light chain 2	C up
ko04261	Adrenergic s	signaling in cardiomyocytes	
	ko:K04859	CACNA2D2; voltage-dependent calcium channel alpha-2/delta-2	T up
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up
	ko:K04445	MSK1, RPS6KA5; ribosomal protein S6 kinase alpha-5 [EC:2.7.11.1]	C up
	ko:K10351	MYL2; myosin regulatory light chain 2	C up
	ko:K04845	SCN1B; voltage-gated sodium channel type I beta	T up
	ko:K08045	ADCY5; adenylate cyclase 5 [EC:4.6.1.1]	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
ko04270	Vascular sm	ooth muscle contraction	
	ko:K00907	MYLK; myosin-light-chain kinase [EC:2.7.11.18]	T up
	ko:K04266	ADORA2A, ADOR; adenosine receptor A2a	T up
	ko:K18052	PRKCQ; novel protein kinase C theta type [EC:2.7.11.13]	T up
	ko:K08045	ADCY5; adenylate cyclase 5 [EC:4.6.1.1]	T up
Digestive	system		
ko04970	Salivary secu	retion	
	ko:K08045	ADCY5; adenylate cyclase 5 [EC:4.6.1.1]	T up
ko04971	Gastric acid	secretion	
	ko:K00907	MYLK; myosin-light-chain kinase [EC:2.7.11.18]	T up
	ko:K08045	ADCY5; adenylate cyclase 5 [EC:4.6.1.1]	T up
ko04972	Pancreatic se	ecretion	
	ko:K08045	ADCY5; adenylate cyclase 5 [EC:4.6.1.1]	T up
	ko:K07884	RAB3D; Ras-related protein Rab-3D	T up
ko04976	Bile secretion		
	ko:K08045	ADCY5; adenylate cyclase 5 [EC:4.6.1.1]	T up
ko04973	Carbohydra	te digestion and absorption	
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up

ko04974	Protein digestion and absorption		
	ko.V12791	SLC7A8, LAT2; solute carrier family 7 (L-type amino acid	Tun
	K0:K15/81	transporter), member 8	i up
	ko:K06236	COL1AS; collagen, type I/II/III/V/XI/XXIV/XXVII, alpha	T up
	ko.K14207	SLC38A2, SNAT2; solute carrier family 38 (sodium-coupled neutral	Cup
	KU.K14207	amino acid transporter), member 2	Cup
	ko:K06237	COL4A; collagen, type IV, alpha	T up
ko04975	Fat digestion	and absorption	
	ko:K11160	DGAT2; diacylglycerol O-acyltransferase 2 [EC:2.3.1.20 2.3.1.75]	T up
	ko:K01080	PPAP2; phosphatidate phosphatase [EC:3.1.3.4]	T up
ko04977	Vitamin dige	estion and absorption	
ko04978	Mineral abso	prption	
Excretory	system		
ko04962	Vasopressin	regulated water reabsorption	
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up
ko04960	Aldosterone	regulated sodium reabsorption	
	ko:K13302	SGK1; serum/glucocorticoid-regulated kinase 1 [EC:2.7.11.1]	T up
	ko:K08555	NR3C2, MR; mineralocorticoid receptor	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
ko04961	Endocrine and	nd other factor-regulated calcium reabsorption	
ko04964	Proximal tubule bicarbonate reclamation		
ko04966	Collecting duct acid secretion		
	ko:K02148	ATPeV1C, ATP6C; V-type H+-transporting ATPase subunit C	T up
Nervous s	ystem		
ko04724	Glutamaterg	ic synapse	
	ko·K14207	SLC38A2, SNAT2; solute carrier family 38 (sodium-coupled neutral	Cun
	R0.111 1207	amino acid transporter), member 2	C up
	ko:K04543	GNG7; guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit	Tun
		gamma-7	r «p
	ko:K08045	ADCY5; adenylate cyclase 5 [EC:4.6.1.1]	T up
	ko:K15009	SHANK; SH3 and multiple ankyrin repeat domains protein	T up
	ko:K05205	GRIK5; glutamate receptor, ionotropic kainate 5	T up
	ko:K04607	GRM4; metabotropic glutamate receptor 4	T up
ko04727	GABAergic synapse		
	ko:K04543	GNG7; guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-7	T up
	ko:K08045	ADCY5; adenylate cyclase 5 [EC:4.6.1.1]	T up
	ko:K05184	GABRD; gamma-aminobutyric acid receptor subunit delta	T up
	ko:K04647	HAP1; huntingtin-associated protein 1	T up
	ko:K14207	SLC38A2, SNAT2; solute carrier family 38 (sodium-coupled neutral amino acid transporter), member 2	C up

ko04725	Cholinergic synapse		
	ko:K01049	ACHE; acetylcholinesterase [EC:3.1.1.7]	T up
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K05005	KCNJ12; potassium inwardly-rectifying channel subfamily J member 12	T up
	ko:K04132	CHRM4: muscarinic acetylcholine receptor M4	T up
	ko:K08045	ADCY5: adenvlate cvclase 5 [EC:4.6.1.1]	Tup
	ko:K04543	GNG7; guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-7	T up
ko04728	Dopaminerg	ic synapse	
	ko:K04543	GNG7; guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-7	T up
	ko:K08045	ADCY5; adenylate cyclase 5 [EC:4.6.1.1]	T up
	ko:K04633	GNAL; guanine nucleotide-binding protein G(olf) subunit alpha	T up
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up
ko04726	Serotonergic	e synapse	
	ko:K07418	CYP2J; cytochrome P450, family 2, subfamily J [EC:1.14.14.1]	T up
	ko:K00509	PTGS1, COX1; prostaglandin-endoperoxide synthase 1 [EC:1.14.99.1]	T up
	ko:K04543	GNG7; guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-7	T up
	ko:K08045	ADCY5; adenylate cyclase 5 [EC:4.6.1.1]	T up
	ko:K04153	HTR1; 5-hydroxytryptamine receptor 1	T up
ko04720	Long-term p	otentiation	-
ko04730	Long-term d	epression	
ko04723	Retrograde e	endocannabinoid signaling	
	ko:K04543	GNG7; guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-7	T up
	ko:K08045	ADCY5; adenylate cyclase 5 [EC:4.6.1.1]	T up
	ko:K05184	GABRD; gamma-aminobutyric acid receptor subunit delta	T up
	ko:K13700	ABHD6; abhydrolase domain-containing protein 6 [EC:3.1.1.23]	T up
ko04721	Synaptic ves	icle cycle	
	ko:K02148	ATPeV1C, ATP6C; V-type H+-transporting ATPase subunit C	T up
	ko:K15294	CPLX1_2; complexin-1/2	T up
ko04722	Neurotrophi	n signaling pathway	
	ko:K02583	NGFR; nerve growth factor receptor (TNFR superfamily member 16)	T up
	ko:K04445	MSK1, RPS6KA5; ribosomal protein S6 kinase alpha-5 [EC:2.7.11.1]	C up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up

Sensory s	ystem		
ko04744	Phototransd	uction	
	ko:K13765	RGS9; regulator of G-protein signaling 9	T up
ko04740	Olfactory tra	ansduction	
	ko:K04633	GNAL; guanine nucleotide-binding protein G(olf) subunit alpha	T up
ko04742	Taste transd	uction	
	ko:K04607	GRM4; metabotropic glutamate receptor 4	T up
ko04750	Inflammator	ry mediator regulation of TRP channels	
	ko.K0/071	TRPV2; transient receptor potential cation channel subfamily V	Tun
	K0.K04971	member 2	1 up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K08045	ADCY5; adenylate cyclase 5 [EC:4.6.1.1]	T up
	ko:K07418	CYP2J; cytochrome P450, family 2, subfamily J [EC:1.14.14.1]	T up
	ko:K18052	PRKCQ; novel protein kinase C theta type [EC:2.7.11.13]	T up
Developm	ent		
ko04320	Dorso-ventra	al axis formation	
	ko:K02599	NOTCH; Notch	T up
ko04360	Axon guidar	nce	
	ko:K06820	PLXNA; plexin A	T up
	ko:K16359	NTNG2; netrin-G2	T up
	ko:K06838	SLIT1; slit 1	T up
	ko:K06842	SEMA6; semaphorin 6	T up
	ko:K06842	SEMA6; semaphorin 6	T up
	ko:K06550	L1CAM; L1 cell adhesion molecule	T up
	ko:K05114	EPHB6; Eph receptor B6 [EC:2.7.10.1]	T up
	ko:K06521	SEMA4; semaphorin 4	T up
	ko:K06843	NTN1; netrin 1	T up
	ko:K05462	EFNA; ephrin-A	T up
	ko:K05462	EFNA; ephrin-A	T up
	ko:K04189	CXCR4; C-X-C chemokine receptor type 4	T up
	ko:K07529	DPYSL5, CRAM; dihydropyrimidinase-like 5	T up
	ko:K06840	SEMA3; semaphorin 3	T up
	ko:K06840	SEMA3; semaphorin 3	T up
	ko:K05112	EPHB3, HEK2, ETK2; Eph receptor B3 [EC:2.7.10.1]	T up
ko04380	Osteoclast di	ifferentiation	
	ko:K05453	CSF1, MCSF; macrophage colony-stimulating factor 1	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
ko04713	Circadian er	ntrainment	
	ko:K04543	GNG7; guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-7	T up
	ko:K08045	ADCY5; adenylate cyclase 5 [EC:4.6.1.1]	T up

	ko:K04854	CACNA1G; voltage-dependent calcium channel T type alpha-1G	T up
-	ko:K04445	MSK1, RPS6KA5; ribosomal protein S6 kinase alpha-5 [EC:2.7.11.1]	C up
ko04626	Plant-pathog	gen interaction	
	ko:K09487	HSP90B, TRA1; heat shock protein 90kDa beta	C up
		- -	-
Human D	viseases		
Cancers			
ko05200	Pathways in	cancer	
	ko:K00572	WNT7; wingless-type MMTV integration site family, member 7	T up
	ko:K10030	IL8, CXCL8; interleukin 8	T up
	ko:K06240	LAMA3_5; laminin, alpha 3/5	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K08775	BRCA2, FANCD1; breast cancer 2 susceptibility protein	C up
	ko:K00445	WNT6; wingless-type MMTV integration site family, member 6	T up
	ko:K01384	WNT11; wingless-type MMTV integration site family, member 11	T up
	ko:K16859	PGF; placenta growth factor	T up
	ko:K05126	RET; proto-oncogene tyrosine-protein kinase Ret [EC:2.7.10.1]	T up
	ko:K09348	NKX3-1; homeobox protein Nkx-3.1	T up
	ko:K05717	FN1; fibronectin 1	T up
	ko:K06237	COL4A; collagen, type IV, alpha	T up
	ko:K02354	FZD4, fz4; frizzled 4	T up
	ko:K16798	GLI2; zinc finger protein GLI2	T up
	ko:K04514	Rock1; Rho-associated protein kinase 1 [EC:2.7.11.1]	T up
	ko:K09487	HSP90B, TRA1; heat shock protein 90kDa beta	C up
ko05202	Transcriptio	nal misregulation in cancers	
	ko:K09355	PBX1; pre-B-cell leukemia transcription factor 1	T up
	ko:K15187	MLLT1_3, ENL, AF9; YEATS domain-containing protein 1/3	T up
	ko:K04452	DDIT3, GADD153; DNA damage-inducible transcript 3	C up
	ko:K02583	NGFR; nerve growth factor receptor (TNFR superfamily member 16)	T up
	ko:K06622	CDKN2C, P18, INK4C; cyclin-dependent kinase inhibitor 2C	T up
	ko:K10030	IL8, CXCL8; interleukin 8	T up
ko05206	MicroRNAs	in cancer	
	ko:K16866	TIMP3; metalloproteinase inhibitor 3	T up
	ko:K17460	BMF; Bcl-2-modifying factor	T up
	ko:K16865	PDCD4; programmed cell death protein 4	C up
	ko:K04445	MSK1, RPS6KA5; ribosomal protein S6 kinase alpha-5 [EC:2.7.11.1]	C up
	ko:K10605	BRCA1; breast cancer type 1 susceptibility protein	C up
	ko:K06484	ITGA5; integrin alpha 5	T up
	ko:K02599	NOTCH; Notch	T up
ko05205	Proteoglycan	ns in cancer	
	ko:K01384	WNT11; wingless-type MMTV integration site family, member 11	T up
	ko:K00445	WNT6; wingless-type MMTV integration site family, member 6	T up

	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up			
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up			
	ko:K00572	WNT7; wingless-type MMTV integration site family, member 7	T up			
	ko:K06484	ITGA5; integrin alpha 5	T up			
	ko:K16865	PDCD4; programmed cell death protein 4	C up			
	ko:K06278	CAV1; caveolin 1	C up			
	ko:K12958	CAV2; caveolin 2	C up			
	ko:K05717	FN1; fibronectin 1	T up			
	ko:K16866	TIMP3; metalloproteinase inhibitor 3	T up			
	ko:K02354	FZD4, fz4; frizzled 4	T up			
ko05204	Chemical ca	rcinogenesis				
	ko:K00799	GST, gst; glutathione S-transferase [EC:2.5.1.18]	T up			
	ko.K07408	CYP1A1; cytochrome P450, family 1, subfamily A, polypeptide 1	Tun			
	KU.KU/408	[EC:1.14.14.1]	1 up			
ko05203	Viral carcine	ogenesis				
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up			
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up			
	ko:K03990	C3; complement component 3	T up			
	ko:K10131	PMAIP1; phorbol-12-myristate-13-acetate-induced protein 1	C up			
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up			
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up			
ko05210	Colorectal ca	Colorectal cancer				
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up			
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up			
ko05212	Pancreatic c	ancer				
	ko:K08775	BRCA2, FANCD1; breast cancer 2 susceptibility protein	C up			
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up			
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up			
ko05214	Glioma					
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up			
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up			
ko05216	Thyroid can	cer				
	ko:K05126	RET; proto-oncogene tyrosine-protein kinase Ret [EC:2.7.10.1]	T up			
ko05221	Acute myelo	id leukemia				
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up			
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up			
ko05220	Chronic mye	eloid leukemia				
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up			
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up			
ko05217	Basal cell ca	rcinoma				
	ko:K00572	WNT7; wingless-type MMTV integration site family, member 7	T up			
	ko:K02354	FZD4, tz4; trizzled 4	T up			
	ko:K16798	GLI2; zinc finger protein GLI2	T up			

	ko:K00445	WNT6; wingless-type MMTV integration site family, member 6	T up
	ko:K01384	WNT11; wingless-type MMTV integration site family, member 11	T up
ko05218	Melanoma		
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
ko05211	Renal cell ca	rcinoma	
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
ko05219	Bladder can	cer	
	ko:K10030	IL8, CXCL8; interleukin 8	T up
	ko:K04445	MSK1, RPS6KA5; ribosomal protein S6 kinase alpha-5 [EC:2.7.11.1]	C up
ko05215	Prostate can	cer	
	ko:K09487	HSP90B, TRA1; heat shock protein 90kDa beta	C up
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K09348	NKX3-1; homeobox protein Nkx-3.1	T up
ko05213	Endometrial	cancer	
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
ko05222	Small cell lu	ng cancer	
	ko:K05717	FN1; fibronectin 1	T up
	ko:K06240	LAMA3_5; laminin, alpha 3/5	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K06237	COL4A; collagen, type IV, alpha	T up
ko05223	Non-small ce	ell lung cancer	
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
Immune d	liseases		
ko05322	Systemic lup	us erythematosus	
1 0 5 2 2 2	ko:K03990	C3; complement component 3	Tup
ko05323	Rheumatoid	arthritis	Е
	ko:K10030	IL8, CXCL8; interleukin 8	Tup
	ko:K05453	CSFI, MCSF; macrophage colony-stimulating factor 1	Tup
	KO:KU2148	A I Pev IC, A I PbC; V-type H+-transporting ATPase subunit C	Tup
105220	KO:KU5433	1L15; Interleukin 15	1 up
K005320	Autoimmun	e inyroid disease	
K0U5321		ry power disease (IDD) STATA: signal transducer and activator of transcription 4	Τ
Nonnedez	KU:N11222	51A14, signal transducer and activator of transcription 4	ı up
	A lab aim an' -	digaaga	
K0U5U1U	Aizneimer's	uisease	

	ko:K04550	LRP1, CD91; low-density lipoprotein receptor-related protein 1	Tun
		(alpha-2-macroglobulin receptor)	1 up
ko05012	Parkinson's	disease	
	ko:K04266	ADORA2A, ADOR; adenosine receptor A2a	T up
	ko:K04633	GNAL; guanine nucleotide-binding protein G(olf) subunit alpha	T up
	ko:K08045	ADCY5; adenylate cyclase 5 [EC:4.6.1.1]	T up
ko05014	Amyotrophi	c lateral sclerosis (ALS)	
	ko:K05141	TNFRSF1B, TNFR2; tumor necrosis factor receptor superfamily member 1B	T up
ko05016	Huntington's	s disease	
	ko:K04647	HAP1; huntingtin-associated protein 1	T up
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up
	ko:K10408	DNAH; dynein heavy chain, axonemal	C up
ko05020	Prion disease	es	
	ko:K09490	HSPA5, BIP; heat shock 70kDa protein 5	C up
Substance	e dependence		
ko05030	Cocaine add	iction	
	ko:K13765	RGS9; regulator of G-protein signaling 9	T up
	ko:K08045	ADCY5; adenylate cyclase 5 [EC:4.6.1.1]	T up
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up
ko05031	Amphetamin	ne addiction	
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up
	ko:K08045	ADCY5; adenylate cyclase 5 [EC:4.6.1.1]	T up
ko05032	Morphine ad	ldiction	
	ko:K08045	ADCY5; adenylate cyclase 5 [EC:4.6.1.1]	T up
	ko:K04543	GNG7; guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-7	T up
	ko:K04265	ADORA1; adenosine A1 receptor	T up
	ko:K05184	GABRD; gamma-aminobutyric acid receptor subunit delta	T up
ko05033	Nicotine add	liction	
	ko:K05184	GABRD; gamma-aminobutyric acid receptor subunit delta	T up
ko05034	Alcoholism		
	ko:K04266	ADORA2A, ADOR; adenosine receptor A2a	T up
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up
	ko:K04543	GNG7; guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-7	T up
	ko:K08045	ADCY5; adenylate cyclase 5 [EC:4.6.1.1]	T up
Cardiovas	scular disease	S	1
ko05410	Hypertrophi	c cardiomyopathy (HCM)	
	JP-10 Pm	contenent opening (account)	1

	ko:K06591	ITGB8; integrin beta 8	C up	
	ko:K10351	MYL2; myosin regulatory light chain 2	C up	
	ko:K06484	ITGA5; integrin alpha 5	T up	
	ko:K07610	DES; desmin	T up	
	ko:K04859	CACNA2D2; voltage-dependent calcium channel alpha-2/delta-2	T up	
ko05412	Arrhythmog	enic right ventricular cardiomyopathy (ARVC)		
	ko:K06591	ITGB8; integrin beta 8	C up	
	ko:K06484	ITGA5; integrin alpha 5	T up	
	ko:K07610	DES; desmin	T up	
	ko:K04859	CACNA2D2; voltage-dependent calcium channel alpha-2/delta-2	T up	
ko05414	Dilated card	iomyopathy (DCM)		
	ko:K06484	ITGA5; integrin alpha 5	T up	
	ko:K07610	DES; desmin	T up	
	ko:K04859	CACNA2D2; voltage-dependent calcium channel alpha-2/delta-2	T up	
	ko:K08045	ADCY5; adenylate cyclase 5 [EC:4.6.1.1]	T up	
	ko:K10351	MYL2; myosin regulatory light chain 2	C up	
	ko:K06591	ITGB8; integrin beta 8	C up	
ko05416	Viral myoca	rditis		
	ko:K06278	CAV1; caveolin 1	C up	
Endocrin	ine and metabolic diseases			
ko04930	Type II diab	etes mellitus		
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up	
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up	
	ko:K04854	CACNA1G; voltage-dependent calcium channel T type alpha-1G	T up	
ko04950	Maturity on	set diabetes of the young		
	ko:K08027	NR5A2, FTF; nuclear receptor subfamily 5 group A member 2	T up	
ko04932	Non-alcoholi	ic fatty liver disease (NAFLD)		
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up	
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up	
	ko:K10030	IL8, CXCL8; interleukin 8	T up	
	ko:K04452	DDIT3, GADD153; DNA damage-inducible transcript 3	C up	
Infectious	diseases			
ko05110	Vibrio chole	rae infection		
	ko:K02148	ATPeV1C, ATP6C; V-type H+-transporting ATPase subunit C	T up	
ko05120	Epithelial ce	ll signaling in Helicobacter pylori infection		
	ko:K02148	ATPeV1C, ATP6C; V-type H+-transporting ATPase subunit C	T up	
	ko:K04175	IL8RA, CXCR1; interleukin 8 receptor alpha	T up	
	ko:K10030	IL8, CXCL8; interleukin 8	T up	
ko05130	Pathogenic I	Escherichia coli infection		
	ko:K07375	TUBB; tubulin beta	T up	
	ko:K07375	TUBB; tubulin beta	T up	
ko05132	Salmonella i	nfection		
	ko:K07898	RAB7B; Ras-related protein Rab-7B	T up	

	ko:K10030	IL8, CXCL8; interleukin 8	T up		
ko05131	Shigellosis				
	ko:K10030	IL8, CXCL8; interleukin 8	T up		
	ko:K06484	ITGA5; integrin alpha 5	T up		
ko05133	Pertussis				
	ko:K06484	ITGA5; integrin alpha 5	T up		
	ko:K03990	C3; complement component 3	T up		
	ko:K10030	IL8, CXCL8; interleukin 8	T up		
ko05134	Legionellosis				
	ko:K10030	IL8, CXCL8; interleukin 8	T up		
	ko:K03283	HSPA1_8; heat shock 70kDa protein 1/8	T up		
	ko:K03990	C3; complement component 3	T up		
ko05150	Staphylococ	cus aureus infection			
	ko:K03990	C3; complement component 3	T up		
ko05152	Tuberculosis				
	ko:K04718	SPHK; sphingosine kinase [EC:2.7.1.91]	T up		
	ko:K03990	C3; complement component 3	T up		
	ko:K06560	MRC; mannose receptor, C type	T up		
	ko:K05134	IL10RA; interleukin 10 receptor alpha	T up		
	ko:K10049	CEBPG; CCAAT/enhancer binding protein (C/EBP), gamma	C up		
ko05100	Bacterial inv	vasion of epithelial cells			
	ko:K06484	ITGA5; integrin alpha 5	T up		
	ko:K16938	SEPT3_9_12; septin 3/9/12	T up		
	ko:K05717	FN1; fibronectin 1	T up		
	ko:K06278	CAVI; caveolin I	C up		
	ko:K12958	CAV2; caveolin 2	C up		
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	Tup		
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	Tup		
ko05166	HTLV-1 infe		T		
	K0:K09341	MSX; nomeobox protein MSX	T up		
	K0:K09341	MSA; nomeobox protein MSA	T up		
	K0:K03433	ADCV5: adaptilate avalage 5 [EC:4.6.1.1]	T up		
	K0:K08043	ADC 15; adellylate cyclase 5 [EC.4.0.1.1]	Tup		
	ko:K00372	WNT7, wingless-type MMTV integration site family, member 7	Tup		
	k0:K00443	WNT0, wingless-type MMTV integration site family, member 0	T up		
	ko:K02640	DIK3P: phosphoinositide 3 kinase, regulatory subunit	Tup		
	ko.K02049	PIK3R: phosphoinositide_3-kinase, regulatory subunit	Tup		
	ko·K02049	FZD4 fz4. frizzled 4	Tup		
	ko·K06677	CDKN2C P18 INK4C: cyclin_dependent kingse inhibitor 2C	Tup		
ko05162	Measles		rup		
1002104	ko·K18052	PRKCO: novel protein kinase C theta type [FC·2 7 11 13]	Tun		
	ko:K02649	PIK3R: phosphoinositide-3-kinase regulatory subunit	Tup		
	NO.1N02047	1 mon, phospholitostude o-kinase, regulatory subulit	rup		

	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up		
	ko:K03283	HSPA1_8; heat shock 70kDa protein 1/8	T up		
ko05164	Influenza A				
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up		
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up		
	ko:K03283	HSPA1_8; heat shock 70kDa protein 1/8	T up		
	ko:K10030	IL8, CXCL8; interleukin 8	T up		
	ko:K01349	FURIN, PCSK3; furin [EC:3.4.21.75]	T up		
	ko:K15046	NS1BP; influenza virus NS1A-binding protein	C up		
ko05161	Hepatitis B				
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up		
	ko:K09048	CREB3; cyclic AMP-responsive element-binding protein 3	T up		
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up		
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up		
	ko:K11222	STAT4; signal transducer and activator of transcription 4	T up		
	ko:K10030	IL8, CXCL8; interleukin 8	T up		
ko05160	Hepatitis C				
	ko:K10030	IL8, CXCL8; interleukin 8	T up		
	ko:K03250	EIF3E, INT6; translation initiation factor 3 subunit E	C up		
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up		
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up		
	ko:K14217	IFIT1; interferon-induced protein with tetratricopeptide repeats 1	T up		
ko05168	Herpes simp	lex infection			
	ko:K05433	IL15; interleukin 15	T up		
	ko:K14217	IFITT; interferon-induced protein with tetratricopeptide repeats 1	Tup		
	ko:K03990	C3; complement component 3	Tup		
ko05169	Epstein-Bar	r virus infection	- F		
	ko:K05134	ILIORA; interleukin 10 receptor alpha	Tup		
	ko:K04012	CR2, CD21; complement receptor type 2	Tup		
	K0:K03283	HSPA1_8; neat snock /0kDa protein 1/8	I up		
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	Tup		
105146	K0:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	I up		
K005140	ko:K04622	GNAL: guaning nucleotide hinding protain G(alf) subunit alpha	Tun		
	ko:K02649	PIK3R: phosphoinositide_3 kinase_regulatory subunit	Tup		
	ko:K02649	PIK3R: phosphoinositide-3-kinase, regulatory subunit	Tup		
	ko:K05717	FN1: fibronectin 1	Tup		
	ko:K06240	LAMA3 5: laminin, alpha 3/5	T up		
	ko:K10030	IL8, CXCL8; interleukin 8	Tup		
	ko:K06236	COL1AS; collagen, type I/II/III/V/XI/XXIV/XXVII, alpha	Tup		
	ko:K07898	RAB7B; Ras-related protein Rab-7B	T up		
	ko:K06237	COL4A; collagen, type IV, alpha	T up		
ko05144	Malaria		-		

	ko:K10030	IL8, CXCL8; interleukin 8	T up
	ko:K04550	LRP1, CD91; low-density lipoprotein receptor-related protein 1	T up
		(alpha-2-macroglobulin receptor)	
ko05145	Toxoplasmosis		
	ko:K06240	LAMA3_5; laminin, alpha 3/5	T up
	ko:K05134	IL10RA; interleukin 10 receptor alpha	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K03283	HSPA1_8; heat shock 70kDa protein 1/8	T up
ko05140	Leishmaniasis		
	ko:K03990	C3; complement component 3	T up
ko05142	Chagas disease (American trypanosomiasis)		
	ko:K03990	C3; complement component 3	T up
	ko:K04633	GNAL; guanine nucleotide-binding protein G(olf) subunit alpha	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K02649	PIK3R; phosphoinositide-3-kinase, regulatory subunit	T up
	ko:K10030	IL8, CXCL8; interleukin 8	T up

Fig. S1. GO annotation of the differentially expressed genes. The genes are enriched in different terms in three functional categories.

Fig. S2. KEGG annotation of the differentially expressed genes. The genes are enriched in different pathways in different functional groups.

Fig. S3. KEGG analysis reveals that AKT pathway is activated by high glucose, insulin and palmitic acid.

Fig. S4. KEGG analysis reveals that ROCK pathway is activated by high glucose, insulin and palmitic acid.

Fig. S5. KEGG analysis reveals that $14-3-3\sigma$ pathway is activated by high glucose, insulin and palmitic acid.