
Paratope Prediction using Convolutional and Recurrent Neural
Networks

Edgar Liberis∗, Petar Veličković∗, Pietro Sormanni†, Michele Vendruscolo†, Pietro Liò∗

Abstract— Antibodies play an essential role in the immune
system of vertebrates and are vital tools in research and
diagnostics. While hypervariable regions of antibodies, which
are responsible for binding, can be readily identified from
their amino acid sequence, it remains challenging to accurately
pinpoint which amino acids will be in contact with the antigen
(the paratope). In this work, we present a sequence-based prob-
abilistic machine learning algorithm for paratope prediction,
named Parapred. Parapred uses a deep-learning architecture
to leverage features from both local residue neighbourhoods and
across the entire sequence. The method outperforms the current
state-of-the-art methodology, and only requires a stretch of
amino acid sequence corresponding to a hypervariable region
as an input, without any information about the antigen. We
further show that our predictions can be used to improve
both speed and accuracy of a rigid docking algorithm. The
Parapred method is freely available at https://github.
com/eliberis/parapred for download.

I. INTRODUCTION

Antibodies are a special class of proteins produced by the
immune system of vertebrates to neutralize pathogens, such
as bacteria or viruses. They act by binding tightly to a unique
molecule of the foreign agent, called the antigen. Antibody
binding can mark it for future destruction by the immune
system or, in some instances, neutralize it directly (e.g. by
blocking a part of a virus essential for cell invasion). Typical
antibodies are tetrameric—made of two immunoglobulin (Ig)
heavy chains and two Ig light chains—and have a Y-shaped
structure, where each of the two identical tips contains a
binding site (paratope). The base of the Y mediates the ability
of an antibody to communicate with other components of the
immune system.

The paratope is typically contained within the hyper-
variable regions of the antibody which are also referred
to as complementarity determining regions (CDRs). In the
structure of an antibody, CDRs are located within binding
loops, three on each heavy chain (H1, H2, H3) and three
on each light chain (L1, L2, L3). The variability of the
CDR sequences allows antibodies to form complexes with
virtually any antigen. This binding malleability of antibod-
ies is increasingly harnessed by the biotechnological and
biopharmaceutical industry; indeed, monoclonal antibodies
are currently the fastest growing class of therapeutics on the
market (Ecker et al. [1], Reichert [2]).

Novel antibodies that bind a target of interest can be
obtained using well-established methods based on animal

∗Computer Laboratory, University of Cambridge, UK
†Department of Chemistry, University of Cambridge, UK
Contact e-mails: {el398, pv273, ps589, mv245,

pl219}@cam.ac.uk

immunisation or on in vitro technologies for screening
large laboratory-constructed libraries (Leavy [3]). However,
for applications in research, diagnostics, and therapeutics,
some degree of engineering is required to optimise certain
properties, such as binding affinity, stability, solubility, or
expression yield (Chiu et al. [4]). Rational engineering deci-
sions become easier if detailed knowledge about an antibody
under scrutiny is obtained (Chiu et al. [4], Sormanni et
al. [5]). However, especially at the early stages of an antibody
discovery campaign, only the sequence and an estimate of
the binding affinity are usually available. Therefore, compu-
tational methods that can accurately predict molecular traits
using just the amino acid sequence have a great potential for
accelerating antibody discovery by assisting lead selection or
facilitating property engineering.

For instance, hypervariable regions contain 40–50 amino
acid residues, whereas typically less than 20 actually partici-
pate in binding (Esmaielbeiki et al. [6]), and some may even
fall outside of the traditional definition of the CDRs (Kunik
et al. [7]). The ability to accurately map the paratope would
enable to pinpoint residues that are involved in binding, leav-
ing others as candidate mutation sites that can be exploited to
optimise other molecular traits, such as solubility or stability,
without compromising the binding activity. In addition, as we
show in this work, accurate paratope prediction can improve
accuracy and speed of docking simulations, making structural
models more reliable and easier to obtain.

In this work, we introduce the Parapred method for
sequence-based prediction of paratope residues. Parapred im-
proves on earlier methods for paratope prediction (Krawczyk
et al. [9], Kunik et al. [7], Olimpieri et al. [8], Peng et
al. [10], Tsuchiya & Mizuguchi [11]) by using deep learning
methods and larger antibody datasets. Our method only
requires the amino acid sequence of a CDR and four adjacent
residues as its input, which, in contrast to structural data, can
be readily obtained experimentally. For simplicity, we only
consider antigens that are themselves proteins, which are the
vast majority of known antibody targets.

“Deep learning” specifically refers to the process of
building machine learning models consisting of multiple
layers of non-linear operations, where each successive layer
automatically learns more abstract representations (features)
of the data using the features extracted by the previous layer
(Goodfellow et al. [12, p. 1]). A key advantage of deep
learning over traditional machine learning methods is that it
can perform automated feature extraction directly from raw
input data, thus eliminating the need for a domain expert
to manually engineer features (Goodfellow et al. [12, p. 4]).

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/185488doi: bioRxiv preprint 

https://github.com/eliberis/parapred
https://github.com/eliberis/parapred
https://doi.org/10.1101/185488


Automatically learned features are often found to be superior
to manually engineered ones, contributing to the widespread
success of deep learning in a range of fields. In particular,
Parapred builds upon convolutional and recurrent neural
networks, which achieved state-of-the-art results in object
recognition (Krizhevsky et al. [13]) and machine translation
(Wu et al. [14]) tasks, among others. Deep learning has
already been successfully applied to address problems in
protein science, including the prediction of structure (Li et
al. [15]), function (Tavanaei et al. [16]) or binding sites
(Alipanahi et al. [17]). To the best of our knowledge, this
work is the first application of modern deep learning to
antibody-antigen interactions.

II. METHOD
A. Data acquisition and preprocessing

To train and test our models, we used a subset of the
Structural Antibody Database (SAbDab) (Dunbar et al. [18]),
which contains antibody and antigen crystal structures. En-
tries in SAbDab were filtered (using the SAbDab web
interface on 27 June 2017) to obtain a non-redundant set of
antibody-antigen complexes with the following properties:
(1) antibodies have both VH and VL domains present, (2)
structure resolution is better than 3Å, (3) no two antibody
sequences have > 95% sequence identity, (4) no two antigen
sequences > 90% identical, and (5) each antibody has at
least 5 residues in contact with the antigen. The final dataset
contains 239 bound complexes (Supplementary Table C).

To construct the input, we identify the CDRs within the
sequence of each antibody using the Chothia numbering
scheme (Al-Lazikani et al. [19]). We augment the CDR
sequences with two extra residues at both ends, as these
residues are also known to sometimes engage in binding
(Krawczyk et al. [9], Kunik et al. [7]). These extended CDR
sequences are the input of the Parapred method and are
processed individually.

Amino acid sequences have to be encoded as tensors prior
to being processed by the model (Figure 1):
• Each amino acid sequence is encoded as a ‘row’ in a

3D matrix. As CDR sequences are usually of differ-
ent length, they are padded with zero vectors to the
length of the longest sequence. This is necessary for
fast batch tensor processing provided by deep learning
frameworks.

• Each element in a matrix encodes an amino acid residue
and is itself a vector consisting of two concatenated
parts:

– One-hot encoding of the type of the residue (20
possible amino acid types + 1 extra, representing
an unknown type). The type is encoded using a 21-
dimensional vector, where all elements are set to 0
and one element, corresponding to the actual type
of the amino acid, is set to 1.

– Seven additional features, summarised by Meiler
et al. [20], which represent physical, chemical and
structural properties of each type of amino acid
residue (Supplementary Table A).

Padded sequence data

S
e
q
u
e
n
c
e
s

R A S Q Y F S S 0 0

G A S R A 0 0 0 0 0

Q Q Y L G S P T T F

Q I S P A G G Y 0 0

0

1

0

...

0

2.94

0.29

...

0.38

o
n
e
-
h
o
t

e
n
c
.

e
x
t
r
a

f
e
a
t
.

Fig. 1. An example of encoded amino acid sequences. An amino acid
residue is represented by a feature vector which consists of one-hot encoding
and some extra features. To cope with different sequence lengths, each
sequence is padded to the length of the longest one.

The final dataset contains 1434 sequences for the algo-
rithm to learn from (239 antibody/antigen complexes × 6
CDRs each).

B. Building a deep learning model
The paratope prediction problem can be formalised as

a binary classification problem between two classes of
residues: those that do not participate in binding (Class 0)
and those that do (Class 1). Following previous conventions
(Krawczyk et al. [9]), we define binding residues as those
with at least one atom found within 4.5Å of any of the
antigen atoms. Thus, for each residue in a sequence, the
algorithm will output the probability p of it being in class 1
versus being in class 0 (the likelihood of binding).

Our model uses six prominent architectural developments
in deep learning:

1) Multilayer perceptrons (MLP): Neural networks can be
thought of as a set of interconnected units, called neurons or
perceptrons, each of which performs a simple computation.

Neurons are typically arranged in layers, where each
neuron in a layer is connected to the output of every neuron
in the previous layer. A layer with this kind of connection
is called fully-connected. The neural network itself is con-
structed as a series of such layers—the data is transformed
in turn by every layer as it flows through the network. This
architecture is known as a deep feed-forward neural network
or a multilayer perceptron (MLP).

Neural network architectures are extensively used for
machine learning tasks that can be reformulated as function
approximation problems. We would like a network to learn
to approximate some target function f : X → Y using a
set of known input / output pairs for it (supervised learning
setup). For example, for paratope prediction, x ∈ X could
be a vector encoding a residue and y ∈ Y = {0, 1} could
indicate whether the residue participates in binding.

The signals between neurons are real numbers and the
neuron computes its output as follows:
• A neuron computes a weighted sum of its inputs (x) and

adds a constant term to it. The coefficients by which
every input is scaled are called weights (W) and the
constant term is called the bias (b). The weights and bias
constitute a set of adjustable parameters of a neuron.

• Some non-linear activation function σ is applied to
the sum to produce the output. The activation function

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/185488doi: bioRxiv preprint 

https://doi.org/10.1101/185488


introduces a non-linearity necessary to model complex
functions.

We can compactly write the transformation performed by
all neurons in a layer as a single weight matrix multiplication
and bias vector addition:

y = σ(WTx + b) (1)

2) Recurrent Neural Networks (RNN): We can design a
neural network which processes every element in a sequence
in turn. The key idea behind RNNs is to iteratively apply
a simple processing block, called RNN cell, to obtain a
summarised representation of a sequence up to any point.
Figure 2 shows a computation graph of an RNN—the cell
iteratively consumes inputs (x) by computing a function of
x and the previous state of the cell s.

RNN
cell

x

y

RNN
cell

xt-1

yt-1

RNN
cell

xt

yt

RNN
cell

xt+1

yt+1

Unrolled

s0
s

...

RNN→

xt-1

yt-1

RNN→ 

xt

yt

RNN→ 

xt+1

yt+1

s0

RNN←RNN←RNN←

...

s0...

Fig. 2. The computation graph of RNNs used in this work. Top: the
computation graph before (left) and after (right) unrolling. The same RNN
cell is used to process every element of the input sequence. Bottom: unrolled
graph of a bidirectional RNN. The inputs are passed through two different
RNN cells (one for each direction) and the network’s output at time t is an
aggregation (here—concatenation) of the two cells’ outputs.

We use the Long Short-Term Memory (LSTM) (Hochreiter
& Schmidhuber [21]) cell which is able to learn long-range
dependencies in sequences. The computation performed by
an LSTM cell consists of the following steps:
• An LSTM cell holds the state s in two vectors: C

(”memory”) and h (previous output). Input x and state
vector h are concatenated before being processed in
four steps:

ft = σ(WT
f [ht−1,xt] + bf ) (2)

C ′t = tanh(WT
C [ht−1,xt] + bC) (3)

it = σ(WT
i [ht−1,xt] + bi) (4)

ot = σ(WT
o [ht−1,xt] + bo) (5)

where tanh is the element-wise hyperbolic tangent and
σ is the logistic sigmoid function (σ(x) = 1

1+exp(−x) ).
Matrices W and vectors b are parameters learned by
the network.

• The new cell state Ct and ht, as well as the output yt
is given by:

Ct = Ct−1 ∗ ft + C ′t ∗ it (6)

yt = ht = tanh(Ct) ∗ ot (7)

where ∗ is the element-wise vector multiplication.
Capturing dependencies between an output and later inputs

is necessary for amino acid sequences because they don’t
have a canonical direction (reading a sequence left to right is
equivalent to reading it right to left). To achieve this, we use
a bidirectional RNN (Schuster et al. [22]) which introduces
a second pass going in the opposite direction (see Figure 2).

RNNs enable the model to capture features which span
the entire input sequence.

3) Convolutional Neural Networks (CNN): Amino acid
residues are known to interact with other residues and
prefer some kinds of amino acids more than others as their
neighbours (Xia et al. [23]). A paratope prediction model can
exploit such preferences by processing every residue together
with its neighbourhood to learn useful local patterns first and
only then use an RNN to learn aggregate features of the entire
sequence.

A C 0
A C 0A C 0A C 0

Kernel applied at every position

f1 f2 f3 f4 ... fT-1 fT

R H D A ... A C 00

k3 k2 k1

+

A C 0
28 channels

...

...

Summation over all
input dimensions

A C 0A C 0f1 f2 f3

Multiple output
dimensions produced
by different kernels

Fig. 3. An example of 1D convolution with kernel size 3. Outputs are
computed by applying a kernel at each position in the input sequence.

Spatially local features can be extracted using convolu-
tional layers, typically found in convolutional neural net-
works (CNNs).

A convolutional layer is similar to a single-layer MLP
discussed previously, only it uses a convolution operation
instead of matrix multiplication. A convolution operation for
sequences is defined as:

ft =
K′∑

i=−K′

kK′+1+i · it−i (8)

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/185488doi: bioRxiv preprint 

https://doi.org/10.1101/185488


where it and ft are elements of the input and output
sequences at position t, respectively, and k ∈ RK×C is
a kernel of size K = 2K ′ + 1 (w.l.o.g assume that the
kernel has an odd number of elements; C refers to the
dimensionality of the input). This computation is visualised
in Figure 3.

The kernel is applied this way at every position of the
input sequence to produce the output sequence. For positions
where kernel spans beyond the input sequence, we assume
the input is padded with zero vectors: it = 0 for t ≤ 0 or
t > T . The input and kernel elements themselves are vectors
with multiple channels—name comes from an analogy with
images: each pixel in an image has 3 dimensions: red, green
and blue channels—e.g. an encoded residue would have 28
dimensions / channels (20 + 1 amino acid type one-hot
encoding + extra 7 features, as described earlier).

Convolution performs a weighted summation over all
dimensions of input elements to produce a single number
(the sum of vector dot products). The fact that the same
small kernel is applied to every position in the input sequence
allows it to detect input patterns regardless of their position.
Learnable parameters of a convolutional layer are its kernels;
multiple output channels can be produced by using several
different kernels (filters).

4) Residual Connections: Residual connections (He et
al. [24]) act as a shortcut connection between inputs and
outputs of some part of a network by adding inputs to
outputs. Such shortcut can be added around the convolutional
feature extractor—if the local feature extractor is supposed
to learn some function h(x), with the shortcut connection it
only has to learn the residual h(x)−x which is often easier
to optimise for. The shortcut also enables the rest of the
model to learn both from original inputs and extracted local
features, and acts as a complexity controller by effectively
allowing the network to adjust its depth.

5) Exponential linear units as activation functions: Acti-
vation functions introduce a non-linearity which is necessary
to model complex functions. Experimenting with the activa-
tion function’s behaviour can improve the training process.
We use the Exponential Linear Unit (ELU) (Clevert et
al. [25]) activation function which makes the network more
robust to noise and faster to train. The function is given by:

ELU(x) =

{
x if x ≥ 0,
α(ex − 1) if x < 0.

(9)

We use α = 1.
6) Model regularisation: Deep learning models often

have to be regularised to prevent overfitting—a phenomenon
where a network memorises training examples (and noise)
instead of modelling the underlying relationship. We use two
regularisation methods:
• Dropout (Srivastava et al. [26]) is a computationally ef-

ficient regularisation method. The main idea of Dropout
is to discard some intermediate results of the network
at every training iteration with a certain probability p.
This discourages the network from learning to rely on
a particular subset of inputs.

Bidirectional 

LSTM(256) 
rec. dropout = 0.2 

CDR sequence

FC
(1

),
 L

2(
0.

01
)

Binding probabilities

+ + +

Dropout(0.3)

Dropout(0.15) 

Conv(28, 3), ELU, 
L2(0.01)

Fig. 4. The architecture of our paratope prediction model.

• L2 regularisation (aka weight decay) adds an extra
term—an L2 norm of a layer’s weights—to network’s
optimisation objective, which penalises weights if they
grow too large during training.

C. Experimental setup

The software was developed in Python using TensorFlow
deep learning framework (Abadi et al. [28]) and Keras API
(Chollet et al. [27]). Overall, the network’s computation
consists of the following steps (Figure 4):

1) Encoded sequences (CDRs with 2 extra residues) are
processed by a convolutional layer (regularised with an
L2 term scaled by 0.01) with 28 kernels, each spanning
a neighbourhood of 3 residues. ELU activation is
applied to the convolution results.

2) Residual connection is implemented by adding the
original input sequences to the convolution output.

3) Resulting features are processed by a bidirectional
LSTM with state size 256. The network applies
Dropout with p = 0.15 to RNNs input and Dropout
with p = 0.2 to RNNs recurrent connections.

4) Dropout with p = 0.3 is applied to the RNNs out-
put and individual feature vectors are processed by

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/185488doi: bioRxiv preprint 

https://doi.org/10.1101/185488


a single-output fully-connected network with logistic
sigmoid activation function (to bring the output to
the range of probabilities). Network’s weights are
regularised using an L2 term scaled by 0.01.

The model’s architecture could be easily augmented with
layers that are able to process the 3D structure of an antibody
in conjunction with its amino acid sequence. However,
such sophisticated architectures would require a much larger
training dataset (at least 10x more 3D structures) which is
not available at this time. Training this kind of model would
also require a way of efficiently exploiting cross-modality
during feature extraction (Veličković et al. [34]).

Neural network training is a function optimisation prob-
lem, where we aim to find a local or global optimum of
the optimisation target (aka loss) with respect to network’s
parameters. This should be a differentiable measure of how
well the neural network approximates the target function. We
use the binary cross-entropy loss, a popular choice for binary
classification problems:

L(Θ) =
1

m

∑
xi,yi∈TrS

wsi (−yi log(f̂Θ(xi))

− (1− yi) log(1− f̂Θ(xi))) (10)

where TrS is the training set of size m, f̂Θ is the function
computed by the network with parameters Θ and wsi is the
sample weight (described later).

To find a loss minima, we use the Adam (Kingma &
Ba [29]) optimiser with base learning rate setting of 0.01
for the first 10 epochs and 0.001 otherwise. The network
is trained with 32 samples at once (aka batch size) for 16
epochs (iterations over the entire training set).

The dataset has an uneven number of binding (positive)
and non-binding (negative) residues—3.4x more negative
samples. The cross-entropy loss function (Equation 10)
equally penalises misclassified positive and negative samples,
which allows the model to keep the overall loss low by
preferring to predict that residues will not bind. This achieves
good classification accuracy but hinders the model’s ability
to learn to identify positive samples. This can be improved
by penalising misclassified positive samples more—the per-
sample loss is scaled by the sample weight wsi which we set
to a 2.5x higher value for positive samples.

III. RESULTS
A. Model results

We used the 10-fold cross-validation technique to assess
the model performance on multiple dataset splits. This tech-
nique randomly partitions the data into ten subsets and trains
the model ten times. Each time, a different subset is selected
for testing, and the method is trained on the sequences
belonging to the other nine. Because the results may vary
between cross-validation runs due to the initial random
partition of the data, the random initialisation of the network
parameters, and Dropout, the 10-fold cross-validation is
repeated ten times, which also enable to calculate confidence
interval of the mean values of each performance indicator.

To measure the performance of the binary classifier we
use a number of standard metrics:
• Recall: (Also known as sensitivity or true positive rate.)

The proportion of positive samples classified correctly
(= TP

TP+FN ).
• Precision: (Also known as positive predictive value.)

The proportion of actual positive samples among all
samples predicted to be positive (= TP

TP+FP ).
• F-score: Precision and recall measure two independent

properties of a classifier—F-score combines both of
them by measuring their harmonic mean.

• Matthews correlation coefficient (MCC): MCC is
a popular measure of binary classification quality for
unbalanced datasets.

• Precision-recall (PR) curve: Aforementioned metrics
require a particular classification threshold. However,
the user can vary the threshold to adjust the confidence
of results they get. For example, setting the threshold to
a high value would label only very few residues as pos-
itive (those that the model is very certain about), so the
classification would have low recall but high precision.
Conversely, setting the threshold to a low value would
yield high recall but low precision results. To visualise
this relationship, we plot precision at different levels of
recall obtained by varying the threshold.

• Receiver operating characteristic (ROC) curve: ROC
curves show the relationship between the true positive
rate (recall) and the false positive rate (the proportion
of false positives among all negative samples, FP

FP+TN ),
similarly obtained by varying the threshold. Area under
the ROC curve (ROC AUC) is often used to compare
classifiers.

Table 1 shows the F-score, MCC and ROC AUC perfor-
mance metrics of Parapred. Narrow confidence intervals indi-
cate consistent performance across cross-validation rounds.
Furthermore, the results show that our model outperforms
the current state of the art predictor, proABC (Olimpieri et
al. [8]), without needing the entire antibody sequence or extra
features such as the germline family or antigen volume.

Model F-score MCC ROC AUC
Parapred 0.705± 0.003 0.572± 0.005 0.883± 0.002
proABC — 0.522 0.851

Table 1. Performance indicators of the Parapred method with 95%
confidence intervals (top row) and of the proABC method (bottom row).
The F-score and MCC metrics use a classification threshold of 0.4913739,
obtained by maximising Youden’s index (Youden [30]).

Figure 5 shows the precision/recall curve of the Parapred
method (in blue) which indicates a substantial improvement
over Antibody i-Patch (orange points). This improvement
is particularly relevant given that, in contrast to Parapred,
Antibody i-Patch requires a structure or a homology model
of the antibody and the antigen it binds to.

We investigated to what extent the performance improve-
ment originates from using a larger dataset (239 complexes
vs. 148 of Antibody i-Patch) and to what from the deep-

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/185488doi: bioRxiv preprint 

https://doi.org/10.1101/185488


0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Pr

ec
is

io
n

Parapred
Parapred using ABiP data
Antibody i-Patch

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

ROC curves per loop type

H1
H2
H3
L1
L2
L3

Fig. 5. Parapred performance curves. Top: precision-recall curves of
Parapred, obtained from 10-fold cross-validation runs, when trained on our
dataset (blue) and Antibody i-Patch’s dataset (red), together with the PR
values reported by the authors of Antibody i-Patch (orange). Bottom: ROC
curves of Parapred, separated by loop type. Shaded areas / bars show 95%
confidence bounds (2 standard errors).

learning-based architecture of Parapred. To assess this, we
measured Parapred’s performance when trained on the An-
tibody i-Patch’s dataset (red curve in Figure 5). We find
that our method achieves significant precision improvements
for recall values > 0.5, which is typically the most useful
range. We conclude that the deep-learning-based architecture
of Parapred is able to capture a richer set of features leading
to better classification, even though it uses less explicit
information about the antibody (Parapred does not require
structural data or any information about the antigen it binds
to). The leap in performance from the red to the blue curve
is in agreement with the observation that deep models thrive
in environments with a larger number of data points to learn
from (Goodfellow et al. [12, p. 430]).

Our encoding of an amino acid sequence does not include
information about the CDR loop type it originated from, so

the model would not be able to capture loop type-specific
features. Figure 5 shows the ROC curves of our model’s
predictions, separated by CDR types. The graph shows that
the model is able to predict binding residues equally well
for all six CDR types despite lacking loop type information.
We found that including the loop type made no appreciable
difference to the performance.

B. Docking improvements
We show the usefulness of Parapred by integrating its pre-

dictions with the PatchDock rigid protein docking algorithm
(Duhovny et al. [31]).

PatchDock works with 2 protein molecules in the PDB
format and searches for suitable orientations for one of the
molecules—conventionally, the antigen—“onto” the other,
such that the two form an antibody-antigen complex. The
algorithm produces several hundred candidate orientations of
the antigen, called decoys, which are ranked in the output by
an internal scoring function. The algorithm also provides fa-
cility to guide the search process by pre-specifying potential
binding site residues.

Decoys can be stratified into 4 quality classes—high (***),
medium (**), low (*) or unclassed—based on how close the
computed orientation of the antigen is to the true (native)
orientation recorded in the dataset. The classification uses
the CAPRI criteria (see Appendix B).

The usefulness of Parapred was measured by running
PatchDock with three potential binding sites of the antibody
molecule: (1) the CDRs, (2) the actual paratope and (3)
binding residues predicted by Parapred (residues with > 0.67
binding probability to match the number of residues in the
actual paratope). We picked 30 antibody-antigen complexes
at random (highlighted in Appendix C) to be run through the
docking algorithm and used the remaining 209 to train the
model.

We recorded the best class decoy in the top 10 and top
200 decoys, as ranked by PatchDock, for each of the 30
structures. As a hint, we also supplied the antigen’s binding
site as residues within 5Å of the real epitope. PatchDock was
run with default parameters.

Binding site
Top 10 Top 200

*** ** * *** ** *
CDRs 0 2 0 1 14 0

Paratope 0 7 1 1 21 3
Parapred 0 8 0 1 19 2

Table 2. The number of high, medium and low quality decoys obtained by
running PatchDock with different constraints on a test set of 30 structures.

Docking results are shown in Table 2—supplying just
the CDR gives the worst performance, however, supplying
our model’s predictions achieves performance on par with
supplying the actual paratope. We conclude that for docking
simulations Parapred’s predictions are almost as informative
as the actual paratope.

We also measured the time taken by PatchDock to pro-
duce decoys on a machine with an “Intel(R) Core(TM) i7-
6600U CPU @ 2.60GHz” processor (Table 3). We found

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/185488doi: bioRxiv preprint 

https://doi.org/10.1101/185488


Binding site Running time
CDRs 3h 50min 19.72s

Paratope 2h 02min 22.50s
Parapred 2h 11min 15.40s

(1) vs (3) speedup: 1.75x
Table 3. PatchDock running time using different binding site constraints.

that specifying Parapred’s predictions as a potential binding
site produces a 1.7x speedup in PatchDock’s computations
compared to specifying just the CDRs.

C. Interpreting local neighbourhood features

The use of RNN allows our model to learn complex long-
range dependencies between residues. This expressiveness
also comes at a cost of interpretability—it is difficult to
identify precisely which factors the model considers to be
the most important. Nevertheless, we can inspect the model’s
output and attempt to relate it to known findings to further
confirm them or identify the model’s biases.

C S T P A G N D E Q H R K M I L V F Y W U
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

R
el

at
iv

e 
bi

nd
in

g 
fr

eq
ue

nc
y

Residue type binding profile

Contact
Model's predictions

Fig. 6. Frequency of residues of a particular type participating in binding,
as computed from the dataset (blue) and as predicted by our model (red)

Figure 6 shows how frequently each residue type partic-
ipates in binding, based on contact information from the
dataset and our model’s predictions. Residue was considered
to be binding if it had > 0.5 mean binding probability
according to crossvalidation results. Overall, the model ap-
proximates the true binding profile well, showing particular
preference for serine (S), tyrosine (Y), glycine (G) and thre-
onine (T). Interestingly, the model largely ignores cysteine
(C), most likely due to its tendency to form disulphide bonds
and not therefore participate in binding.

As discussed in the previous section, the first layer of our
network consists 28 convolutional filters with kernel width 3,
acting as local feature extractors. We can inspect what these
filters learned by investigating which sequences of length
3 result in their highest response (activation). We measure
activations after the the residual connection adds one-hot
encoded residue type to the convolutional layer’s output; this

allows to include the activation boost of each residue type
for the first 20 filters due to one-hot encoding.

Table 4 shows neighbourhoods with highest activations
for the first 20 filters (corresponding to each residue type).
Findings include the following interesting points:
• Tryptophan (W) is present in many residue neighbour-

hoods, even though it does not often participate in
binding itself.

• Kernel for lysine (K) does not actually consider lysine
to be the most informative residue. It learns arginine’s
(R) neighbourhoods.

This investigation into model interpretability could be
further extended by adding attention layers to the model
(Bahdanau et al. [35]), which would allow inspecting po-
sitions in the input sequence that model learned to relate the
most.

IV. CONCLUSIONS

A. Summary

To our best knowledge, this work is the first application
of modern deep learning (CNN- and RNN-based neural
networks) to the paratope prediction problem. Our model
is able to generalise using only antibody sequence stretches
corresponding to the CDRs (with 2 extra residues on the
either side) and outperforms the current state-of-the-art by
a statistically significant margin. We also showed that the
model’s predictions provide speed and quality gains for the
PatchDock rigid docking algorithm—decoy quality and time-
to-dock were comparable to ones obtained when the docking
algorithm has knowledge of the CDRs.

One of the main benefits of Parapred is that it does not
rely on any higher-level antibody features: no full sequence,
homology model, crystal structure or antigen information is
required. However, if the user has such data already available,
they might be able to usefully integrate it with the model,
for example, by adding extra per-residue features.

REFERENCES

[1] Ecker, D. M., Jones, S. D., & Levine, H. L. (2015). The therapeutic
monoclonal antibody market. MAbs, 7(1), pp. 9–14. Taylor & Francis.

[2] Reichert, J. M. (2017). Antibodies to watch in 2017. MAbs 9(2), pp.
167–181. Taylor & Francis.

[3] Leavy, O. (2010). Therapeutic antibodies: past, present and future.
Nature Reviews Immunology, 10(5), p. 297.

[4] Chiu, M. L., & Gilliland, G. L. (2016). Engineering antibody thera-
peutics. Current opinion in structural biology, 38, pp. 163–173.

[5] Sormanni, P., Amery, L., Ekizoglou, S., Vendruscolo, M., Popovic,
B. (2017). Rapid and accurate in silico solubility screening of a
monoclonal antibody library. Scientific Reports, 7, a.n. 8200.

[6] Esmaielbeiki, R., Krawczyk, K., Knapp, B., Nebel, J. C., & Deane,
C. M. (2016). Progress and challenges in predicting protein interfaces.
Briefings in bioinformatics, 17(1), pp. 117–131.

[7] Kunik, V., Peters, B., & Ofran, Y. (2012). Structural consensus among
antibodies defines the antigen binding site. PLoS Comput. Biol., 8(2),
e1002388.

[8] Olimpieri, P. P., Chailyan, A., Tramontano, A., & Marcatili, P. (2013).
Prediction of site-specific interactions in antibody-antigen complexes:
the proABC method and server. Bioinformatics, btt369.

[9] Krawczyk, K., Baker, T., Shi, J., & Deane, C. M. (2013). Antibody
i-Patch prediction of the antibody binding site improves rigid local
antibody–antigen docking. Protein Engineering Design and Selection,
26(10), pp. 621–629.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/185488doi: bioRxiv preprint 

https://doi.org/10.1101/185488


0/C 1/S 2/T 3/P 4/A 5/G 6/N 7/D 8/E 9/Q 10/H 11/R 12/K 13/M 14/I 15/L 16/V 17/F 18/Y 19/W
UCR TSI WTW RPI UAG WGI INU UDW UER UQR RHI WRU WRR UMR VIW ULR WVU GFG UYW WWE
UCK TSV WTE RPV UAK WGU ING VDW UEK GQR KHI YRU WRK UMK TIW ULW WVG GFA UYC WWU
UCC ASI WTY KPI UAR WGV IND IDW UEW UQK RHV FRU YRR GMR KIW ULY YVU KFG UYF WWD
UCG TSC WTR KPV UAA RGI VNU DDW UWR DQR KHV WRG FRR GMK PIW ULK RVU AFG UYU WWW
UCA PSI WTF RPT UAS RGU INA LDW UEY EQR RHT WRD YRK UMH RIW ULF WVA GFU UYG WWY
UCP ASV WTQ KPT UAC WGT INE MDW DER AQR RHP RRU FRK UMP AIW ULQ WVS GFC DYW WWF
UCH TSP WTD RPP UAN RGV INN CDW UEH SQR RHL WRE WRH UMV IIW ULE FVU GFS UYL WWQ
UCS TSA WTK KPP UAQ KGI INS PDW EER UQW KHT WRS WRW AMR HIW ULM WVD KFA DYC WWM
UCN VSI WTM RPU UAU WGP INM TDW UEF NQR RHW WWU ERR DMR GIW ULH YVG RFG UYM WWN
UCL ISI WTH KPU DAG WGD INC FDW GER GQK KHP WRA MRR UMN SIW ULL RVG GFP EYW WWL

Table 4. Top 10 sequences that activate the first 20 convolutional filters the most, sorted in descending order of the absolute value of activation. The
presence of U indicates that the filter does not have a particular neighbour preference.

[10] Peng, H. P., Lee, K. H., Jian, J. W., & Yang, A. S. (2014). Origins of
specificity and affinity in antibody–protein interactions. Proceedings
of the National Academy of Sciences, 111(26)E, pp. 2656–2665.

[11] Tsuchiya, Y., & Mizuguchi, K. (2016). The diversity of H3 loops
determines the antigen-binding tendencies of antibody CDR loops.
Protein Science, 25(4), pp. 815–825.

[12] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning.
MIT Press.

[13] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet
classification with deep convolutional neural networks. Advances in
neural information processing systems, pp. 1097–1105.

[14] Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey,
W., . . . & Klingner, J. (2016). Google’s Neural Machine Translation
System: Bridging the Gap between Human and Machine Translation.
arXiv preprint, arXiv:1609.08144.

[15] Li, R., Si, D., Zeng, T., Ji, S., & He, J. (2016). Deep convolutional
neural networks for detecting secondary structures in protein density
maps from cryo-electron microscopy. 2016 IEEE International Con-
ference on Bioinformatics and Biomedicine (BIBM), pp. 41–46.

[16] Tavanaei, A., Maida, A. S., Kaniymattam, A., & Loganantharaj,
R. (2016). Towards recognition of protein function based on its
structure using deep convolutional networks. 2016 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), pp. 145–149.

[17] Alipanahi, B., Delong, A., Weirauch, M. T., & Frey, B. J. (2015).
Predicting the sequence specificities of DNA-and RNA-binding pro-
teins by deep learning (DeepBind). Nature biotechnology, 33(8), pp.
831–838.

[18] Dunbar, J., Krawczyk, K., Leem, J., Baker, T., Fuchs, A., Georges, G.,
. . . & Deane, C. M. (2014). SAbDab: the structural antibody database.
Nucleic acids research, 42(D1), D1140-D1146.

[19] Al-Lazikani, B., Lesk, A. M., & Chothia, C. (1997). Standard confor-
mations for the canonical structures of immunoglobulins. Journal of
molecular biology, 273(4), pp. 927–948.

[20] Meiler, J., Müller, M., Zeidler, A., & Schmäschke, F. (2001). Gen-
eration and evaluation of dimension-reduced amino acid parameter
representations by artificial neural networks. Molecular modeling
annual, 7(9), pp. 360–369.

[21] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory.
Neural computation, 9(8), pp. 1735–1780.

[22] Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural
networks. IEEE Transactions on Signal Processing, 45(11), pp. 2673–
2681.

[23] Xia, X., & Xie, Z. (2002). Protein structure, neighbor effect, and a new
index of amino acid dissimilarities. Molecular biology and evolution,
19(1), pp. 58–67.

[24] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning
for image recognition. 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 5, pp. 6–14.

[25] Clevert, D. A., Unterthiner, T., & Hochreiter, S. (2015). Fast and
accurate deep network learning by exponential linear units (ELUs).
arXiv preprint, arXiv:1511.07289.

[26] Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., &
Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural
networks from overfitting. Journal of Machine Learning Research,
15(1), pp. 1929–1958.

[27] Chollet, F. and others. (2015). Keras. GitHub.
https://github.com/fchollet/keras

[28] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ...

. (2016). Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. arXiv preprint, arXiv:1603.04467.

[29] Kingma, D., & Ba, J. (2014). Adam: A method for stochastic opti-
mization. arXiv preprint, arXiv:1412.6980.

[30] Youden, W. J. (1950). Index for rating diagnostic tests. Cancer, 3(1),
pp. 32–35.

[31] Duhovny, D., Nussinov, R., & Wolfson, H. J. (2002). Efficient unbound
docking of rigid molecules. International Workshop on Algorithms in
Bioinformatics, pp. 185–200.

[32] Janin, J., Henrick, K., Moult, J., Eyck, L. T., Sternberg, M. J., Vajda,
S., ... & Wodak, S. J. (2003). CAPRI: a critical assessment of predicted
interactions. Proteins: Structure, Function, and Bioinformatics, 52(1),
pp. 2–9.

[33] Méndez, R., Leplae, R., De Maria, L., & Wodak, S. J. (2003).
Assessment of blind predictions of protein–protein interactions: cur-
rent status of docking methods. Proteins: Structure, Function, and
Bioinformatics, 52(1), pp. 51–67.

[34] Veličković, P., Wang, D., Lane, N. D., & Liò, P. (2016). X-CNN:
Cross-modal convolutional neural networks for sparse datasets. IEEE
Symposium Series on Computational Intelligence (SSCI), pp. 1–8.

[35] Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine
translation by jointly learning to align and translate. arXiv preprint,
arXiv:1409.0473.

APPENDIX

A. Extra features in the antibody residue encoding

See Table 5.

B. Decoy classification

Decoys are classified using the CAPRI criteria (Janin et
al. [32], Méndez et al. [33]):
fNAT: Two residues, one from the antibody and one from

the antigen, are said to be an interface pair if they
are sufficiently close to interact (here residues are
assumed to be interacting if they are less than 5Å
apart) . fNAT is a proportion of interface pairs in
the native complex that were reproduced in the
generated one.

LRMS : The root mean square deviation (RMSD) of atoms’
coordinates in the generated orientation of the anti-
gen compared to the true one (the lower the better).
For two sets of coordinates u and v of size n, the
RMSD is given by:

RMSD(u,v) =

√√√√ 1

n

n∑
i=1

‖ui − vi‖2 (11)

The RMSD is computed only for backbone heavy
atoms (N, C, Cα, O).

IRMS : The LRMS measure unnecessarily penalises large
antigen chains when the epitope has a roughly

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/185488doi: bioRxiv preprint 

https://github.com/fchollet/keras
https://doi.org/10.1101/185488


AA Ξ αp νv π I α β
C 1.77 0.13 2.43 1.54 6.35 0.17 0.41
S 1.31 0.06 1.60 -0.04 5.70 0.20 0.28
T 3.03 0.11 2.60 0.26 5.60 0.21 0.36
P 2.67 0.00 2.72 0.72 6.80 0.13 0.34
A 1.28 0.05 1.00 0.31 6.11 0.42 0.23
G 0.00 0.00 0.00 0.00 6.07 0.13 0.15
N 1.60 0.13 2.95 -0.60 6.52 0.21 0.22
D 1.60 0.11 2.78 -0.77 2.95 0.25 0.20
E 1.56 0.15 3.78 -0.64 3.09 0.42 0.21
Q 1.56 0.18 3.95 -0.22 5.65 0.36 0.25
H 2.99 0.23 4.66 0.13 7.69 0.27 0.30
R 2.34 0.29 6.13 -1.01 10.74 0.36 0.25
K 1.89 0.22 4.77 -0.99 9.99 0.32 0.27
M 2.35 0.22 4.43 1.23 5.71 0.38 0.32
I 4.19 0.19 4.00 1.80 6.04 0.30 0.45
L 2.59 0.19 4.00 1.70 6.04 0.39 0.31
V 3.67 0.14 3.00 1.22 6.02 0.27 0.49
F 2.94 0.29 5.89 1.79 5.67 0.30 0.38
Y 2.94 0.30 6.47 0.96 5.66 0.25 0.41
W 3.21 0.41 8.08 2.25 5.94 0.32 0.42
U 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5. Extra features used in the amino acid (AA) residue encoding
(U stands for the extra ‘unknown’ type): Ξ—steric parameter, αp—
polarisability, νv—volume, π—hydrophobicity, I—isoelectric point, α—
helix probability, β—sheet probability.

correct orientation but the rest of the chain does
not. To better handle such cases, the IRMS measure
was introduced—the RMSD only of residues within
10Å of the epitope.

Decoys are assigned a class according to criteria in Table
6.

Class fNAT LRMS IRMS

High ≥ 0.5 ≤ 1.0 or ≤ 1.0
Medium ≥ 0.3 1.0 < · ≤ 5.0 or 1.0 < · ≤ 2.0

Acceptable ≥ 0.1 5.0 < · ≤ 10.0 or 2.0 < · ≤ 4.0
Incorrect < 0.1 — —

Table 6. Decoy classification using fNAT , LRMS and IRMS measures.
The decoy has to match the fNAT criteria and either the LRMS or IRMS

criteria.

C. Dataset

See Table 7.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/185488doi: bioRxiv preprint 

https://doi.org/10.1101/185488


PDB VH VL Ag PDB VH VL Ag PDB VH VL Ag PDB VH VL Ag
1bgx H L T 3grw H L A 4dkf H L A 4wfe G F B
1egj H L A 3h42 H L BA 4dtg H L K 4wv1 E D F
1eo8 H L A 3hb3 C D B 4dvr H L G 4xmp H L G
1fns H L A 3hi6 X Y B 4dw2 H L U 4xp4 H L A
1fsk C B A 3idx H L G 4edw H L V 4xtr C D B
1h0d B A C 3iu3 H L I 4etq H L C 4xvs H L G
1jrh H L I 3k2u H L A 4f37 H L A 4y5y A B C
1kb5 H L AB 3kr3 H L D 4f3f B A C 4ye4 H L G
1lk3 H L A 3ks0 H L B 4ffv D C B 4ywg H L G
1ncb H L N 3l5x H L A 4ffy H L A 4zfg H L A
1nsn H L S 3l95 H L Y 4fqj H L A 4zso D C F
1oaz J N B 3ldb C B A 4g7v H L S 5anm B A G
1ors B A C 3lev H L A 4h88 H L A 5b3j E F C
1r0a H L B 3lh2 I M T 4hcr M N B 5b71 B A E
1rjl B A C 3liz H L A 4hkx A B E 5bo1 I M A
1sy6 H L A 3lzf H L A 4hlz G H BA 5bv7 H L A
1tpx B C A 3ma9 H L A 4ht1 H L T 5czx H L A

1v7m H L V 3mj9 H L A 4hwb H L A 5d96 J I D
1w72 H L AC 3mxw H L A 4i2x B A E 5dfv C D A
1wej H L F 3nh7 J N C 4i3s H L G 5dhv H L M
1xiw D C AF 3nps B C A 4ij3 C B A 5do2 C D B
1yjd H L C 3o2d H L A 4j4p C D B 5e8e B A H
1ztx H L E 3pgf H L A 4j6r H L G 5e94 B A G
2adf H L A 3pnw H G I 4jlr H L S 5en2 A B C
2arj H L Q 3q1s H L I 4jpk H L A 5eu7 E C A
2b2x I M B 3q3g H F I 4jqi H L AV 5f3b E F D
2bdn H L A 3r1g H L B 4jr9 H L A 5fb8 B A C
2dd8 H L S 3ru8 H L X 4k2u I M B 5fcu H L G
2fd6 H L U 3s35 H L X 4k3j H L B 5ggs A B Z
2h9g B A R 3sdy H L BA 4k94 H L CC 5ggt H L A
2ih3 A B C 3sob H L B 4ki5 E F M 5ggv H L Y
2j88 H L A 3t2n I M B 4kuc F E I 5gjs H L BA
2jel H L P 3u30 C B A 4kxz J I B 5h35 H I D
2nyy D C A 3u4e A B J 4liq H L E 5hbt D C B
2oz4 H L A 3uc0 I M B 4lmq H L D 5hi4 C D B
2q8b H L A 3v6o C E A 4lqf H L A 5ikc H L N
2qqk H L A 3vg9 C B A 4lsp H L G 5j13 C B A
2qqn H L A 3vi4 F E B 4lst H L G 5jq6 H L A
2r56 I M B 3w9e A B C 4lvh B C A 5kw9 H L A
2vxt H L I 3wfd H L BC 4lvn C B A 5l0q F E D
2xqb H L A 3wih I M B 4m62 I M T 5lqb H L A
2xqy G L A 3wkm I M B 4np4 H L A 5lxg H L A
2yc1 D E F 3zkm C D B 4nzt H L M 5mvz H L U
2zch H L P 4aei I M B 4ogy M N B 5te7 H L G
3b2u T U S 4ag4 H L A 4okv C D E 5th9 H L A
3b9k D C F 4ala H L C 4ot1 H L A 5tl5 H L A
3cvh H L AC 4bz1 H L A 4plj D C B 5tq0 H L AB
3cx5 J K E 4cad K J L 4r8w H L BA 5tz2 H L C
3d85 B A C 4cmh B C A 4rdq I H A 5v7j H L G
3gbm I M DC 4cni H L C 4rgn F G S 5v7j D E B
3gi9 H L C 4d3c H L A 4u6v H L A 5veb A B X
3gjf H L AC 4d9q E D B 4uu9 A B C 5vpg D C A

5wux A B F
2uzi H L R 5gzo C D B 3skj H L E 4rrp K E Q
2ypv H L A 4leo A B C 3rkd H L A 3u9p K M C
5k59 H L A 4nx3 B A D 4qww D C B 1osp H L O
1jps H L T 5tih H L A 4qci H L C 1ob1 B A C
2xwt A B C 2vxq H L A 4irz H L A 4ene E F B
3d9a H L C 1nfd F E B 3t3p E F C 5d70 H L A
2aep H L A 4mwf H L C 4jzj A B D 5mes H L A
4nnp H L A 5mi0 B C A

Table 7. 239 bound antibody-antigen complex dataset used to train our model. Each entry shows the PDB code, as well as antibody heavy, antibody light
and antigen chain IDs. Structures in bold were used as a test set for the docking experiment.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/185488doi: bioRxiv preprint 

https://doi.org/10.1101/185488

	I INTRODUCTION
	II METHOD
	II-A Data acquisition and preprocessing
	II-B Building a deep learning model
	II-B.1 Multilayer perceptrons (MLP)
	II-B.2 Recurrent Neural Networks (RNN)
	II-B.3 Convolutional Neural Networks (CNN)
	II-B.4 Residual Connections
	II-B.5 Exponential linear units as activation functions
	II-B.6 Model regularisation

	II-C Experimental setup

	III RESULTS
	III-A Model results
	III-B Docking improvements
	III-C Interpreting local neighbourhood features

	IV CONCLUSIONS
	IV-A Summary

	References
	Appendix
	A Extra features in the antibody residue encoding
	B Decoy classification
	C Dataset


