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Abstract

Motivation: Pairwise alignment of nucleotide sequences has previously been carried out using the seed-
and-extend strategy, where we enumerate seeds (shared patterns) between sequences and then extend
the seeds by Smith-Waterman-like semi-global dynamic programming to obtain full pairwise alignments.
With the advent of massively parallel short read sequencers, algorithms and data structures for efficiently
finding seeds have been extensively explored. However, recent advances in single-molecule sequencing
technologies have enabled us to obtain millions of reads, each of which is orders of magnitude longer
than those output by the short-read sequencers, demanding a faster algorithm for the extension step that
accounts for most of the computation time required for pairwise local alignment. Our goal is to design a
faster extension algorithm suitable for single-molecule sequencers with high sequencing error rates (e.g.,
10-15%) and with more frequent insertions and deletions than substitutions.
Results: We propose an adaptive banded dynamic programming algorithm for calculating pairwise
semi-global alignment of nucleotide sequences that allows a relatively high insertion or deletion rate while
keeping band width relatively low (e.g., 32 or 64 cells) regardless of sequence lengths. Our new algorithm
eliminated mutual dependences between elements in a vector, allowing an efficient Single-Instruction-
Multiple-Data parallelization. We experimentally demonstrate that our algorithm runs approximately 5×
faster than the extension alignment algorithm in NCBI BLAST+ while retaining similar sensitivity (recall).
We also show that our extension algorithm is more sensitive than the extension alignment routine in
DALIGNER, while the computation time is comparable.
Availability: The implementation of the algorithm and the benchmarking scripts are available at
https://github.com/ocxtal/adaptivebandbench.
Contact: mkasa@edu.k.u-tokyo.ac.jp

1 Introduction
In the past decade, technological improvement in the DNA sequencing
field has been remarkable. Single-molecule sequencers, often called third-
generation sequencers, achieved more than tenfold improvement in their
read lengths. The commercially available third-generation sequencers,
such as the PacBio Sequel and Oxford Nanopore MinION, can yield reads
of 20 kb or even longer (Gordon et al. (2016) and Jain et al. (2017)),
whereas the longest practical read lengths of the Sanger sequencers were
around 1 kb. This creates the need to process huge numbers of reads longer
than 20 kb, but algorithms for such purposes were not well developed
before third-generation sequencers became common.

Most genome analyses using massively parallel sequencers start with
aligning reads against themselves (for de novo assembly in whole genome

re-sequencing research; Chin et al. (2013), Koren et al. (2017)) or
reference sequences (for other reference-guided analyses, e.g. exome
sequencing and RNA-seq; Pabinger et al. (2014), Ozsolak and Milos
(2011)). Therefore, faster algorithms for pairwise alignment are crucial
in order to accelerate most types of genomic analysis. However, it has
recently been shown that the near-quadratic time bounds for computing
edit distance cannot be improved, and are expected to be a limiting factor
(unless the strong exponential time hypothesis is false; Backurs and Indyk
(2015)). Therefore, it is desirable to design fast heuristic algorithms
for pairwise alignment. Typical heuristic algorithms for pairwise local
alignment first find short exact matches called “seeds,” then extend them
using a semi-global variant of pairwise local alignment algorithms, such
as the Smith-Waterman-Gotoh algorithm (SWG; Smith and Waterman
(1981); Gotoh (1982)). This idea, the seed-and-extend strategy, was
employed in the classical Basic Local Alignment Search Tool (BLAST;

© The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

.CC-BY-NC-ND 4.0 International licenseis the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review)this version posted September 7, 2017. ; https://doi.org/10.1101/130633doi: bioRxiv preprint 

https://doi.org/10.1101/130633
http://creativecommons.org/licenses/by-nc-nd/4.0/


“dband” — 2017/9/8 — 8:18 — page 2 — #2i
i

i
i

i
i

i
i

2 Suzuki et al.

Altschul et al. (1990)), and more recently in long-read alignment programs
for third-generation sequencers, such as BWA-MEM (Li, 2013), BLASR
(Chaisson and Tesler, 2012), DALIGNER (Myers, 2014), and GraphMap
(Sović et al., 2016).

In the era of second-generation sequencers, researchers focused on
the development of fast algorithms for identifying seed matches because
the seed-matching stage was the most time-consuming step. Approximate
string-matching algorithms based on Baeza-Yates algorithm (Navarro and
Ricardo, 1998) were used in the early days (MAQ (Li et al., 2008) and
BFAST (Homer et al., 2009)), and later an exact substring-matching
algorithm based on Burrows-Wheeler transform (Burrows and Wheeler,
1994) and an auxiliary data structure proposed by Ferragina and Manzini
(2000) were adopted by many sequence alignment programs, such as BWA
(Li and Durbin, 2009) and Bowtie2 (Langmead and Salzberg, 2012).

However, as read length increases, the extension step accounts for
a greater proportion of computation time for pairwise alignment, and
therefore a faster extension algorithm is required. Commonly used
techniques for accelerating the extension alignment calculate only the
values of cells in a small region of the Dynamic Programming (DP) matrix
in the SWG algorithm; we first create a heuristic estimate of a region
through which the optimal path of the pairwise alignment may travel, and
compute only the values of the cells in that region. As the region gets
smaller, computation time for the extension step decreases, but we run a
higher risk of missing an optimal path (alignment). This technique was
first proposed by Chao et al. (1992), and later adopted by many local
alignment programs such as BWA-MEM (Li, 2013) or BLASR (Chaisson
and Tesler, 2012) as “banded DP.” Nonetheless, the required band width
for this approach is still too large when an outermost seed is far from the
end of a sequence; longer a region without seeds become, more the optimal
alignment path drifts off the diagonal.

To avoid this problem, BLASR (Chaisson and Tesler, 2012) and
minimap2 (Li, 2017) first chains seeds in order to estimate where the
optimal path travels through in the DP matrix, and then do static banded
DP to calculate detailed alignments. This approach should work well
if sufficiently long and correct seeds are identified uniformly across
sequences in the seeding step, but in reality there might not be the case: (1)
we need to find seeds even in duplicated or repetitive regions when there is
a large chunk of such sequences in target sequences, although such regions
are usually masked implicitly or explicitly by alignment programs. (2) we
need to use shorter and sensitive seeds under the presence of abundant indel
errors, which increases the computation time. An extension algorithm that
works well in such situations is demanded.

Another heuristic for the extension step was introduced in BLAST,
which we denote by the “BLAST X-drop DP algorithm.” The BLAST
X-drop DP algorithm continues to extend alignments until all cells in
the forefront have a score less than the current maximum minus X

by implicitly assuming that valid alignments do not include parts of
alignments with scores that have values under −X . The algorithm
successfully reduces the region in the DP matrix to be calculated when
X is sufficiently small, but there was no parallel implementation for the
algorithm.

Previous approaches for accelerating the SWG algorithm by a
constant factor also include the use of Single-Instruction-Multiple-Data
(SIMD) operations that increase the number of cells processed per unit
operation. Examples of such approaches include Wozniak’s (Wozniak,
1997), Rognes’s (Rognes and Seeberg, 2000), and Farrar’s (Farrar,
2007) methods. Farrar’s striped vectorization (parallelization) successfully
accelerated the calculation of a rectangular DP matrix of the SWG
algorithm, and has been adopted by many local alignment programs (e.g.,
MOSAIK2 (Lee et al., 2014), BWA (Li and Durbin, 2009) and Bowtie2
(Langmead and Salzberg, 2012)) and libraries (e.g., SSW library (Zhao
et al., 2013), Parasail (Daily, 2016)).
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Fig. 1. Comparison of Static and Adaptive Banded Dynamic Programming Algorithms.
(a) Illustration of the static banded DP algorithm: The band is determined in advance
of the matrix calculation. The cells at the forefront of the band are placed in the anti-
diagonal direction in this example, whereas common implementations, for example, the
extension DP routines in BWA-MEM and BLASR, adopt horizontal or vertical forefront cell
compositions. (b) Illustration of the adaptive banded DP algorithm: The band is determined
dynamically during extension, in contrast to the static banded DP algorithm.

Here, we propose a new adaptive banded DP algorithm wherein the
shape of the band is determined dynamically during extension and the
band width is fixed regardless of sequence lengths (Fig 1), and therefore
the computation time is linear to the sequence length, while the loss
in sensitivity is small. Adaptive banded DP uses SIMD instructions on
general-purpose processors in a novel way, with anti-diagonal forefront
vector placement, and supports an X-drop-like heuristic to identify the ends
of alignments. We demonstrate that adaptive banded DP is the fastest affine
gap penalty semi-global alignment algorithm for extension alignment for
long single-molecule sequencing reads.

2 Methods

2.1 Semi-global alignment of nucleotide sequences

First, let us define the nucleotide semi-global alignment problem. Let
a = a0a1...a|a|−1 and b = b0b1...b|b|−1 be strings over an alphabet
Σ = {A,C,G,T}. The problem formulation is to calculate a coordinate
(n,m) and a corresponding “alignment,” or an edit path from (0, 0) to
(n,m) that consists of {match, insertion, deletion}, that maximizes
the sum of substitution scores and gap penalties. The substitution scores
are defined over a pair of letters: s(p, q) where p, q ∈ Σ (called “score
matrix”), and the gap penalty function is expressed in an integer linear
form: g(k) = Go +k ·Ge, where Go ≥ 0, Ge > 0 and k is the length of
contiguous gaps (called the “affine gap penalty function”). The problem
appears as a subproblem in the extension stage of the seed-and-extend
algorithm.

This formulation of the semi-global alignment problem is usually
solved with a variant of the Smith-Waterman-Gotoh (Smith and Waterman,
1981; Gotoh, 1982) algorithm, where the initial values (the scores at the
top and left edges in the DP matrix) are modified to the gap penalties from
the origin. This modification fixes the starting cell of resulting alignments
to the origin of the matrix. The ends of alignments remain open (not fixed),
as in the original SWG algorithm; it initiates traceback from the cell with
the highest score. We use a general 4 × 4 score matrix throughout the
paper unless otherwise specified. However, the match-mismatch scoring
model (wherein a score matrix is characterized by a pair of integers, (M ,
X), where M is a match score and X is a penalty score) is a special case
of the general score matrix, and therefore most discussions hereafter also
hold true for the match-mismatch scoring model. The recurrence relations
of the DP matrices used in the SWG algorithm are shown in Equation 1,
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where S is a score matrix and E and F are used to calculate gap penalties
in the horizontal and vertical directions, respectively.

E[i, j] =


−Go − i ·Ge (j = 0)

− inf (i = 0)

max

{
S[i− 1, j]−Go −Ge

E[i− 1, j]−Ge
(i 6= 0, j 6= 0)

F [i, j] =


−Go − j ·Ge (i = 0)

− inf (j = 0)

max

{
S[i, j − 1]−Go −Ge

F [i, j − 1]−Ge
(i 6= 0, j 6= 0)

S[i, j] =



0 (i = 0, j = 0)

−Go − j ·Ge (i = 0, j 6= 0)

−Go − i ·Ge (i 6= 0, j = 0)

max


S[i− 1, j − 1] + s(ai−1, bj−1)

E[i, j]

F [i, j]

(i 6= 0, j 6= 0)

(1)

We use as− inf a sufficiently small value within the range of the integer
type used in an actual implementation. Note that, while this formulation of
the SWG algorithm might differ from those that appear in previous papers,
it is mathematically equivalent to the corrected version of the original SWG
algorithm (Flouri et al., 2015).

2.2 Adaptive banded DP

In 1992, Chao et.al. proposed a method called “banded DP” as an
acceleration technique for the global alignment DP algorithms. This
method reduced the time and memory necessary for computation by
narrowing the region of the DP matrix to be calculated. The idea was later
simplified to fill a pre-determined, diagonally placed rectangular band
with a constant width, which we hereafter call “static banded DP.” The
algorithm was applied to many semi-global alignment implementations,
such as SeqAn (Döring et al., 2008), Parasail library (Daily, 2016), the
refinement alignment in the SSW library (Zhao et al., 2013), and the
extension alignment in BWA-MEM (Li, 2013) and BLASR (Chaisson
and Tesler, 2012). A vector-oriented parallelization of static banded DP
was proposed by Kimura et al. (2012) for calculating the edit-distance.
They adopted anti-diagonally placed vectors with a constant width (e.g.,
64 cells) to calculate the cells in a vector simultaneously.

A new adaptive banded DP algorithm that we propose here adopts a
similar band-narrowing approach. However, in contrast to static banded
DP, where the narrowed region is determined statically (i.e., before filling
cells in the DP matrix), our algorithm determines the narrowed region
dynamically as we calculate cells in the DP matrix. A forefront vector is
a set of cells placed along with the anti-diagonal direction (Fig 1b). The
values of the cells in a forefront vector are calculated in parallel using
SIMD operations. The width of the forefront vector is a constant, which
is ideally the width of SIMD registers but may also be multiples of it.
Other width is also possible, albeit less efficient. The forefront vector
is initially at the origin of the DP matrix. It advances either rightward
or downward iteratively until it reaches the end of alignment. Figure 3
provides a more detailed overview of our algorithm. The banded region
with a constant width (the number of anti-diagonally aligned cells; denoted
asW ) is created by iteratively pushing the forefront DP vectors towards the
diagonal direction (i.e., rightward or downward). The three forefront DP
vectors, SV , EV , andFV , hold the cells in an anti-diagonal line (Fig 3(a)).
At each step, the three forefront DP vectors move either rightward or
downward. On every step, the advancing direction of the forefront vectors

/* initialize sequence vectors */
av <- { 0 }
bv <- { 0 }
for (i <- 0 .. W / 2) {
    av <- shift_left av
    av[0] <- (a[i]>>2) ^ (a[i]>>1)
}
for (j <- 0 .. W / 2) {
    bv <- shift_right bv
    bv[W / 2] <- (b[j]>>2) ^ (b[j]>>1)
}

/* initialize score vectors */
ppv[0 .. W] <- -inf
pv[0 .. W] <- -inf, pv[W / 2] = 0
ev[0 .. W] <- -inf
fv[0 .. W] <- -inf

/* initialize X-drop variable */
center_max <- pv[W / 2]

while (until the end of the band) {
    /* X-drop termination test */
    if (pv[W / 2] < center_max - X) {
        break
    }

    /* dynamic direction determination */
    if (pv[W - 1] > pv[0]) {
        dir <- DOWN
    } else {
        dir <- LEFT
    }

    /* update vectors */
    if (dir is DOWN) {
        j <- j + 1
        bv <- shift_right bv
        bv[W - 1] <- 0x03 & ((b[j]>>2) ^ (b[j]>>1))

        uv <- pv
        lv <- shift_right pv
        fv <- shift_right fv

        if (previous direction is down) {
            ppv <- shift_right ppv
        }
    } else {
        i <- i + 1
        av <- shift_left av
        av[0] <- 0x03 & ((a[i]>>2) ^ (a[i]>>1))

        uv <- shift_left pv
        lv <- pv
        ev <- shift_left ev

        if (previous direction is right) {
            ppv <- shift_left ppv
        }
    }
    ev <- max(ev - Ge, lv - Gi - Ge)
    fv <- max(fv - Ge, uv - Gi - Ge)
    scv <- shuffle(matrix, av | (bv<<2))
    cv <- max(ppv + scv, ev, fv)

    /* save vectors for use in traceback */
    store(cv) store(ev) store(fv)
    ppv <- pv
    pv <- cv

    /* update the X-drop variable */
    center_max = max(center_max, pv[W/2])
}

Fig. 2. Pseudocode of the Adaptive Banded DP Algorithm. ppv, pv, ev, and fv represent
the second-previous SV vector, the previous SV vector, the EV vector, and the FV

vector, respectively. The two subsequent vectors are denoted as av and bv. The X-drop
threshold is denoted as X. The three binary operators on vectors - +, −, and max - are
element-wise addition, subtraction, and maximum, respectively. The shift_left and
shift_right operators shift elements in a vector leftward and rightward, respectively,
by one column. The shuffle operation takes an element vector as the first argument and
an index vector as the second argument. The� operator in the shuffle represents the bitwise
leftward shift of each element in the vector.
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Fig. 3. Overview of the adaptive banded DP algorithm, where W = 8. (a) Vector placement: Three DP vectors (SV , EV , and FV ) are placed in the anti-diagonal direction of the DP
matrix, holding the corresponding parts of the original S, E, and F matrices. (b, c) Determining the advancing direction of the band: The advancing direction of the band is determined
on every vector update by comparing the two edge cells in the SV vector. (d) Vector update procedure: The vector update procedure consists of three update operations, each of which
corresponds to the update formula of the original semi-global alignment algorithm (Eq 1). (e) Subsequence vectors: Two subsequence vectors are placed on the top and left sides of the
matrix. They move according to the advancing direction of the band. (f, i, j) Score profile vector calculation: The score profile vector, an array of s(·, ·) values, is calculated using a vector
shuffle instruction (i), which is an indexed element retrieval on a vector. The index vector and the input element vector are respectively composed of pairs of 2-bit encoded bases, and
the flattened 4 × 4 substitution matrix (j). (g, h) Initialization of vectors: The three, SV , EV , and FV vectors and the second-previous SV vector are initialized with − inf except for
S[0, 0] = 0. This setting results in proper initial values aligning on the top and leftmost lines.

is determined by comparing the two edge cells (SV [0] and SV [W −1]) to
ensure that the difference between the two edge cells in the next forefront
SV vector is smaller. In other words, the next vectors are placed rightward
when SV [0] ≥ SV [W − 1] and downward when SV [0] < SV [W − 1]

(Fig 3(b, c)). When the forefront vectors move, the EV , FV , or SV

are updated according to the formula (Fig 3(d)). First, the new EV and
FV vectors are derived from the previous EV , FV , and SV vectors; the
new SV vector is then calculated from the current EV and FV vectors,
the second-previous SV vector, and a score profile vector (an array of
substitution scores). Since there are no dependences between the cells
in the forefront vectors in each operation, the update procedure can be
implemented with Single-Instruction-Multiple-Data (SIMD) instructions,
keeping the vectors on SIMD registers.

In our algorithm, the score profile vector is also generated in a SIMD-
vectorized manner using a vector shuffle operation. The vector shuffle
operation can retrieve multiple elements (e.g., 16 elements) from a given
array of a fixed size (e.g., 16) in a single operation; it does a simple
table-lookup from the 16-element array multiple times (e.g., 16 times) in
parallel (Fig 3(i)). We concatenate the pair of 2-bit encoded bases into
one value ranging from 0 to 15, and use the array of these values as the
index vector and a flattened 4 × 4 score matrix as the input vector of
the shuffle operation (Fig 3(f, j)). To generate the index vector efficiently,
we retain two subsequences of length W on vector registers. Each base
is represented in a 2-bit binary code, where {A,C,G,T} are mapped
to {00, 01, 10, 11}, respectively. Every time the forefront vector moves,
either of the two sequence vectors is shifted left or right by one according to
the advancing direction (Fig 3(e)). The conversion from an ASCII code to
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the 2-bit encoded binary is performed when a base comes into the sequence
vector; the conversion is performed based on a simple and well-known
formula 0x03 · ((c� 2)⊕ (c� 1)) where c is a 8-bit ASCII-encoded
character and ·, ⊕, and� are respectively bitwise AND, bitwise XOR,
and logical shift operations. To our knowledge, the technique has not been
reported in the literature, nor could we find the origin of the technique.
Note that the conversion works correctly regardless of the case of an input
character, since the output 2-bit pattern depends on only a subset of input
bits whose uppercase character and corresponding lowercase character are
identical.

The head of the band, the top-left triangular corner of the matrix,
is handled in a special way. We added two phantom triangular regions to
reshape the corner in order to maintain a constant width. The initial vectors
are placed at the top-left edge of the augmented band, whose center cell1

is aligned to the cell at the origin (0, 0). The initial values in the vectors
are set to − inf , or a sufficiently small value within the range of the cell
variable, except that the cell at (0, 0) is set to 0 in order to derive proper
initial values in the first column (i = 0) and the first row (j = 0) in the
DP matrix. Figure 3(f) shows an example of the initial and derived values
with the score parameters (M,X,Go, Ge) = (2, 3, 5, 1).

Finally, we describe a heuristic to terminate the band extension, which
is similar to an algorithm introduced in the BLAST X-drop DP algorithm.
To avoid unfruitful extension through an unmatched region beyond the
true end of the matches, the BLAST (Altschul et al., 1990) and subsequent
programs such as BWA-MEM (Li, 2013) and LAST (Kiełbasa et al., 2011)
adopted a heuristic algorithm called X-drop termination in their semi-
global alignment DP routines. This algorithm terminates the extension
when all of the forefront cell scores are smaller than the current maximum
score by at least X . Since there is no way to calculate the maximum values
in a vector efficiently without time-consuming folding with dlogW e
steps, we adopted a slightly modified version of the X-drop heuristic to
avoid inefficiency. Our algorithm does not find the maximum value in
the forefront vector as the original X-drop heuristic does. Instead, the
extension is terminated when the score of the center cell at the forefront
of the band becomes smaller than the current maximum score in the
previously calculated center cell by at least X .

The whole adaptive banded DP algorithm is shown in pseudocode
in Figure 2, where ppv, pv, ev, and fv correspond to the second-
previous SV vector, and previous SV , EV , and FV vectors in Figure 3,
respectively. The two subsequent vectors are denoted as av and bv.

2.3 Relation to existing algorithms

Our approach, which uses the anti-diagonal vector for parallelization, is
similar to the parallel SWG algorithm with SIMD instructions by Wozniak
(1997). Wozniak’s algorithm, which targeted mainly protein sequences,
had a bottleneck in its serial (unparallelized) lookups of a score matrix;
it was later superseded by more efficient parallel algorithms by Rognes
and Seeberg (2000) and Farrar (2007). In Rognes’s algorithm and Farrar’s
algorithm, the DP vectors are vertical (or horizontal) in the DP matrix
so that the score profile vector can be calculated by choosing (loading)
one of the precalculated four (or 20) score profile vectors that correspond
to the four nucleotides (20 amino acids). The precalculated score profile
vectors were effective in eliminating the serial score-matrix lookups in
Wozniak’s algorithm, but entailed precalculation and additional memory
consumption for the vectors.

The score profile vector calculation with an SIMD shuffle operation
was first proposed by Wang et al. (2014) in their XSW program, which

1 Strictly speaking, we have two center cells when W is odd, but here we
define the center as either of them.

adopted Farrar’s SIMD-vectorized SWG algorithm. They use a pair of 16-
element vector shuffle operations to calculate a 16-element score vector
from a single row of 26 × 26 score matrix in an on-the-fly manner. The
parallel score vector calculation in our algorithm can be considered a
further extension of Wang’s approach; it accepts arbitrary base pairs as
the input and eliminates the indexed memory access required in Wang’s
algorithm when fetching a row from the score matrix. We noticed that
the 4 × 4 score matrix for nucleotide alignment fits perfectly in a single
16-element vector, while the score matrix for protein alignment does not.
This enabled us to combine the anti-diagonal-parallel approach and the
vectorized score profile calculation in an efficient way.

We also found that a hardware-based semi-global alignment algorithm
proposed in a patent by McMillen and Ruehle (2015) also adopted a
constant-width band that moves dynamically according to the values in
calculated cells. However, further details about how to move the forefront
vector are not described even in the mode of operation of invention. We
speculate from the patent document that their method moves the forefront
vector so that the cell with the maximum value comes closer to the center;
thus, our approach likely differs in this respect.

3 Results
We implemented our adaptive banded DP algorithm for x86_64 processors
with Streaming SIMD Extension 4.1 (SSE4.1) instruction sets. We used
the 16-bit-wide variables; eight values were retained in a single xmm
SIMD register and processed simultaneously during the extension. The
band width W was set to multiples of 8 and determined at the compile
time by passing the constant value as a macro definition to the compiler.
All benchmarking programs were implemented in the C programming
language and compiled with gcc-5.3.1 and executed on a cluster node with
dual Intel Xeon X5650 (Westmere-EP) 2.67 GHz processors.

3.1 Recall benchmarks on simulated reads

Since our algorithm calculates only the cells in the narrowed regions, it may
miss the optimal alignment that could be identified by the original semi-
global DP algorithm that calculates the full DP matrix. To establish that the
sensitivity of our algorithm is similar to that of the original semi-global
DP algorithm, we used a simulation to compare the optimal score with
the corresponding alignments identified by our algorithm and the original
semi-global DP algorithm under several conditions. In the simulation,
we generated simulated reads from a reference genome. We then aligned
the simulated reads against the reference genome using both algorithms,
mimicking a typical scenario in resequencing studies. We assumed that two
parameters, the band widthW and the score parameters, had strong effects
on the accuracy and sensitivity of alignment. Throughout the experiments,
we used the simple match-mismatch score model, which is represented
as a tuple of four non-negative integers (M,X,Go, Ge), where M and
X are a match reward and a mismatch penalty, and Go and Ge are the
coefficients of the affine-gap penalty function. Recall that the match-
mismatch score model is a special case of the 4 × 4 score matrix model
as described in the Methods section. The X-drop threshold was set to 40

in the benchmarks on simulated reads. Sets of 1, 000 sequence pairs were
generated from the Escherichia coli reference genome (accession No.:
NC000913) with PBSIM, a PacBio long-read simulator (Ono et al., 2013).
Each pair consisted of a simulated PacBio read and the corresponding
region in the reference genome, to each of which a random sequence of
200 bp was appended in order to mimic a semi-global alignment scenario.
In experiments that followed, we characterized a set of sequences by mean
read lengthL and mean identity I . The maximum, minimum, and standard
deviation of these two parameters were set to 1.05L, 0.95L, and 0.05L,
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Fig. 4. Results of the recall benchmarks (a) Statistical profiles of one sample of the simulated read sets: The length and the identity were set to 1, 000 bp and 0.85, with their (SD, max,
min) set to (50, 1050, 950) and (0.01, 0.86, 0.84), respectively. (b) Recall rate (in percent) with different band widths and sequence identities: The mean sequence length L and score
parameters were set to 1, 000 and (1, 2, 2, 1), respectively. 100.0 is displayed as 100. (c) Recall rate (in percent) with different gap penalties: The match award and mismatch penalty were
fixed at (M,X) = (2, 2). The mean sequence length and identity were set to 1, 000 and 0.75, respectively. 100.0 is displayed as 100. (d) Recall rate (in percent) with different sequence
lengths and identities with two band widths: The result of W = 16 is shown on the left and W = 24 on the right. The scoring parameters were set to (1, 2, 2, 1). 100.0 is displayed as
100. (e) Recall rate (in percent) with different gap insertion sizes: The mean sequence length and identity were set to 1, 000 and 0.75, respectively. A single contiguous gap with a length
within [0, 100] was inserted into the reference-side sequence at a position within [100, 600] from its head. The scoring parameters were set to (M,X,Go, Ge) = (1, 2, 2, 1).

and I +0.01, I−0.01, and 0.01, respectively. The statistics of one of the
sets of simulated reads are provided as an example in Table (a) in Figure 4.

3.1.1 Effect of the band width on the recall rate
We first evaluated the effect of the band width W on the recall rate of
the algorithm. Sequence pairs with various identities within the range of
[0.6, 0.95] were aligned using the adaptive banded DP algorithm with band
widths ranging from 8 to 64 with a step of 8. The mean sequence length and
the scoring parameters were set to L = 1, 000 and (M,X,Go, Ge) =

(1, 2, 2, 1), respectively. The result is shown in Figure 4(b), demonstrating
that our algorithm can perfectly identify the optimal scores and paths when
the band width is greater than or equal to 24 and when the sequence identity
is 0.6 or greater. The results are still nearly perfect when W = 16, while
the recall rate drops significantly with W = 8 and sequence identities
lower than 0.75.

3.1.2 Effect of gap penalties on recall rate
The algorithm examines only the scores of the edge cells in the forefront
vector when deciding the advancing direction. Our algorithm could
potentially fail to capture the optimal path in the narrowed band, especially
when the scores in the S vector are almost flat, which is likely to occur
when the gap penalty is small or zero. We evaluated the effects of small
gap penalties on the recall rate. Both the gap open penalty Go and the gap
extension penalty Ge varied independently from 0 to 5, with the match
award and the mismatch penalty fixed to (M,X) = (2, 2). The results
(Fig 4(c)) showed that setting the gap extension penalty to zero severely
degraded the recall rate. A small but non-zero gap insertion penalty did not
affect sensitivity when the gap extension penalty was greater than or equal

to 2. This indicated that the algorithm also works well with the linear-gap-
penalty function, where the gap penalty function is expressed in the form of
g(k) = k ·G, as well as with more general affine-gap-penalty functions.
We also note that parameter combinations with non-perfect recalls are
impractical, and will therefore not be used in real analyses. (1) Ge = 0

implies that we can insert nearly arbitrarily large gaps without incurring a
significant penalty, and (2) (Go, Ge) = (0, 1), (1, 1), (2, 1) all have
a positive expected score for the alignment of two random sequences
(four bases occurring equally and independently; Vingron and Waterman
(1994)).

3.1.3 Aligning longer sequences
Next, we evaluated the effect of the lengths of query sequences on the recall
rate. If we use a statically banded DP, in which the band is determined
before the values in cells are filled in, the band width required in order to
capture the optimal path in the narrowed band grows by O(

√
n) (where

n is the expected number of insertion/deletion (indel) errors in a read,
assuming that insertions and deletions occur at the same probability and
independently). We hypothesized that there is a certain fixed-size band
width that can efficiently capture the optimal path when the adaptive
banded DP algorithm is used in empirical settings. Sets of simulated
sequences of various lengths within the range of [100, 10000] were fed
into our algorithm with three different band widths (W = 16, W = 24,
and W = 32). The results were then compared with those of the
full semi-global alignment in order to determine whether they yielded
comparable results. The mean sequence identity varied within the range of
[0.6, 0.95], and the score parameters were set to (1, 2, 2, 1). The results
(Fig 4(d)) show that the 16-cell-wide and 24-cell-wide bands may not be
sufficient for perfectly aligning long (e.g., > 500) sequences with lower
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identity (∼ 0.7). The 32-cell-wide band output the same result as the full
semi-global alignment algorithm.

3.1.4 Indel tolerance
Owing to the nature of banded DP algorithms, our algorithm is expected to
fail to find the optimal score when a large indel appears in the true pairwise
alignment. We evaluated the impact of indels in query sequences on the
recall rate. We simulated an insertion by inserting a random sequence
of a specific length into the reference-side sequences. Sequence pairs of
a simulated PacBio read and its corresponding region in the reference
genome were generated with the parameters L = 1, 000 and I = 0.75.
Next, a random sequence of a specific length (denoted by l) within the
range of [0, 100] was inserted into the reference-side sequence at a position
within [100, 600] bp from its 5’-end. Considering that our algorithm runs
basically symmetrically between the two sequences to be aligned, we tested
only insertions; however, our results can likely be generalized to deletions
as well. The score parameters (M,X,Go, Ge) = (1, 2, 2, 1) were used.
The results (Fig 4(d)) suggested that our algorithm can find the optimal
score with a probability of nearly 100% when the length of the inserted
gap, l, is less than W − 4.

3.2 Performance on real datasets

We aimed to compare our algorithm with all existing extension alignment
algorithms that are used in open-source long read aligners. Since our
algorithm is an extension alignment algorithm, not a standalone aligner, we
cannot directly compare our algorithm with existing standalone aligners.
Instead, we extracted an extension algorithm part of existing aligners,
and then compared them with our algorithm. First, we excluded some
of long read aligners such as Kart (Lin and Hsu, 2017) and GraphMap
(Sović et al., 2016), because they do not extend long from an outermost
seed in a chain so they do not contain an extension alignment algorithm.
We also excluded BLASR (Chaisson and Tesler, 2012) and BWA-MEM
(Li, 2013) (and minimap2 (Li, 2017)) because they extend a (outermost)
seed (in a chain) always until the ends of query sequences and therefore
they are not suited to long extension in local alignment. Note that it is
an open question and beyond the scope of this paper whether the “pure
seed-and-extend strategy” (BLAST+, BWA-MEM, etc.) is better than the
“seed-and-chain-then-fill” strategy (BLASR, minimap2, etc.) in general.
At least, we needed a long extension alignment algorithm for aligning
reads from highly repetitive genomes, for which the latter is not likely to
work well.

NCBI BLAST+ (Camacho et al., 2009) and LAST (Kiełbasa et al.,
2011) use largely the same algorithm for long extension, and therefore
we extracted the extension algorithm from NCBI BLAST+ only because
we did not observe an essential difference between their implementations.
We call it “BLAST X-drop DP” hereafter. Because the BLAST X-drop
DP algorithm solves exactly the same problem as our algorithm does, it
is used as a baseline. We excluded NanoBLASTer (Amin et al., 2016)
for the following reasons: (1) it is designed for too noisy reads from
old MinION sequencers; accepting 45% of sequencing errors seemed to
put too much burden on the computation time. (2) its block-wise banded
alignment algorithm is greedy so it does not try to compute an optimal
path as the SWG algorithm does. (3) standalone NanoBLASTer fails with
segmentation fault too often in our experiment, which made it difficult for
us to work with its implementation.

Another algorithm from which we extracted an implementation
is one of popular long read aligners, DALIGNER (Myers (2014)).
DALIGNER is a long read aligner designed for finding alignment
between long and noisy reads. Its core algorithm, the Myers’ wavefront
algorithm (Myers, 1986), cannot be directly compared with our algorithm
because the wavefront algorithm does not accept affine gap penalty; the

wavefront algorithm can be considered as a special case of SWG-based
extension algorithms. Nonetheless, we included the extension algorithm
in DALIGNER (wavefront, hereafter) as a guide for aligner developers. In
all, we compared the recall rate and the computation time of the adaptive
banded DP with the BLAST X-drop DP algorithm and the wavefront
algorithm.

Preparing input data: We selected as datasets whole-genome sequencing
reads of a human genome (NA12878) from two single-molecule
sequencers, PacBio RS II and Oxford Nanopore MinION (Zook et al.,
2014; Jain et al., 2017). Since there is no way to have the ground
truth for real datasets, we used the alignment results by BWA-MEM as
ground truth because there are publicly available precomputed alignments,
without which it may take months for preparation especially for the
Nanopore reads. In each dataset, each alignment record by BWA-MEM
was converted to a read-reference sequence pair that consists of the read
sequence and the corresponding genomic region. We used a “virtual
seed” setting, where a virtual seed is placed right next to the end of
aligned sequences. To eliminate any bias of seeding algorithms or seeding
positions, the read-reference sequence pairs were aligned by the four
algorithms from randomly chosen end (3’- or 5’-end) toward the other
end. To make the situation more realistic and include the effect of the X-
drop termination in the evaluation, we added long random sequences to the
tail (head when the alignment direction is opposite) of sequences so that
the extension alignment always ends in the middle of a given sequence pair,
not at the very end of the sequence pair. Since random sequences may have
a small positive alignment score, this might change the optimal alignment a
little bit but the impact is negligible. The MinION reads were obtained from
the Nanopore WGS Consortium website. We only used reads aligned with
Chr 20, which were the only reads basecalled by a newer algorithm called
“Scrappie,” because those reads better reflect the latest error profile of
MinION. According to the BAM header, the MinION reads were aligned
with the GRCh38 reference genome (Schneider et al., 2017) by BWA-
MEM version 0.7.15-r1142-dirty with ONT 2D setting (“-xont2d”). The
PacBio reads were obtained from the website of Genome in a Bottle
Consortium. To make the alignment condition as close to the MinION reads
as possible, the PacBio reads from Chr 20 were realigned by BWA-MEM
with the PacBio setting (“-xpacbio”). Only primary alignments were used;
secondary alignments were discarded. We randomly sampled 100, 000

sequence pairs from each dataset because it is a sufficient amount for
evaluation.

Algorithm implementations and parameters: A simplified implementation
was used for the BLAST X-drop DP algorithm since the implementation
in NCBI BLAST+ contained unnecessary code for our experiment. We
removed unnecessary code (e.g., code for protein alignment) and unused
variables in the input and output data structures. The obtained source
code is minimal so that we expect that it runs faster than or at least
at the same speed to the original implementation. We also developed a
SIMD-vectorized implementation of the BLAST X-drop DP based on
our scalar implementation to observe the net contribution of the adaptive
banded algorithm apart from the contribution of SIMD. The vectorized
BLAST algorithm calculates the values of the cells in the DP matrix
always in a vectorized manner, covering all the cells that are supposed
to be calculated by the original BLAST+; in other words, it calculates
broader area in the DP matrix than the scalar version. The way vectors
are tiled was the same to one in Myers (1999). The implementation of
the wavefront algorithm was extracted from the DALIGNER package
(commit 84133cb). All the programs were compiled by Intel C Compiler
17.0.1 with an optimization flag “-O3.” The score parameters were set
to (M,X,Go, Ge) = (1, 1, 1, 1) for the adaptive banded DP and the
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Table 1. The recall rates and the computation time for the four algorithms.

Recall (%) Run time (s) Recall (%) Run time (s)

Adaptive W = 64 93.85 40.8 94.58 35.5

W = 96 95.78 63.6 97.34 53.0

W = 128 96.77 79.2 98.34 68.5

BLAST X = 70 96.29 327.2 97.61 282.6

BLAST (SIMD) X = 70 91.46 91.3 97.51 79.3

Wavefront 59.13 20.7 72.03 18.4

Nanopore PacBio

(a) Nanopore dataset (b) PacBio dataset
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Fig. 5. The recall rates for the three algorithms. The lines show the trend of the recall rates
with respect to the calculation time by the adaptive banded DP with W = 32 to 256 (step
size: 8); points are shown only for W = 64, 96, 128.

BLAST X-drop DP, following the ONT 2D and the PacBio setting of BWA-
MEM used in the ground-truth alignments. The X-drop threshold was set to
X = 70, which is equivalent to the default value (X = 100 bit) of NCBI
BLAST+, for the adaptive banded and the X-drop DP algorithms. On X-
drop threshold conversion, a parameter set (M,X,Gi, Ge) = (1, 1, 2, 1)

was used instead of the parameters used in the BWA-MEM mapping
because it was not supported in the current version of NCBI BLAST+.
The average correlation for the wavefront algorithm was set to 0.7, which
is the default value of DALIGNER and also equals to the lower bound of
the supported range (0.7 to 1) of the algorithm.

3.2.1 Recall benchmark
We measured the recall rates by the four algorithms. The recall rate is
defined as the number of sequence pairs for which an alignment of the
same score or higher was found. The band width was varied between 32

and 256 for the adaptive banded DP algorithm. The adaptive banded DP
hit a better balance between speed and sensitivity over the other algorithms
on the both datasets; a better recall rate was achieved with the equivalent
computation time and faster calculation was achieved with the equivalent
recall rate (Fig 5). The same results are shown in Table 1 for three band
widths for the adaptive banded DP, W = 64, 96, and 128 (dotted on lines
in Fig 5(a) and (b)). The wavefront algorithm was the fastest among all,
while the recall rates were low compared to the others.

3.2.2 Speed benchmark
We evaluated the matrix calculation performance of several algorithms
with respect to different query lengths using the same implementations.
The band width was fixed to 96 for the adaptive banded DP so that the
recall rate becomes similar to one by the X-drop DP with X = 70. In
addition to the four implementations, the Farrar’s SIMD-vectorized SWG
algorithm (Farrar, 2007) was added to the comparison targets as a guide for
aligner developers. Although it is a non-banded, full-sized DP algorithm,
it is adopted in commonly used short-read alignment tools (BWA (Li and
Durbin, 2009) and Bowtie 2 (Langmead and Salzberg, 2012)) as a fast SWG
algorithm. The SSE4.1 implementation of the semi-global variant of the

(a) Nanopore dataset (b) PacBio dataset
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Fig. 6. The computation time for matrix fill per alignment and the recall rates at 10 kbp
for five algorithms for the PacBio (a) and Nanopore (b) samples: the BLAST X-drop DP
(BLAST) and the SIMD-vectorized BLAST X-drop DP (BLAST-SIMD) withX = 70, the
and 96-cell-wide SIMD-vectorized adaptive banded DP (Adaptive), the Myers’ wavefront
algorithm in DALIGNER (Wavefront), and the Farrar’s SIMD-vectorized in Parasail library
(Farrar). The times at 1 bp can be largely considered as the time needed for finding the end
of an alignment.

Farrar’s algorithm was obtained from Parasail library (commit 3d8b4ee;
Daily (2016)) because it is highly optimized for various instruction sets.

The query sequence length L was varied from 1 bp to 10 kbp, by
trimming the tail of the 10 kbp or longer sequence pairs that were randomly
sampled from each dataset. The results, shown in Figure 6(a) and (b),
were quite similar between the two samples. The 96-cell-wide adaptive
banded DP was consistently faster than the scalar and the SIMD-vectorized
BLAST X-drop DP algorithms by 5.1 and 1.5 times, respectively. The
Farrar’s algorithm was the fastest for short sequences (roughly L < 200),
while it was the slowest for long sequences (L > 2, 000) due to its O(L2)

complexity. The wavefront algorithm was the fastest for long sequences
(roughly L > 2, 000).

4 Discussions
We proposed an adaptive banded DP algorithm for nucleotide alignment
that calculates only the cells in a dynamically determined band of constant
width in the DP matrix. Even though the new algorithm uses bands of
constant width regardless of sequence lengths, it retains a high sensitivity
in long extension, suggesting that the new algorithm is immediately useful
for resequencing analysis and de novo assembly. The new algorithm runs
fast because it is friendly to SIMD vectorization because the band width can
be always a multiple of the SIMD width and because anti-diagonally placed
vectors eliminated dependences between elements in a single vector. Other
algorithms, including our vectorized BLAST X-drop off algorithm and
the Rognes’s algorithm (Rognes and Seeberg, 2000), have dependences
between elements in a vector, for which serial calculation of cell values is
needed. The difference will increase, as newer processor with increased
vector width (e.g., one with 512-bit-wide Advanced Vector eXtension
instructions) are released. The use of an SIMD shuffle instruction for
generating the score profile vector allowed us to execute the operation
in a vectorized form, although it cannot be directly extended for protein
alignment because the score matrix for amino acids does not fit in a single
register.

It should also be noted that the 16-bit-wide implementation of
our algorithm, with a minor modification, is sufficient for supporting
(virtually) infinitely long query sequences. That is, the actual scores in
each vector can be represented by a pair of a potentially large base values
of 64-bits and an offset value of 16-bits from the base value, such that
the elements (i.e., offset values) in vectors fit within the 16-bit range. We
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can thereby ensure that the range of scores in each vector can be bounded
within a moderately small range, assuming that the absolute values of score
parameters are small integers.

Finally, we would like to point out that it is possible to port
our implementation to other architectures because we designed it with
portability in mind. Power and AArch64 architectures have their own
SIMD instruction sets, AltiVec and NEON, both of which have the basic
arithmetic and 16-element shuffle operations required for our algorithm.
As for the current GPU architectures (e.g. NVIDIA), it is expected that
our constant-wide adaptive banded DP algorithm is more suited than other
existing semi-global alignment algorithms, where each SIMD lane can be
statically assigned to synchronous threads.

5 Availability of the code
The implementation of the algorithm and the benchmarking scripts are
available at https://github.com/ocxtal/adaptivebandbench.
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