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Abstract 

Cancer develops by accumulation of somatic driver mutations, which impact cellular function. Non-

coding mutations in non-coding regulatory regions can now be studied genome-wide and further 

characterized by correlation with gene expression and clinical outcome to identify driver 

candidates. Using a new two-stage procedure, called ncDriver, we first screened 507 ICGC whole-

genomes from ten cancer types for non-coding elements, in which mutations are both recurrent and 

have elevated conservation or cancer specificity. This identified 160 significant non-coding 

elements, including the TERT promoter, a well-known non-coding driver element, as well as 

elements associated with known cancer genes and regulatory genes (e.g., PAX5, TOX3, PCF11, 

MAPRE3). However, in some significant elements, mutations appear to stem from localized 

mutational processes rather than recurrent positive selection in some cases. To further characterize 

the driver potential of the identified elements and shortlist candidates, we identified elements where 

presence of mutations correlated significantly with expression levels (e.g. TERT and CDH10) and 

survival (e.g. CDH9 and CDH10) in an independent set of 505 TCGA whole-genome samples. In a 

larger pan-cancer set of 4,128 TCGA exomes with expression profiling, we identified mutational 

correlation with expression for additional elements (e.g., near GATA3, CDC6, ZNF217 and CTCF 

transcription factor binding sites). Survival analysis further pointed to MIR122, a known marker of 

poor prognosis in liver cancer. This screen for significant mutation patterns followed by correlative 

mutational analysis identified new individual driver candidates and suggest that some non-coding 

mutations recurrently affect expression and play a role in cancer development. 
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Introduction 

Cancer develops and progresses by accumulation of somatic mutations. However, identification and 

characterisation of driver mutations implicated in cancer development is challenging as they are 

greatly outnumbered by neutral passenger mutations1–3. Driver mutations increase cell proliferation, 

and other properties, by impacting cellular functions. Their presence is thus a result of positive 

selection during cancer development. Although the mutational process differs between patients, 

their cancer cells are subject to shared selection pressures. Driver mutations therefore recurrently hit 

the same cellular functions and underlying functional genomic elements across patients4. This 

allows statistical prediction of driver mutations and the cancer genes and regulatory elements they 

accumulate in by analysis of mutational recurrence across sets of cancer genomes1–3. In addition, 

characterization of mutations in predicted driver elements by their correlation with gene expression 

and patient survival can further support element cases with driver potential. 

 

Concerted sequencing efforts and systematic statistical analysis by the International Cancer 

Genome Consortium (ICGC) and others have successfully catalogued protein-coding driver genes 

and their mutational frequency in pan-cancer and individual cancer types5,6. While this initial focus 

on protein-coding regions has dramatically expanded our knowledge of cancer genetics, the 

remaining 98% non-coding part of the genome has been largely unexplored. With the emergence of 

large sets of cancer genomes7, it is now possible to systematically study the role and extent of non-

coding drivers in cancer development. As most non-coding functional elements are either involved 

in transcriptional regulation (promoters and enhancers) or post-transcriptional regulation (non-

coding RNAs), non-coding drivers are expected to impact cellular function through gene regulation. 

A central aim of this study is therefore to systematically couple non-coding driver detection with 

the study of gene expression. 
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Few non-coding driver candidates have been identified and only a small subset has been shown to 

have functional or clinical consequences. The best-studied example is the TERT promoter, with 

frequent mutations in melanoma and other cancer types that increase expression in cellular assays8,9. 

A few other cases of non-coding drivers have been reported, including splice site mutations in TP53 

and GATA310,11 as well as mutations in a distal PAX5 enhancer that affect expression12. 

 

Three recent studies2,3,13 have screened for drivers among promoters, enhancers, and individual 

transcription factor binding sites (TFBSs) using mutational recurrence in large sets of pan-cancer 

whole genomes. In combination, they report several hundred non-coding elements. The potential for 

affecting expression has only been studied for a subset of these. Promoter mutations were found to 

correlate with expression in cancer samples for PLEKHS13, SDHD2, BCL2, MYC, CD83, and 

WWOX13. Melton et al. additionally identified mutations near GP6 and between SETD3 and 

BCL11B that reduced expression in cellular assays2. Negative correlation with survival was 

observed for promoter mutations in SDHD3 and RBM513 for melanoma patients. Taking a different 

approach, Fredriksson et al. screened for expression correlation of mutations in promoters of all 

genes and found global significance for only TERT14. In addition, mutations in the TERT promoter 

were also associated with decreased survival in patients with thyroid cancer14. 

 

Here, we screened for non-coding elements with surprisingly high conservation levels and cancer 

specificity followed by a characterization of mutation correlation with expression and survival. An 

extended set of regulatory element types and non-coding RNAs (ncRNAs) was created for this 

purpose. We developed a two-stage procedure, called ncDriver, to screen for candidate driver 

elements to reduce the false positive rate. In this procedure, we first identified recurrently mutated 

elements and then evaluated these based on combined significance of cancer type specificity and 

functional impact, as measured by conservation. Considering the local relative distribution of 
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mutations between positions, cancer type and conservation level, ensures robustness against 

mutation rate variation along the genome. Furthermore, for cancer type specificity, we estimate the 

expected mutation frequency given the mutation context and cancer type to account for cancer-

specific mutation signatures. This approach is conceptually similar to the recent OncodriveFML 

method15. In contrast to previous studies, we included both SNVs (single nucleotide variants) and 

INDELs (small insertions and deletions) in the analysis. The screen identified 160 significant non-

coding elements, with an enrichment of regulatory elements near known protein-coding cancer 

drivers. We also screened genome-wide TFBS sets for individual transcription factors to investigate 

whether entire transcription factor regulatory networks collectively had surprising mutational 

patterns and showed potential driver evidence. 

 

To further evaluate the driver potential of significant elements, we characterized the mutations in 

these elements through expression perturbation using correlation of mutations in regulatory regions 

with gene expression levels. For this purpose we used an independent pan-cancer set of 4,128 

exome capture samples with paired RNAseq samples16.  This candidate driven approach identified 

significant expression correlations for individual candidates as well as for genome-wide TFBS sets, 

extending observations by Fredriksson et al.14. We further evaluated the association of mutations in 

significant elements with patient survival. Though limited by small numbers of patients mutated for 

individual elements, this analysis identified candidate drivers and mutations of potential clinical 

relevance, including liver cancer mutations of the poor prognosis biomarker microRNA (miRNA) 

MIR122. 
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Results 

Pan-cancer screen for non-coding elements with conserved and cancer specific mutations 

To screen for non-coding elements with elevated conservation and cancer specificity, we used a set 

of 3.4M SNVs and 214K INDELs from a previous study of 507 whole-cancer-genomes from ten 

different cancer types (Supplementary Table 1)7. Mutation rates varied more than five orders of 

magnitude across samples, with the number of SNVs per sample (median=1,988) about nine times 

higher than for INDELs (median=198; Fig. 1a). More than ten million non-coding elements 

spanning 26% of the genome collected from ENCODE and GENCODE were screened, including 

long ncRNAs (lncRNAs), short ncRNAs (sncRNAs), pseudogenes, promoters, DNaseI 

Hypersensitive Sites (DHSs), enhancers and TFBSs (Fig. 1b,c)17,18. Protein-coding genes 

(n=20,020; 1.1% span) were included as a positive control. 

 

Each element type was separately screened using a new two-stage procedure, called ncDriver (Fig. 

1d). Its underlying idea is to restrict the element selection (second stage) to tests that are robust to 

the variation in the mutation rate1 and thereby reduce the false positive rate. These tests evaluate the 

relative distribution of mutations instead of the overall number of mutations. More specifically, 

these tests consider the cancer-type specific mutational processes and sequence context preferences, 

when evaluating cancer specificity, and evaluate mutations enriched for conserved and functional 

sites. This is conceptually similar to test of positive selection for protein-coding regions that 

evaluate the enrichment of amino-acid changing substitutions over silent ones19. To reduce the 

number of tests performed and focus on relevant elements with enough mutations for the tests to be 

powerful, we first identified elements with mutational recurrence (first stage) and among these we 

evaluate the actual driver significance using a combination of cancer specificity and conservation 

(second stage). 
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In more detail, first, a lenient test of mutational recurrence identified a total of 6,529 elements 

(nSNV=4,908, nINDEL=1,621) with elevated mutation rates (Fig. 1e). Second, for each element type 

the recurrently mutated elements were passed on to three separate driver tests for candidate 

selection. Each of these tests address different aspects of the mutations’ distribution. Cancer 

specificity test: Based on previous observations of cancer specificity of known protein-coding 

drivers5, we evaluated if the mutations within each element showed a surprising cancer specific 

distribution given the cancer specific mutational signatures (Fig. 1d.i). Local conservation test: 

Since it is often not understood how function is encoded in non-coding elements, we used 

evolutionary conservation as a generic measure of functional importance. We tested if mutations 

showed a surprising preference for highly conserved positions within each element, which suggests 

that mutations of functional impact are enriched and have been selected for (Fig. 1d.ii). Global 

conservation test: As highly conserved elements are more likely to be key regulators18, we also 

tested if the conservation level of mutated positions in a given element was surprisingly high 

compared to the overall conservation distribution across all elements of the same type (Fig. 1d.iii). 

Finally, we used Fisher’s method to combine the significance of the cancer specificity and 

conservation tests and q-values (q) were used to threshold (25% false discovery rate; FDR) and rank 

the final lists for each element type for a total of 295 significant elements (Fig. 1f; Supplementary 

Table 2). The final selection is thus based on a combination of three different aspects of the 

mutations distribution, given the cancer type specific mutational signatures, to improve overall 

driver detection power. 

 

For the final set, the most significant element was preferred when overlap occurred, which resulted 

in 160 unique non-coding elements and 48 protein-coding genes. Of these, 35% (39 of 208) were 

found based on INDELs, despite they only comprise 4% of the full mutation set (Fig. 1f). The 
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contribution of the three different driver tests to the significance of the final candidates varied 

among element and mutation types (Fig. 1g,h). Generally, the Local conservation test made the 

largest contribution for INDELs and the Global conservation test made the largest contribution for 

SNVs. The contribution of the cancer specificity test was largest for sncRNAs called by SNVs. 

 

For protein-coding genes, known cancer-drivers in COSMIC6 are top-ranked and enriched among 

significant elements for both the SNV set (13.0x; p-value=p=2.4x10-9) and the INDEL set (102.6x; 

p=9.1x10-5; Supplementary Table 3)6. If applied individually, all three driver tests also resulted in 

enrichment of known protein-coding drivers, with 34.6x enrichment for the cancer specificity test 

(p=4.8x10-11), 17.1x for the local conservation test (p=1.7x10-3), and 10.6x for the global 

conservation test (p=6.5x10-8; Supplementary Table 3). All three tests are thus able to detect 

signals from known protein-coding drivers, despite not tailored for this purpose.  

 

To further evaluate driver evidence for both individually identified elements and the set as a whole, 

we asked if an independent data set supported the findings. For this, we applied ncDriver 

specifically to the above defined set of 208 significant elements using another set of 505 whole-

genomes from 14 cancer types14 (Supplementary Fig. 1). Even for true drivers, we only expected 

limited recall of individual non-coding elements as the two sets differ in their cancer-type 

composition affecting the statistical power to recall cancer-type specific drivers. Furthermore, the 

available whole genome data sets generally have limited statistical power to detect true drivers with 

only few driver mutations and hence small effect sizes. Such drivers are unlikely to be consistently 

detected across sets, known as winner's curse20.  

 

Overall 17 elements were recalled (Supplementary Table 2), including eight protein-coding genes 

(TP53, KRAS, FBXW7, PIK3CA, TMEM132C, CSMD1, BRINP3 and CDH10), one enhancer 
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(associated with the known TERT promoter sites8,9), two protein-coding gene promoters (CDH10 

and MEF2C), three lncRNA promoters (RP11-760D2.11, RP11-805F19.1, and RP11-463J17.1), 

two TFBS peaks (associated with PFKP and MROH1) and one TFBS motif associated with FSHR 

(Supplementary Fig. 3). The overall number of elements recalled is six times higher than expected 

by chance (Supplementary Table 4; p=0.001; Monte Carlo test, see Methods). Among the element 

types, where any number of elements were recalled, we identified three element types with 

significant enrichment (p<0.003) (Supplementary Table 4). 

 

A given driver gene may be affected by mutations at different nearby regulatory elements. We 

therefore performed another recall analysis, using the same independent dataset, in which we 

extended the element set to include all elements associated with the same genes as our elements 

(n=208). We analyzed this extended set using the original approach to screen for possible driver 

evidence in the independent set of cancer genomes (Supplementary Fig. 1). For this we screened 

251,333 elements (2.3% of all input elements) associated with these 208 genes. At the gene level, 

82 genes were recalled by one or more non-coding elements, with only three called by evidence in 

the protein-coding gene itself (Fig. 2a; Supplementary table 2). The recall rate was a bit higher for 

known cancer genes6 (48%; 11 of 23) than for other genes (37%; 68 of 185), though not significant 

(p=0.36; Fishers’ exact test). 

 

We were able to recall known cancer drivers in the independent data set of cancer genomes. 

However, the relatively low number of recalled elements (17 out of 208) indicates that there are few 

non-coding drivers with high pan-cancer mutations rates and potentially a presence of false 

positives. 
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Significant non-coding elements identified in the pan-cancer screen 

Significant non-coding elements were found in all element types, though in varying number and 

significance, with most for TFBS peaks (TFP; nSNV=68; nINDEL=14) and least for sncRNAs (nSNV=1) 

(Fig. 2a; Supplementary Table 2). The non-coding regulatory elements are annotated by their 

nearest protein-coding gene. Overall, the significant non-coding (regulatory) elements show an 

enriched (4.6x) association with known cancer driver genes  (14 of 121; p=8.6x10-6; 

Supplementary Table 3). The highest enrichments are seen for promoters (14.7x; p=1.5x10-5) and 

enhancers (16.2x; p=2.9x10-7). 

 

The significant elements include the well-studied TERT promoter region (Supplementary Table 

2)8,9. As an overlapping enhancer element achieves higher significance, it represents the region in 

the final list (Fig. 2a.1, i.e., case 1 in column three in Figure 2a). Several candidates from previous 

screens are also present (n=5; Supplementary Table 2)2,3.  

 

The primary miRNA transcript MIR142, a lncRNA, is the most significant non-coding driver 

candidate overall (q=4.8x10-9; Fig 2a.2; Supplementary Fig. 2a,b). Ten SNVs from AML, CLL, 

and BCL lymphomas fall in the 1.6kb-long transcript. Three of these hit the highly conserved 

precursor miRNA region (88 bp), which forms a hairpin RNA structure, potentially directly 

affecting the biogenesis of the mature miRNA. While SNVs in the miRNA precursor were 

previously reported for AML and CLL12,21, we here find SNVs across the entire primary miRNA 

and for all three haematological types (Fig. 2b). Apart from an uncharacterized lncRNA (RP11-

76E17), a U5 spliceosomal RNA (RNU5A-1; Fig 2a.3; Supplementary Fig. 2c,d), and two 

pseudogenes (Supplementary Table 2), the remaining non-coding elements are gene regulatory. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2017. ; https://doi.org/10.1101/182642doi: bioRxiv preprint 

https://doi.org/10.1101/182642
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

11 

A distant enhancer of the B-cell specific transcription factor PAX5 was recently found to be 

recurrently mutated in CLL and other leukemias with an effect on expression12. Here we detect an 

overlapping TFBS peak for RAD21, associated with the non-coding gene RP11-397D12.4, with 

four SNVs in both of CLL and BCL (q=7.2x10-2; Fig. 3a,b). In addition, our top-ranked enhancer 

element is located within the first intron of PAX5 and hit by eight SNVs in BCL and two in LUAD 

(q=6.3x10-6; Fig. 2a.4; Fig. 3c). Interestingly, five of the mutations fall within a TFBS for CTCF 

(q=2.4x10-4; Fig. 3c). 

 

Among the SNV-top-ranked promoters (DMD), DHS elements (LRMP) and enhancers (PAX5, 

BACH2, BCL2, CXCR4, and BCL7A) are highly cancer type specific cases with many BCL or CLL 

mutations (Fig. 2a.4-10,b; Fig. 3). These are known targets of somatic hypermutations affected 

either through translocations to Immunoglobulin loci (e.g., BCL2 and  PAX5) or by aberrant somatic 

hypermutations targeting transcription start site regions of genes highly expressed in the germinal 

centre (e.g., DMD and CRCX4)12,22,23. However, the conservation tests show a non-random 

mutation pattern for some of these (PAX5 and DMD in particular), suggesting an effect of selection 

and driver mutations. 

 

Among promoters, the 3’-end processing and transcription termination factor PCF11 is ranked first 

by SNVs. It is is hit by seven SNVs (q=6.2x10-3) from breast, lung and liver cancer types  

(Supplementary Table 2) in its 5’UTR, which has a high density of transcription factor binding 

sites18,24. The mutations are biased toward highly conserved positions, as evidenced by the 

conservation test contributions (Fig. 2a.11; Fig. 4a). Downregulation of PCF11 affects both 

transcription termination25 as well as the rate of transcription re-initiation at gene loops26,27. 

Mutational perturbation of PCF11 may thereby affect transcriptional regulation. 
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A 1.9Kb-long enhancer in an intron of TOX3 is ranked second by SNVs and also achieves 

significance primarily from the conservation tests (Fig. 2a.12; Fig. 4b). It is hit by ten SNVs 

(q=1.3x10-4) in breast, liver, lung, and BCL cancer types. Numerous TFBS peaks overlap the 

mutations, with a JUND TFBS achieving the highest individual significance (q=5.0x10-3). TOX3 is 

involved in bending and unwinding of DNA and alteration of chromatin structure28. It is a known 

risk gene for breast cancer29, where it is also somatically mutated at a moderate rate30. In line with 

this, we observed the most SNVs in breast cancer (n=5). 

 

The SNV-top-ranked DHS element (q=7.0x10-3) is located upstream of the MAPRE3 gene (Fig. 

2a.13; Fig. 4c). It is hit by five mutations in liver cancer, which also overlap a TFBS for CTCF 

(q=0.1). The lower final significance of the TFBS than the DHS elements is a result of the multiple 

testing correction procedure. There is high mutational recurrence for the CTCF TFBS (q=1.9x10-3). 

The MAPRE3 gene is microtubule associated, with frameshift mutations reported for gastric and 

colorectal cancers31.  

 

The SNV-top-ranked SMC3 TFBS motif downstream of FSHR provides a similar example of a 

previously unknown recurrently mutated TFBS with three liver cancer mutations and three 

additional SNVs located just outside the element (Fig 2a.14; Supplementary Fig. 3).  

 

Overall a large fraction of the candidate TFBSs from both SNVs and INDELs are either CTCF, 

RAD21, or SMC3 binding sites (25 of 91; Supplementary Table 2; Fig. 2a.14-21), which are all 

part of the cohesin complex32. Recently, an elevated SNV rate at binding sites of the cohesin 

complex have been reported for several cancer types by others33,34. The cohesin complex is a key 

player in formation and maintenance of topological chromatin domains35,36, suggesting that non-

coding mutations could play a role shaping the chromatin structure during cancer development. On 
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the other hand, the elevated mutation rate could be caused by the specific environment induced by 

the binding of transcription factors37. 

 

The large fraction of significant cohesin binding sites suggests that binding sites of some 

transcription factors (TFs) may be overall more mutated and perturbed than others in cancer 

development. To answer this, we screened genome-wide sets of TF  binding site motifs 

(ntotal=1.7M) for individual TFs (109 TFs comprising 915 individual subtypes) from ENCODE that 

are found within a TF peak38 for overall driver evidence using the ncDriver approach. As the 

number of hypotheses is smaller than for the above screen of individual elements, we did not apply 

the initial mutation recurrence filter (Supplementary Note 1).  

 

This identified transcription factors with significant binding site sets for both SNVs (n=25) and 

INDELS (n=4; q<0.05; Fig. 2d; Supplementary Table 5). The genes associated with the mutated 

sites are enriched for functional terms related to cancer for seven of the top-ranked TFBS sets 

(Supplementary Table 6). The cohesin complex members (CTCF, RAD21, and SMC3) were top-

ranked for both SNVs (q<1.1x10-7) and INDELs (q<3.4x10-2; Fig. 2d). We further performed a 

genome-wide analysis of the mutations in CTCF binding sites to investigate their functional 

properties, focussing on the binding sites of the most common subtype (subtype descriptor 1; disc1) 

(Supplementary Note 2). Together, our results show that the mutation rate is elevated at highly 

conserved and high affinity CTCF binding sites in active, open-chromatin regions39 

(Supplementary Fig. 4). The increase in mutation rate not only at functionally important sites 

(position 16), but also at apparently non-functional sites (3’ flanking region), suggests that much of 

the increase may be driven by mutational mechanisms caused by micro-environmental conditions 

coupled to CTCF binding. Specifically, spacer DNA regions between the core CTCF binding site 
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and flanking optional binding sites appear to be physically bent during binding40,41, which may 

affect mutation rates. 

 

Correlation of mutations in significant non-coding elements with gene expression 

Mutations in non-coding elements may affect gene expression and thereby cellular function, 

exemplified by mutations in the TERT promoter8,9,14. The effect may be caused by various 

mechanisms, including perturbation of transcription initiation8,9, chromatin structure42, and post-

transcriptional regulation43. The potential for mutations in elements impacting cellular function can 

be evaluated by analyzing differences in gene expression. We therefore developed a pan-cancer test 

for mutations correlating with increased or decreased gene expression levels and applied it to a 

large independent expression dataset from TCGA  (Fig. 5a-f). Though we cannot evaluate whether 

the mutations cause expression difference, significant expression correlation can help identify and 

prioritize driver candidates and lead to specific functional hypotheses.  

 

Essentially, the idea is to first make expression levels comparable across cancer types by applying 

z-score normalization to the expression values for a given gene within each cancer type (Fig. 5b,c). 

Then evaluate differences between mutated samples and non-mutated samples combined across 

cancer types, using a non-parametric rank sum test (Fig. 5d,e). Finally, where relevant, combine 

such statistical evidence across all the genes regulated by a given set of non-coding elements, e.g. 

all TFP elements found significant in the driver analysis (Fig. 5f). Each tested element was 

associated to the nearest gene, and the test was based on gene expression in an independent set of 

7,382 RNAseq samples of which 4,128 had paired exome mutation calls (both SNVs and 

INDELs)16. Though the power to call mutations from exome capture data is highest in protein-

coding regions, 50% of the calls are found in the non-coding part of the genome. 
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We first focused on sets of elements with regulatory potential, and thus evaluated correlation effects 

in TFBS peak, 1kb promoter and DHS element types. Mutations in the set of TFBS peak candidates 

correlated overall with unusual expression levels  (p=1.2x10-3; Fig. 5f). The significant expression 

correlation was primarily driven by mutations at two known cancer drivers TP53 (p=2.3x10-4) and 

GATA3 (p=2.1x10-4), with MYC also nominally significant (p=3.7x10-2). The promoter and DHS 

candidate sets did not achieve overall significance (Supplementary Fig. 6). The GATA3 mutations 

(n=15) all reside in intron four of the gene and most are INDELs from breast cancer (n=11) that 

disrupt the acceptor splice site, which leads to abnormal splicing and codon frame shift as described 

previously for the luminal-A subtype of breast cancer10,11. In addition, one lung adenoma SNV also 

disrupt the splice site. The association between GATA3 splice-site mutations and higher GATA3 

expression is, to our knowledge, novel. Similarly, most of the TP53 mutations affect splice-sites in 

intron eight. Both germline and somatic driver mutations in splice sites are known for TP5344,45.The 

GATA3 and TP53 results show that the expression test can identify known non-coding driver 

mutations that correlate with transcript abundance. 

 

We next focused on the effect of TFBS mutations on nearby gene expression. For this, we applied 

the expression test to the 29 significant TFBS sets (Supplementary Table 5) and subsets thereof as 

indicated in Fig 5n,i. In combination, the expression correlation of the full set of TFBS mutations 

showed borderline significance (p=0.053; Fig. 5g), with a limited set of genes that deviate from the 

expected p-values. 

 

Both passenger and driver mutations may impact expression. As it is unlikely that passenger 

mutations hit the same TFBS twice by chance, we expect enrichment for true drivers among those 

that do. To further pursue this idea and enrich for driver mutations, we analyzed expression 
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correlation separately for different numbers of pan-cancer mutations hitting the same type of TFBS.  

For most TFBS sets, the stratified subsets became small and we therefore focused on the large 

CTCF set (Fig. 5h). Overall, the set of double-hit mutations had a much stronger correlation with 

expression (p=3.4x10-4) than single-hit mutations (p=0.64). For double-hit mutations, the majority 

shows a deviation from the expectation, whereas for single-hit mutations, this is only the case for 

the five most significant genes (Fig. 5h). This shows a generally stronger correlation and a larger 

potential for cellular impact for double-hit than single-hit mutations, consistent with an enrichment 

of true drivers. To rule out that the difference was simply an effect of additional power for the 

double-hit mutations, we confirmed that p-values for individual double-hit mutations were generally 

smaller than single hit mutations (p=0.01; one sided rank sum test). 

 

Among the individual genes top-ranked by the expression correlation analysis are well-studied 

cancer genes, often with tissue-specific mutation-patterns. CDC6, which is found in the COSMIC 

Gene Census database6, is top-ranked for all TFBS’s and also for the CTCF double-hit mutations 

(Fig. 5g,h), with two mutations in breast cancer (Fig. 5j). CDC6 is a necessary component of the 

pre-replication complex at origins of replication and involved in cell-cycle progression-control via a 

mitotic checkpoint46. It mediates oncogenic activity through repression of the INK4/ARF tumor 

suppressor pathway47 and is an activator of oncogenic senescence48. In breast cancer, its expression 

correlates with poor prognosis49. PTPRK is among the few CTCF TFBS single-hit genes with 

unexpected expression correlation, with a single mutation in liver cancer (Fig. 5h,j). It is a tyrosine 

phosphatase associated with several cancer types50,51. Four liver cancer mutations in an associated 

YY1 TFBS of PTPRK also correlate positively with expression (p=2.7x10-2). Individual TFBSs are 

hit by more than five mutations in numerous cases (n=154). Though recurrent technical artifacts 

may underlie most of these extreme cases, some exhibit convincing expression correlations (Fig. 

5i).  One such example is ZNF217, which is hit in an associated RAD21 binding site by eight breast 
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cancer mutations and by four in other cancer types . The breast cancer mutations correlate strongly 

with increased expression level (p=2.7x10-3; Fig. 5j). ZNF217 is well studied in cancer52. It is a 

known breast cancer oncogene and an expression marker for poor prognosis and metastases 

development53. Given this, it would be a natural candidate for further studies of the clinical 

relevance of regulatory mutations once larger data sets become available.  

 

Association of mutations in significant non-coding elements with patient survival 

Driver mutations may affect not only cancer development, but also cell proliferation, immune 

evasion, metastatic potential, therapy resistance, etc, and thereby disease progression and 

potentially clinical outcome54. An association between candidate driver mutations and clinical 

outcome would therefore support a functional impact on cancer biology as well as point to a 

potential as clinical biomarker. 

 

To pursue this, we focused on the TCGA whole genome and exome data sets where we have 

information on patient overall survival time (Supplementary Tables 10 and 11). For the exome 

data set, we evaluated all candidate elements found in the original driver screen (n=208), whereas 

we restricted the focus to the subset of recalled elements (n=17) for the smaller, less well-powered 

whole genomes data set (Supplementary Fig. 1). For each candidate element, we restricted the 

focus to cancer types with at least three mutations, to retain statistical power. For each cancer type, 

we asked whether the patients with a mutation in the element had significantly decreased overall 

survival compared to patients without a mutation using a one-sided log-rank test on the Kaplan-

Meier estimator. We tested the one-sided hypothesis, as we were interested in driver mutations and 

hence cases with worsening survival, adopting a previously discussed test strategy55. For an overall 

pan-cancer measure of significance, we combined the p-values of the individual cancer types, using 
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Fisher’s method. Finally, elements with an estimated FDR of less than 25% were considered 

significant, which resulted in three protein-coding genes across both data sets and four non-coding 

elements based on exomes only (Supplementary Tables 12-15). 

 

For protein-coding genes, TP53 and KRAS were independently found to be significant in both the 

exome and whole-genome data sets (Supplementary Tables 12 and 14), with nominal significance 

(p<0.05) in a range of individual cancer types (Supplementary Fig. 7 a,b, f:j) in line with the 

literature 56,57. In addition, NRXN1 was found significant in the exome set (q=0.09), with nominal 

significance (p<0.02) for the breast cancer, liver hepatocellular carcinoma, and thyroid cancer types  

(Supplementary Fig. 7 c,d,e). Though NRXN1 has not previously been described as a driver, it is a 

known recurrent target of hepatitis B virus DNA integration in liver hepatocellular carcinoma58.  

 

For non-coding elements, enhancer nearby TERT is ranked first in the whole genome data set with 

near-significance (q=0.32; Supplementary Tables 15). The highest significance for individual 

cancer types is seen for glioblastomas (p=0.057) and thyroid cancer (p=0.063), which are also the 

cancer types where TERT promoter mutations have previously been shown to correlate with cancer 

progression59,60. 

 

The top-ranked non-coding element is a promoter of lncRNA LINC00879 (q=1.6x10-6), with 

nominal significance in esophageal cancer (p=0.013) and liver hepatocellular carcinoma (p=1.5x10-

10) (Supplementary Fig. 8a,b). The lncRNA is uncharacterized. Its promoter region overlaps the 

pseudogene WDR82P1. The promoter of the kinase SGK1 is second-ranked (q=0.22), with nominal 

significance in stomach cancer (p=0.0002; Supplementary Fig. 8f). SGK1 is overexpressed in 

epithelial tumours and recently associated with resistance to chemotherapy and radiotherapy61. 
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A transcription factor peak near PCDH10 is ranked fourth (q=0.22; Supplementary Fig. 8c). 

PCDH10 is a protocadherin involved in regulating cancer cell motility 62. Finally, the promoter of 

TP53 is ranked fifth, with overall near significance (q=0.28) and nominal significance for head and 

neck squamous cancer (p=0.043) as well as Chromophobe kidney cancer (p=0.006; Supplementary 

Fig. 8d,e). These mutations affect splice sites and thus post-transcriptional regulation. 

 

The miR122 promoter region is third-ranked (q=0.22), with nominal significance in liver 

hepatocellular carcinoma (HCC; p=0.022). The miR122 region was originally detected as a driver 

candidate based on liver cancer indel mutations (q=0.043; Supplementary Table 2 and Figure 

6a). The liver cancer mutations (n=5) from the exome set were also primarily INDELs (n=3). The 

exome mutations were generally centered around the precursor miRNA (pre-miRNA), though this 

is probably a consequence of it being included in the capture. In addition, skin-cancer mutations 

also overlap pre-miR122, though mostly lacking survival data (Figure 6b). Interestingly, low levels 

of miR-122 is associated with poor prognosis in hepatocellular cancer (HCC)63,64, where it has been 

discussed as a therapeutic target65.  

 

By use of same sample miRNA profiles, we asked if the mutations in miR122 were associated with 

low miR122 expression levels (Figure 6c). This was generally the case, though the effect was only 

significant compared to normals (p=2.6x10-7) and not HCC cancers (p=0.13), which are generally 

down-regulated. We also asked if the protein-coding genes with 3’UTR miR122 target sites were 

significantly perturbed as a set. This was the case for a patient (A122) with a four-bp deletion that 

affects the 5’ end of miR122 (p=2.4x10-9; see Methods). In general a highly significant correlation 

between miR122 expression levels and target gene perturbation was observed in HCC samples 

(p=8.1x10-28). The patient with a four-bp deletion and the lowest miR122 expression level has the 

shortest overall survival of the five (Figure 6d).  
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Discussion 

Our two-stage procedure, ncDriver, identified non-coding elements with elevated conservation and 

cancer specificity of their mutations, which were further characterized by correlation with 

expression and survival to shortlist non-coding driver candidates. Importantly, the procedure is 

designed to be robust to variation in the mutation rate along the genome, as significance evaluation 

and candidate selection is based on surprising mutational properties, given sequence context, and 

not the overall rate. In addition to recovering known protein-coding drivers, it top-ranked known 

non-coding driver elements, such as promoters and enhancers of TERT and PAX53,8,9,12. It also 

recalled a surprising intensity and distribution of mutations in CTCF binding sites of the cohesin 

complex34, which were found to correlate with high conservation and DNase I hypersensitivity. 

 

Distinguishing non-coding driver elements shaped by recurrent positive selection from localised 

mutational mechanisms and technical artefacts is challenging. It may therefore be only a minority of 

the identified significant elements that are indeed true drivers, which stresses the importance of 

careful case-based analysis. To assist in the prioritization and shortlisting of non-coding driver 

candidates, we systematically evaluated the association of mutations in the identified elements with 

expression as well as patient overall survival using independent data sets. The expression 

correlation identified known drivers, an increased correlation at recurrently mutated TFBS sites, and 

pinpointed individual recurrently mutated candidate elements with strong mutation-to-expression 

correlations. Similarly, the survival analysis top-ranked known protein-coding and non-coding 

drivers, identified non-coding candidates where mutations associated significantly with decreased 

survival for individual cancer types, and supported miR-122 as a potential non-coding driver in 

hepatocellular liver cancer. 
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In general, few non-coding elements showed the same level of mutational significance as the known 

protein-coding drivers. The integration of multiple sources of evidence therefore becomes necessary 

for robust detection. We found the introduction of a cancer specificity test contributed both to the 

top ranking of known driver elements and the evidence underlying some novel candidates. 

Similarly, integration of both expression and patient survival data may provide further insight into 

the functional impact and driver potential of mutations14. With low recurrence and few mutations, 

we evaluated only pre-selected candidate elements that passed a mutational recurrence test and 

thereby retained power compared to a more inclusive screening approach.  

 

Some driver mutations may only affect gene expression in early cancer stages and be undetectable 

by the expression analysis. On the other hand, passenger mutations could potentially affect 

expression without affecting cell survival. However, the much higher expression correlation signal 

among double-hit than single-hit mutations in CTCF binding sites is compatible with a selective 

enrichment for functional impact and hence presence of driver mutations. However, mutational 

mechanisms may also correlate with expression in some cases (see below)22,23. 

 

Similarly, some driver mutations may affect cancer onset but not disease progression and overall 

survival. Even if the mutations do affect survival, the effect has to be relatively large to be detected 

with the current cohort sizes and the small numbers of mutated elements for individual cancer types.  

 

On the other hand, mutational processes may lead to false positive driver candidates in some cases. 

Although the cancer specificity tests model the cancer-specific context-dependent mutation rates in 

each element type, highly localized and potentially uncharacterized mutational processes may 

inflate the false discovery rate. Specifically, somatic hypermutation in lymphomas appear to 
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underlie the significance of several of the transcription-start-site proximal top-ranked elements. 

Here a mutational mechanism may therefore explain overall mutational recurrence and cancer-type 

specificity – additional evidence is needed to support them as driver candidates. Nonetheless, some 

of these also exhibit an enrichment of mutations affecting highly conserved positions, including the 

intronic PAX5 enhancer and the DMD promoter, suggesting that there may be an enrichment of 

driver mutations that affect function. The expression-correlation analysis also top-ranked known 

targets of somatic-hypermutation (MYC and BCL6; Fig. 5). However, correlation between somatic 

hypermutations and expression level as well as translocation of some genes to immunoglobulin 

enhancers can explain this signal more parsimoniously12,22. 

 

Several of the identified non-coding driver candidates are associated with chromatin regulation, 

either through association to regulatory genes (e.g., TOX3 intronic enhancer) or as binding sites for 

chromatin regulators (e.g., both PAX5 enhancers and CTCF TFBS near MAPRE3). In addition, the 

full set of cohesin binding sites show elevated mutation rates34, though micro-environment specific 

mutational processes may potentially underlie most of these66. This could suggest a potential role of 

non-coding mutations in shaping chromatin structure during cancer development, which is 

supported by the recent finding of chromatin-affecting non-coding mutations that create a super-

enhancer in lymphoblastic leukemia42. Systematic integration of sample-level chromatin data in 

large cancer genomics studies would help reveal the broader relationship between non-coding 

mutations and epigenomics, which may both be driven by mutational mechanisms and selection. 

 

This study has identified elements with surprising mutational distributions and shortlisted a small 

number of non-coding driver candidates with mutations that associate with expression and patient 

survival across independent data sets. However, given the small number of mutated samples and the 

resulting lack of power, validation in large independent cohorts will be needed. The power to 
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discover and validate non-coding driver elements will increase with larger sample sets and further 

integration of functional genomics and clinical data67, as will be provided by the next phases of 

TCGA and ICGC, providing a basis for biomarker discovery, precision medicine, and clinical use. 

 

Methods 

Pan-cancer whole-genome mutations and non-coding element annotations 

Pan-cancer whole-genome mutations were extracted from a previous ICGC mutation signature 

study containing 3,382,751 single nucleotide variants (SNVs) from 507 samples of ten tumor types 

and 214,062 insertions and deletions (INDELs) from a subset of 265 samples of five tumor types 

(Fig. 1a; Supplementary Table 1)7. The INDELs were included by mapping them to their first 

(lowest) coordinate. All analysis is done in reference assembly GRCh37 (hg19) coordinates. 

INDELs were cleaned by removing those that overlap known common genetic polymorphisms 

identified in the thousand genomes project phase 3 version 5b (2013-05-02)68. 

 

Annotations of protein-coding genes, lncRNAs, sncRNAs and pseudogenes were taken from 

GENCODE version 19, Basic set17. Only coding-sequence features were included for protein-

coding genes. Promoter elements of size 1 kb and 4 kb were defined symmetrically around 

GENCODE transcription start sites (TSSs). Annotations of regulatory elements included DHSs, 

transcription factor binding site peaks (TFPs), TFBS motifs in peak regions (TPMs) and enhancers 

were taken from a previously compiled set18. 

 

ENCODE blacklisted regions that are prone to read mapping errors were subtracted from all 

elements24. CRG low-mappability regions, where 100-mers do not map uniquely with up to two 

mismatches, were downloaded from the UCSC Genome Browser and subtracted69. Finally, hyper-
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mutated genomic segments containing GENCODE Immunoglobulin and T-cell receptor genes 

together with 10 kb flanking regions, combined when closer than 100kb, were also subtracted. All 

non-coding elements were subtracted coding sequence regions, to eliminate detection of potential 

protein-coding driver mutations in these. 

 

The processed lists of 10,982,763 input elements consisted of 56,652 transcripts for 20,020 protein-

coding genes, 17,886 transcripts for 13,611 lncRNA genes, 8,836 transcript for 6,948 sncRNA 

genes, 948 transcripts for 889 pseudogenes, 94,465 promoters of size 1 kb for 41,598 genes, 94,956 

promoters of size 4 kb for 41,875 genes, 2,853,220 DHSs, 417,832 enhancers, 5,677,548 TFPs and 

1,760,420 TPMs (Fig. 1c).  

 

Mutations were mapped to elements using the intersectBed program of the BEDTools package 

(Quinlan and Hall 2010). To avoid large signal contributions from individual samples, no more than 

two randomly selected mutations were considered per sample in any individual element. 

 

Two-stage procedure for identifying non-coding elements with conserved and cancer specific 

mutations 

A two-stage test procedure, named ncDriver, was developed to evaluate the significance of elevated 

conservation and cancer specificity of mutations in non-coding elements (Fig. 1d), which was 

applied to each combination of mutation type and element type (Fig. 1a,c). The first stage identified 

genomic elements with surprisingly many mutations (high recurrence) and the second assigned 

significance to each of these according to the element mutation properties in terms of cancer 

specificity and conservation. Importantly, the two stages are independent of each other, as the 

property tests are conditional on the number of mutations. Final significance evaluation and element 
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selection was based only on the mutations properties, not their recurrence, to increase robustness 

against rate variation between samples and along the genome1. The first stage thus acts as a filtering 

step of elements considered for candidate selection. Details of the stages and involved tests are 

given below. 

 

Mutational recurrence test. The recurrence test evaluated if the total number of mutations in an 

element was surprisingly high given its lengths and the background mutation rate for the given 

element type based on a binomial distribution. In case of overlapping elements, the most significant 

element was selected. P-values were corrected for multiple testing using the Benjamini and 

Hochberg procedure (BH)70 and only elements passing a 25% FDR threshold were passed on to the 

second stage.  

 

In the second stage, three separate tests evaluated the cancer specificity and conservation of the 

mutations within each element. 1) Cancer-specificity test; 2) Local conservation test: average 

conservation level of mutated positions compared to a local element-specific distribution and 3) 

Global conservation test: average conservation-level of individual mutated positions compared to 

the genome-wide distribution for the element type. 

 

1) Cancer-specificity test. For each element, the number of observed mutations in each cancer type 

was calculated. The expected number of mutations was also calculated for given element type and 

cancer type, grouped by mutation trinucleotide context to account for individual cancer type 

mutation signatures. We then asked if the distribution of observed mutations across cancer types 

within the element was surprising compared to the expected number of mutations using a 

Goodness-of-fit test with Monte Carlo simulation,  (Fig. 1d.i). In the local and global conservation 

tests, we evaluated for each element if the mutations were biased toward highly conserved positions 
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and thus potentially of high functional-impact. 2) Local conservation test. In the local conservation 

test, the p-value of the mean phyloP conservation score71 across the observed mutations was 

evaluated in an empirical score distribution derived from 100,000 random samples with the same 

number of mutations and the same distribution of phyloP scores as the element in question (Fig. 

1d.ii). 3) Global conservation test. In the global conservation test, we applied the same sampling 

procedure to evaluate if mutations hit positions of surprising high conservation compared to the 

observed distribution across all elements of the given type (Fig. 1d.iii). Fisher’s method was used to 

combine the three individual p-values of the second stage to an overall significance measure. Again, 

p-values were corrected using BH and a 25% FDR threshold was applied to generate the final 

ranked candidate element lists. 

 

Driver recall in known cancer genes and an independent whole-genomes data set  

Driver recall in known cancer genes were evaluated by the number of genes, associated with 

significant elements, that overlap genes in the COSMIC Gene Census database version 7672. 

Significance of observed enrichments were calculated using Fisher’s exact test for two-times-two 

contingency tables (Supplementary Table 3). 

 

Recall of individual candidate driver elements was evaluated in an independent mutation data set 

from 505 whole-genomes with 14,720,466 SNVs and 2,543,085 INDELs14 (Supplementary Fig. 

1). Using the list of 208 unique, non-overlapping and significant elements (48 protein-coding and 

160 non-coding), we defined a single elements and a set containing gene level elements for recall 

testing using ncDriver (Supplementary Fig. 1a). The single elements set (n=208) simply consisted 

of all significant elements, whereas the gene level elements set (n=251,333) contained all elements 

sharing the same associated gene IDs (by nearest protein-coding gene for regulatory elements) as 
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the individual significant elements. The single elements were analyzed as a single set, whereas the 

gene level elements were analyzed per element type, in both sets applying the ncDriver procedure to 

identify significantly recalled elements (Supplementary Fig. 1b). The significantly recalled 

elements were further analyzed for mutation correlation with patient survival as described in the 

Methods section ‘Two-stage procedure for identifying non-coding elements with conserved and 

cancer specific mutations’. 

 

The observed number of recalled elements in the single elements set was evaluated by significance 

for each element type using monte carlo simulations (Supplementary Fig. 1b). The same number 

of elements as in the candidate set (n=208) were randomly drawn from the input element set, while 

the maintaining the relative distribution between element types. Each random element set was then 

subjected to ncDriver, the same procedure, which was used to detect the significant elements in the 

original data set. The p-value of the number of recalls for the original data set was evaluated as the 

fraction of random sets that led to the same (m) or a higher number of recalls 

(p=(m+1)/(1000+1))73; Supplementary Table 4). The ncDriver driver screen procedure is 

described in the Methods section ‘Two-stage non-coding driver detection’. 

 

Correlation of mutations in non-coding elements with gene expression 

Exome mutations from 5,802 patient samples for 22 cancer types were downloaded from TCGA16. 

Somatic mutations with the PASS annotation were extracted and cleaned for genetic 

polymorphisms by subtracting variants from dbSNP version 138. A final set of 5,621,521 mutations 

was created, representing 2,726,008 INDELs and 2,895,513 SNVs. Mutations found in elements 

detected as significant by ncDriver were extracted and annotated with gene names (using gene name 

of nearest transcription start site for regulatory element) and sample ID for expression correlation 

analysis (Fig. 5a-f). 
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TCGA expression data for 7,382 cancers from 22 cancer types (ACC (n=79), BLCA (n=408), 

BRCA (n=1,097), CESC (n=305), COAD (n=286), DLBC (n=48), GBM (n=152), HNSC (n=520), 

KICH (n=66), KIRC (n=533), KIRP (n=290), LGG (n=516), LIHC (n=371), LUAD (n=515), 

LUSC (n=501), OV (n=262), PRAD (n=497), READ (n=94), SKCM (n=104), THCA (n=505), 

UCEC (n=176) and UCS (n=57)) was obtained using TCGA-Assembler74. Expression calls for all 

genes (n=20,525) were log2-transformed and z-score-normalized within each cancer type. 

Expressions on the z-score scale were combined for all cancer types and Wilcoxon rank-sum test 

scores were calculated following addition of a rank robust small random value to break ties. In the 

rank-sum test procedure, all samples for which no mutations were observed were considered non-

mutated. All samples were used in the expression correlation analysis, though only a subset 

(n=4,128) had paired exome DNAseq mutation calls. For all genes with mutations in a given 

element type, a combined p-value was calculated using Fisher’s method for combined p-values. 

 

Correlation of miR-122 target site and expression 

In each of 266 TCGA liver samples, a gene expression fold change value was calculated by 

dividing with the gene median expression of the normal liver samples. For each sample, genes were 

ranked by the fold change value. We used the R package Regmex75 to calculate rank enrichment of 

miR-122 target sites in the 3’UTR sequences of the genes. The motif enrichment is a signed score 

corresponding in magnitude to the logarithm of the p-value for observing the enrichment given the 

sequences and their ranking. Negative values corresponds to observing the target more often in 

genes expressed higher than the median level. The motif enrichment score was correlated with the 

expression of miR-122 in the liver samples. 
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Association of mutations in non-coding elements with patient survival 

To further evaluate the driver potential of the identified significant elements, we correlated the 

mutation status with survival data. We downloaded clinical data from the TCGA data portal76 

(2015-11-01) using the RTCGAToolbox R library77. For a given element, the difference in survival 

between mutated and non-mutated samples was tested per cancer type using Log-rank test on the 

Kaplan-Meier estimated survival curves78. We specifically tested a hypothesis that the presence of 

candidate mutations decreases the survival55. For this, we fitted cox proportional hazard models to 

robustly determine the effect direction (increase versus decrease in survival), and then halved the 

Log-rank test p-value, which is the goodness of fit test in its essence, if the effect was in expected 

direction. To avoid evaluating the hypothesis in underpowered cancer types, the tests were only 

performed when at least three mutations were present. Evidence was combined across cancer types 

using Fisher’s method.  

 

Data Availability 

UCSC track hubs for significant elements and script codes for the ncDriver procedure can be 

obtained using the following URL: http://moma.ki.au.dk/ncDriver/. 
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Figure Legends 

Figure 1 Overview of the two-stage procedure detecting for non-coding elements with cancer-

specific and conserved mutations and its application to a pan-cancer whole-genome data set. 

 

(a) Summary of the input data, showing the cancer type (Cancer), mutation type (Mut.), number of 

samples (N) and number of mutations per sample in the whole-genome data set7. SNVs are 

indicated by red color, INDELs by blue color and the median number of mutations is indicated with 

a black bar. (b-c) Genomic span and count of input elements for each element type. (d) Workflow 

of ncDriver, a two-stage procedure for non-coding driver detection. Elements passing the 

Mutational recurrence test of the first stage are passed on to the second stage tests Cancer 
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specificity test (i), Local conservation test (ii) and Global conservation test (iii). (e) Counts of 

elements that passed the Mutational recurrence test at a 25% FDR threshold for SNVs (red) and 

INDELs (blue). (f) Counts of significant elements that passed the combined significance using 

Fisher’s method and 25% FDR threshold. (g-h) Relative contribution of the Cancer specificity test 

(i; orange), Local conservation test (ii; red), Global conservation test (iii: yellow) to the combined 

significance of the significant elements of each element type for INDELs and SNVs. 

 

Figure 2 Top-ranked significant non-coding elements from pan-cancer driver screen. 

 

(a) Table with top-ten significant elements for each element type for both SNVs and INDELs 

ranked by combined significance. Gene: Gene name or name of gene with nearest transcription start 

site in case of regulatory elements (DHS, enhancers, and TFBS). Case reference: Reference number 

of specific cases. q-value: ncDriver combined significance using Fisher’s method and Benjamini-

Hochberg corrected for each element type. Gene in COSMIC: Gene name present in COSMIC 

database of known drivers6. TF in COSMIC: Transcription factor of TFBS element present in 

COSMIC. Previously published: Element is overlapping a region found in previously published 

non-coding driver screens2,3. Only most significant element retained when elements overlap 

between element types . Hypermutated gene: Gene name previously characterized as a 

hypermutated gene22. TCGA recall INDEL/SNV: Individual element recalled in TCGA independent 

whole-genome data set14. TCGA recall gene INDEL/SNV: Number of elements recalled at the gene 

level in TCGA independent whole-genome data set. Test Contribution: Relative contribution of 

Cancer specificity test (orange), Local conservation test (red) and Global conservation test (yellow) 

to the combined significance using Fisher’s method. (b) Heatmap of mutation count per cancer 

type. Cancer type abbreviations defined in Fig. 1. Pseudogenes and 4 kb promoters are listed in 

Supplementary Table 2. (c) Overview of the procedure for mutation significance analysis in TFBS 
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sets for individual transcription factors. (d) The top-ranked significant TFBS sets, denoted by their 

transcription factor, for SNVs and INDELs. 

 

Figure 3 Significant regulatory elements associated with PAX5. 

 

(a) Genomic context of PAX5 with protein-coding genes (blue), non-coding genes (brown), 

significant regulatory elements, PhyloP conservation and SNVs. (b) The element RAD21 TFBS 

peak (Supplementary Table 2) overlaps an enhancer with known mutational recurrence and effect 

on PAX5 expression12. Mutations (triangles) are annotated with nucleotide change (from/to), cancer 

type (abbreviation and color), and sample number (s1-k). The relative significance-contribution 

from each of the three mutational distribution tests shown as in Fig 2a. (The same applies to the 

other case illustrations.) (c) Regulatory elements in the first intron of PAX5. Both enhancer and 

CTCF peaks are individually significant with contributions from the conservation tests. 

 

Figure 4 Cases of significant regulatory elements. 

 

Top rows show the genomic context with nearby gene and rows below show detailed views of the 

regulatory elements, PhyloP conservation scores, and SNVs. SNV annotations and color-scheme as 

in Fig. 3. (a) Mutations in the significant upstream promoter element of PCF11. (b) Mutations in 

significant intronic elements of TOX3. The three elements achieve similar combined significance 

after multiple testing correction. (c) Mutations in the significant CTCF TFBS element upstream of 

MAPRE3. The CTCF sequence logo and nucleotide sequence of the region is shown. 

 

Figure 5 Test method and correlation analysis of mutations in significant non-coding elements with 

gene expression. 
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(a-f) Overview of expression correlation test, exemplified by GATA3 and the set of significant 

TFBS peak elements (TFPs). (a) Elements are associated to genes using the nearest TSS. (b) Raw 

expression levels (log2 RSEM) are obtained for 7,382 samples across 22 cancer types and mutated 

samples are identified. (c) Expression levels are z-score normalized within each cancer type and (d) 

combined. (e) The p-value of the mutated samples in the distribution of the combined z-score-

ranked set is found using a rank-sum test. (f)  P-values of significant elements and their associated 

genes are shown in a qq-plot with GATA3 highlighted. The red line indicates expected p-values 

under the null hypothesis of no expression correlation. The combined p-value of the correlation 

between mutations and expression levels across the set of candidate regions is found using Fisher’s 

method. Cancer type abbreviations: Lung adenocarcinoma (LUAD), breast cancer (BRCA), bladder 

cancer (BLCA), cervical squamous cell carcinoma (CESC). (g) Gene-expression correlation for all 

mutations (both SNVs and INDELs) in significant TFBS sets. Rank-sum test p-values of individual 

genes are shown as qq-plot. Combined significance across all genes is found using Fisher’s method 

and shown in upper left corner (similarly for panels h and i). (h) Expression correlation for CTCF 

TFBSs mutated once (black) or twice (green). The combination of p-values was done separately for 

the set of TFBSs mutated once and twice. (i) Expression correlation for RAD21 TFBSs mutated 

more than five times. (j) Examples of mutated TFBSs and their associated gene-expression 

distributions in individual cancer types (exemplified genes emphasized in (h) and (i)). Expression 

levels of mutated samples are shown (red circles). The expression correlation significance within 

each individual cancers type is given below the plot. Cancer type abbreviations: Liver 

hepatocarcinoma (LIHC), breast cancer (BRCA), Adrenocortical carcinoma (ACC). 
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Figure 6 Mutations in driver candidate miR-122 and their correlation with expression and survival. 

 

(a) The 4kb genomic region of the MIR122 gene detected as a significant element in the driver 

screen of the original data set with PhyloP conservation scores, INDELs and SNVs. Cancer types 

are color coded in the grey shaded box. (b) Close up of the miR-122 region with tracks for pre-

miRNA, mature miRNA, EvoFold secondary structure prediction, PhyloP conservation scores and 

exome mutations from TCGA. Mutations are named by their associated sample ID and colored red 

if used later in the correlation analysis of expression and survival shown in c and d. (c) Correlation 

between miR-122 expression and miR-122 target site motif enrichment in 266 TCGA liver cancer 

samples. Motif enrichment is based on expression of mRNAs and motif occurrences in their 

3’UTRs (see Methods). Samples mutated in the miR-122 region in (b) are indicated in red. (d) 

Survival correlation analysis of TCGA liver mutations in miR-122. The number of mutated samples 

and non-mutated samples at each time point is indicated below the plot. 
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