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Abstract

How do we combine memories with sensory input to make decisions? Previous research
has shown that perceptual decisions can be made on the basis of prior expectations
combined with sensory input. To date, these expectations have been treated as static,
received quantities, fixed across decisions of the same type. Here, we tested the hypoth-
esis that expectations can themselves be inferred using dynamic evidence accumulation,
in a process continuous with that of sensory inference. In two experiments using a novel
cue-guided perceptual decision task that independently varied memory and sensory ev-
idence, we tested the degree to which decisions reflected accumulation of both kinds of
information. In Experiment 1, we found that participants’ response times and choices
matched the qualitative and quantitative predictions of a two-stage evidence accu-
mulation model. In Experiment 2, participants performed the same task while being
scanned using fMRI. Using neural pattern analysis, we measured the expectations that
participants formed in advance of a noisy visual stimulus on each trial, and found that
these trial-specific expectations reliably predicted the speed of subsequent responses.
These results demonstrate that perceptual decisions rely on a continuous process of
evidence accumulation, that begins by dynamically inferring possible responses even
before sensory information is available.

Good decisions should draw on all available useful information. Laboratory studies of
decision-making tend to focus on choices made on the basis of a single kind of informa-
tion – such as anticipated utility [1], sensory input [2], or mnemonic evidence [3, 4] – taken
alone. But in the real world, our decisions depend on integrating across sources.

For instance, when traveling on an unfamiliar train route, I might miss my intended stop.
How do I figure out where to make the transfer to get back on my desired route? I could
rely solely on sight – as the train stops at each station, quickly scan the platform for helpful
signs or markings. I could rely solely on my memories – which station is next? Will it have
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the transfer I need? Both kinds of information can be unreliable: station platforms may
look very similar, with distant or unhelpful signage, or my memories could be sparse and
unclear. More likely, I will combine both kinds of information: query my memories about
which stations might have transfers, and combine those with what I can see from a quick
look out the door at each stop. By combining what I remember with what I see, I can
improve my ability to figure out where I am, and thus where I need to go.

An open question in the study of perceptual decisions is how expectations should, and do,
influence the inference process. Within the canonical evidence-accumulation framework [2, 3],
expectations could be encoded as a change to either the starting point of accumulation, or the
rate at which evidence is accumulated [5–8]. Another, related idea is that expectations can
dynamically impact both the rate and direction of accumulation, with increasing influence
as a decision takes longer to resolve [9]. However, all of these approaches assume that
the content of expectations is fixed before the decision starts, whether by learning or by
instruction. In the train analogy, the map is known with certainty, though the reliability of
the visual cues vary from station to station (trial to trial).

Recently, we and others have shown that decisions can be made on the basis of sampled
memories, similar to the way in which samples of visual input are used to guide perceptual
decisions [3, 10–13]. Building on these results, we test the hypothesis that these two types of
sampling are actually components of a single, continuous, inference process, where actions
are selected on the basis of the combined predictions of both kinds of evidence.

Our hypothesis yields two main predictions. First, evidence accumulation should begin
before the onset of sensory information, with dynamics that change when the stimulus is
presented. Specifically, before the visual stimulus, accumulation should reflect the contents
of memory, and their reliability; after, the rate of accumulation should be inflected according
to the coherence and content of visual information. Second, the hypothesis predicts that the
accumulation process is integrative across modalities. Specifically, decisions made after the
onset of a visual stimulus should reflect memory samples collected before the onset of the
visual stimulus – if the memory samples concord with the visual samples, then the decision
should be faster.

To test our predictions, we developed a memory-guided perceptual inference task. In
the task, two distinct kinds of information – memory and sensory – indicate the correct
response for that trial, and are made available at separate times. More specifically, a fractal
cue probabilistically signals the likely identity and reliability of a noisy visual stimulus –
a rapidly alternating stream of face or house images – which follows a few seconds later.
Critically, participants can select a response whenever they wish, including before the image
stimulus appears. Therefore, their responses can reflect the influence of memory or sensory
information alone, or some combination of the two.

We formalized our predictions using a new, two-stage evidence-accumulation model [14].
The first stage of the model samples evidence from memories triggered by the fractal cue. The
second stage carries forward the evidence accumulated from stage one, while incorporating
new samples of evidence, this time visual input from the noisy image stimulus. This approach
differs from previous models of expectation-guided perceptual inference in that it constructs
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expectations dynamically for each trial. As a result, what the model expects will vary
between decisions, depending on what evidence was sampled during the first stage.

Experiment 1 is a behavioral study that tests the first prediction of our model: that
choices and response times in this task reflect a continuous, two-stage evidence-accumulation
process whose rate of accumulation changes with the onset of visual information. We fit our
hypothesized model to these data, and contrast its fit with that of more standard models.
Experiment 2 is an fMRI study that tests the second prediction: that evidence accumulated
from memory is carried forward and affects the sensory inference process. We use Multi-
variate Pattern Analysis (MVPA) to measure, on a trial-by-trial basis, neural evidence for
accumulation from memory, and test its relationship to responses made after the onset of
the image stimulus.

Taken together, the results of these experiments provide a new account of perceptual
decisions, by demonstrating a critical role for integrated, dynamic inference from mnemonic,
as well as sensory, information.

Results

Participants performed a cue-guided perceptual inference task (Figure 1a,b), in which frac-
tal visual cues could be used to anticipate the content of a noisy perceptual stimulus that
appeared after a short inter-stimulus-interval (ISI). In the Learning phase (Figure 1a), par-
ticipants learned, by experience, how often each cue was followed by each photograph. In
this phase, photographs were presented one per trial, without any perceptual noise. Pho-
tographs were from one of two categories: faces and scenes. Each cue was associated with
photographs from one category only. In the Test phase (Figure 1b), the perceptual stimulus
consisted of a rapidly, stochastically, alternating stream of two photographs, one of which,
the target photograph, appeared more often than the other. In this phase, each of four frac-
tal cues signaled two different quantities: the probability that a given photograph would be
the target (the cue probability), and the relative prevalence of that target in the stream (the
coherence). The coherence of the stimulus was fixed by category – on a given experimental
run, either faces or scenes would be easier to discriminate (higher coherence), and the other
would be difficult (lower coherence).

In both phases, participants were instructed to press only the key identifying the target
photograph. (Key-photograph pairings were learned, and coherence levels calibrated, in
separate training phases preceding the Learning phase.) Importantly, participants could use
the cued information to respond before the onset of the flickering stream – though there was,
by design, no explicit external incentive to respond early, or even correctly.

Most participants performed the task twice, in blocks with different photographs, fractals,
cue-photograph probabilities, and mappings from category to coherence level. Due to time
limitations or technical problems, some participants only completed one block (see Methods
for details). In Experiment 1, 30 participants completed 56 blocks in total. In Experiment 2,
a separate set of 31 participants performed the same task in an fMRI scanner, completing 52
blocks in total. Because participants completed different, pseudorandomly-assigned, subsets
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of the task conditions (the four cue and coherence levels), statistics on the correlations
between cue level and dependent measures were computed by bootstrap across participants.
When comparing how these correlations varied, across participants, between pairs of different
trial types – e.g. low versus high coherence, or pre-stimulus versus post-stimulus responses
– we used paired bootstrap analyses for each level, and measured the difference between
the bootstrapped distributions using Cohen’s d. For within-participant comparisons (e.g.
between paired coherence levels) we used standard parametric tests.

Experiment 1

We first tested whether choices and response times reflected the influence of both cue prob-
ability and perceptual coherence. By our hypothesized mechanism, participants should re-
spond more quickly and accurately when the cue predictions are more reliable, when the
observed perceptual evidence is more coherent, and when the cue predictions match the
perceptual evidence.

Response times and accuracy

Responses reflect cue predictions and perceptual evidence. Participants responded
accurately, matching the target photograph on 75.20% (SEM 0.085%) of trials (including
only trials for which there was a “correct” response possible before stimulus onset – i.e. for
cue levels 60%, 70%, 80%) This proportion was reliably greater than chance for all blocks
individually (all p ≤ 0.0465 by binomial test of the proportion of correct responses within
each block against the 50% chance level). Accuracy increased with both cue predictiveness
(R = 0.1947, P = 0.009 by bootstrap across participants; Figure 2a) and target coherence
(t(27) = −4.4297, P = 0.0001; defined only for the 28 participants who performed at least
one block in which there was a correct response in both coherence conditions).

Participants used the fractal cue to decide whether or not to respond “early”, before
the onset of the perceptual stimulus. The proportion of early responses increased with
the predictiveness of the fractal cue (R = 0.2224, bootstrap P < 0.0001; Figure 2b). This
relationship was driven by trials on which the cue signaled that the perceptual stimulus would
be of low coherence (for low coherence trials, the correlation between cue predictiveness and
early responses was R = 0.3658, bootstrap P < 0.0001; for high-coherence trials it was
R = 0.0868, bootstrap P = 0.1610; difference between paired bootstrap iterations reliable
with Cohen’s d = 3.9071).

Reflecting the two-stage nature of the integration task, response times were distinctly
bimodal, with separate peaks following the onsets of the fractal cue and the flickering stream
(Figure 3a; RT distributions multi-modal within each ISI condition by Hartigan’s Dip Test
[15]: all HDS≥ 0.0281, all P < 0.0001).

For early responses, RTs showed a trend towards being faster as the fractal was more
predictive (R = −0.0351, P = 0.086 by bootstrap across participants). Consistent with the
normative prediction that uninformative cues discourage deliberation [16], this relationship
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Figure 1: Cue-guided perceptual inference task. (a) In the Learning phase, participants
performed 100 trials to learn which face or scene stimulus was predicted by each of four fractal
cues. Each cue was shown 25 times, at each presentation followed by a picture of either a face
or a scene. Cues were linked to one photograph category only, and to each picture within
that category according to complementary proportions (50%/50%, 60%/40%, 70%/30%,
80%/20%). (b) In the Test phase, participants were again shown a fractal cue, but in this
case the cue was followed by a “flickering” series of rapidly alternating (60Hz) pictures. Each
frame of the series contained one of the two pictures from the cued category, or a phase-
scrambled version of the previously-shown picture that served as a perceptual mask. One
picture, the target, was shown in the stream more often than the other. The fraction of frames
that contained the target picture was calibrated to elicit either higher (85%) or lower (65%)
accuracy. In this way, the flickering stimulus parametrically varied the extent to which the
visual evidence favored the given stimulus. Participants were asked to respond by pressing
the key associated with the target picture. Critically, they were allowed to respond before the
flickering stream appeared on screen. (c) Two-stage continuous-accumulation model. The
Multi-Stage Drift-Diffusion Model (MSDDM) describes an evidence-accumulation process
with time-varying drift rate [14]. The first drift rate corresponds to the period following
onset of the fractal cue and preceding the onset of the flickering stream, while the second
corresponds to the period after the onset of the stream. The end point of the first stage sets
the starting point of the second.
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Figure 2: Early responses and accuracy scale with cue predictiveness and stimulus
coherence. (a) Across all post-stimulus accuracy increased with both cue reliability and
the coherence of the flickering stream. (b) Participants were more likely to respond early
when the fractal cue made a more reliable prediction about the identity of the upcoming
stimulus. This relationship was stronger when participants knew that the upcoming stimulus
would be of low coherence (low: R = 0.3658, bootstrap P < 0.0001; high: R = 0.0868,
bootstrap P = 0.161; Cohen’s d = 2.3841). (c) When perceptual evidence was of high
coherence, participant responses after the onset of the flickering stream were faster than
on low-coherence trials (t(29) = 3.145, P = 0.0038). Across all such responses, response
time decreased with the cued probability of the target photograph. This relationship was
stronger for low-coherence trials, and for trials where the target photograph matched the one
predicted by the fractal cue (right shaded region), as opposed to when the predicted image
did not match the target (left shaded region).
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Figure 3: Histogram of (stimulus-locked) response times on test-phase trials. RT
counts are aggregated across participants, and plotted separately for each ISI condition,
binned in increments of 100ms. Separate peaks follow the onset of the fractal cue and the
onset of the flickering stream, reflecting the fact that participants made responses on the
basis of both types of information. (a) Experiment 1, ISIs of: 500ms, 1s, 4s, 6s, 8s, 10s. (b)
Experiment 2, ISIs of: 4s, 6s, 8s.
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was more pronounced, and reliable, when including only informative cues (60% and higher;
R = −0.0501, bootstrap P = 0.008).

For post-stimulus responses, RTs were faster when the cue was more predictive (R =
−0.017, bootstrap P = 0.044; Figure 2c), and when the flickering stream was higher coher-
ence (mean RTs – stimulus-locked, log-transformed, Z-scored within participant: low: 0.1581
SEM 0.0612 high: −0.1283 SEM 0.0387 mean difference between low and high coherence
RTs within-participant 0.2864 SEM 0.0911; t(29) = 3.145, P = 0.0038). These factors in-
teracted: participants were more speeded by cue predictiveness when coherence was lower
(low: R = −0.147, bootstrap P < 0.0001; high: R = −0.065, bootstrap P = 0.033; Cohen’s
d = 1.675), and only when the target photograph matched the cue’s prediction (incongruent:
R = 0.0419, bootstrap P = 0.141; congruent: R = −0.063, bootstrap P < 0.001; Cohen’s
d = 1.7385).

Taken together, these results confirm that participants’ responses reflected the integration
of mnemonic and sensory information.

Model comparison

We used model comparison to formally test the hypothesis that responses resulted from
continuous accumulation of mnemonic and sensory evidence. Our primary model of interest
implemented a continuous, two-stage evidence-accumulation process (hereafter: MSDDM;
[14]; Figure 1c), – the first on the basis of the cue, preceding the flickering stream, and the
second following the onset of the flickering stream – with different accumulation rates at
each stage.

The MSDDM is distinguished from other models by two key features: first, that the drift
rate changes at the time of flickering stream onset and second, that accumulation in the
second stage proceeds from the evidence accumulated during the first stage. Therefore, our
comparisons were against sampling models that selectively disabled each of those features.
The first comparison model was a single DDM, which had continuous accumulation until the
time of response, but no change in drift rate across the entire trial. We refer to this model
as 1DDM. The second comparison model was two unconnected DDMs, mirroring the change
in drift rate found in MSDDM, but with the second-stage starting point set independently
of the behavior of the first model. We refer to this model as 2DDM. Each model was fit
separately to responses aggregated, across participants, by condition – cue, coherence, and
ISI.

Against the second-best model, the 2DDM model, MSDDM was superior by a BIC of 30
(constituting “Strong” evidence in favor of the model, according to [17]). This was the case
across all conditions, and for nearly every condition individually (Figure 4a).

Experiment 2

Experiment 1 showed that behavior in this task reflects a dynamic integration of memory
and sensory evidence, yielding patterns of choices and response times that are best captured
by the MSDDM, across all trials. However, the key test of the hypothesis is that evidence
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Figure 4: Model comparison. Models were compared for their fit to each bin of trials
with the same combination of cue predictiveness, stimulus coherence, and ISI. Shown here
is the χ2 difference in favor of the MSDDM model (higher bar = greater evidence in favor
MSDDM), for conditions aggregated by cue predictivenss and coherence level. MSDDM was
favored over 2DDM for every condition individually, and across all conditions as a whole.
(a) Experiment 1 (b) Experiment 2
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accumulated during the first stage on a specific trial affects responses made during the second
stage of that trial. In Experiment 2, we used multivariate pattern analyses (MVPA) of fMRI
data to measure memory evidence accumulated following the fractal cue on each trial, and
used this measure to predict responses after the onset of the flickering stream on that same
trial. For this experiment, 31 additional participants completed the task from Experiment
1, while being scanned.

Behavior

Response times and accuracy.
Response behavior replicated the patterns observed in Experiment 1. Accuracy was again

high overall: 70.24% correct responses (SEM 1.18%); and significant or trending for 49/52
blocks individually (all p ≤ 0.0728).

Accuracy again increased with cue predictiveness (R = 0.2474, bootstrap P = 0.005)
and coherence (t(26) = −4.3017, P = 0.0002). RTs were bimodal (all HDS≥ 0.1017, all
P < 0.0001; Figure 3b). Higher cue predictiveness resulted in a greater tendency to respond
early (R = 0.1494, bootstrap P = 0.012), though, in contrast to experiment 1, the effect was
driven by high-coherence trials (low: R = −0.1022, bootstrap P = 0.111; high: R = 0.4187,
bootstrap P < 0.0001; Cohens d = 4.2134), perhaps reflecting that early responding was at
ceiling when participants anticipated low coherence stimuli. Cue predictiveness also caused
early responses to be faster (R = −0.0768, bootstrap P < 0.0001).

Responses after the onset of the flickering stream were again speeded by coherence (low:
0.2268 SEM 0.0421; high: −0.0981 SEM 0.0782; mean difference 0.3248 SEM 0.0977; t(30) =
3.3255, P = 0.0023), and by cue predictiveness, in both coherence conditions (low: R =
−0.0921, bootstrap P = 0.021; high: R = −0.0599, bootstrap P = 0.013), though moreso
when coherence was lower (Cohen’s d = 0.7604), and when the target photograph matched
the cue’s prediction: (incongruent: R = 0.0249, bootstrap P = 0.303; congruent: R =
−0.0165, bootstrap P = 0.191; Cohen’s d = 0.9447).

Finally, model comparison again favored the MSDDM over the alternative candidate
models (all BIC > 21; Figure 4b).

Neuroimaging

Our analyses of choices and RTs in this task supported the hypothesis that perceptual deci-
sions can be made on the basis of both cue-driven expectations and sensory input. However,
because they measure only the final response, behavioral data cannot in principle reveal a
relationship between the actual memory evidence accumulated on each trial and responses
made to the ensuing flickering stream. Here, we used neural pattern similarity to measure the
influence of accumulated memory evidence on responses. For each participant, we localized
regions in the ventral visual stream that were more active for face versus scene processing
(FFA; [18]) and for scene versus face processing (PPA; [19]) (Figure 5a). We next computed
activity patterns corresponding to each photograph, in the appropriate category-preferring
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region (faces in FFA, scenes in PPA). We refer to these picture-specific patterns as the tar-
get patterns. The target patterns were defined on the basis of data from an early training
phase of the task, in which participants learned which keys were mapped to each picture
(see Methods). Critically, because this response-training phase preceded the introduction of
the fractal cues, these patterns were decoupled from the fractals that would come to predict
them.

We next computed, for each trial from the Test phase, a trial pattern – the average
pattern in these regions over the period following the onset of the fractal cue, up to either the
participant’s response, or one TR before the onset of the flickering stream, whichever came
first. Hereafter, we define the trial-by-trial reinstatement index as the correlation between
these trial patterns and the target pattern corresponding to the photograph predicted by
the fractal cue. (Note that on 50/50 trials this value is not defined, and so these trials were
excluded from neuroimaging analysis.)

Pre-stimulus reinstatement scales with task conditions.
As in a previous study of memory sampling [10], we expected that anticipatory stimulus

reinstatement would scale negatively with cue probability. The reason for this is that in
evidence-accumulation models, samples are accumulated until a threshold is reached in favor
of a given response. At that point, no more sampling – and thus no more activity linked
to memory reinstatement – should follow. Because memory sampling likely occurs at a
timescale below the resolution of the BOLD response [20], more predictive cues should lead
to a shorter period of reinstatement, and thus less consistent trial patterns which would
be less correlated with the template pattern. Consistent with the prediction, reinstatement
index decreased as cue probability increased (R = −0.0341, bootstrap P = 0.039; Figure
5b).

Following the same logic, this relationship should only hold for early responses and not
on trials where the participant responded following stimulus onset. This is because early
responses are by definition those trials on which accumulation terminates in the time period
we are measuring, preceding the onset of the flickering stream. Conversely, responses to sen-
sory input are those on which memory accumulation continues throughout the measurement
period. Indeed, although the correlation between cue probability and reinstatement index
was reliably negative for early response trials (R = −0.0718, bootstrap P = 0.004), no such
correlation was observed for responses after the onset of the flickering stream (R = 0.0203,
bootstrap P = 0.225; difference between paired bootstrap iterations Cohen’s d = 1.7417).

Pre-stimulus reinstatement predicts 2nd stage response times. The fact that re-
instatement index is related to cue probability is consistent with evidence-accumulation
models, but does not differentiate between MSDDM versus 1DDM or 2DDM. The key test
of the MSDDM is whether responses to the flickering stream are influenced by evidence-
accumulation in anticipation of sensory input, at a trial-by-trial level. Therefore, we tested
whether reinstatement index could predict response times after the onset of the flickering
stream on each trial.

Supporting our hypothesis, reinstatement index was indeed associated with faster post-
stimulus response times (R = −0.07, bootstrap P = 0.001), a relationship that held after
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Figure 5: Reinstatement pattern analysis. (a) We defined, for each participant, the
Fusiform Face Area (FFA) and Parahippocampal Place Area (PPA), using a localizer task
that followed the main experiment. The resulting mask defined the region across which we
calculated picture-specific templates. Next, for each trial on which participants responded
after the onset of the flickering stream, we computed the average pattern of activity in the
corresponding ROI over the period following the onset of the fractal cue, but preceding the
onset of that flickering stream. We then calculated a reinstatement index as the correlation
between this trial-specific pattern and the template pattern for the picture predicted by the
fractal cue. (b) Reinstatement index related to cue predictiveness. Across all trials, as
the cue led to more specific predictions, the reinstatement index decreased (R = −0.0341,
bootstrap P = 0.039). However, on trials were the response followed the onset of the flick-
ering stream, reinstatement index was unchanged across cue levels (R = 0.0203, bootstrap
P = 0.225). This observation can be interpreted as consistent with an evidence-accumulation
process that reached bound quickly, under the temporal resolution of the BOLD response.
However, on trials where participants responded after the onset of the perceptual stimulus,
accumulation did not, by definition, terminate.
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Figure 6: Accumulated memory evidence is incorporated into perceptual
evidence-accumulation. (a) Across all trials, a higher reinstatement index predicted
faster responding after stimulus onset. (b) Reinstatement index speeds responses to cue-
congruent, but not cue-incongruent, sensory information. (c) The MSDDM predicts that
the accumulated memory evidence should set the starting point for visual evidence accumu-
lation. Thus, if the visual stimulus doesn’t match the anticipated stimulus, responses should
be slowed, relative to when evidence is congruent between stages. Consistent with this
model, greater accumulated memory evidence slows responses to incongruent visual stimuli
on low-coherence trials, but not high-coherence trials. (Error bars are +/- 1 SEM, across
participants.)
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controlling for other factors each of which also modulate post-stimulus response times (cue
predictiveness, coherence, ISI; R = −0.0337, bootstrap P = 0.039; Figure 6a). If accu-
mulated memory evidence sets the starting point for sensory evidence accumulation, then
reinstatement index should only predict faster responses when memory and sensory evidence
are in agreement – and, indeed, RTs were uniquely speeded on such trials (cue-incongruent:
R = 0.0096, bootstrap P = 0.404; cue-congruent: R = −0.0527, bootstrap P = 0.029; Co-
hen’s d = −1.2037; Figure 6b). Finally, if memory and sensory evidence are integrated, mem-
ory evidence should show correspondingly less influence when sensory evidence is stronger;
this should be reflected as a greater speeding of matching, relative to non-matching, trials.
Consistent with this prediction, the divergence in the relationship between memory evidence
and response times to cue-congruent, versus cue-incongruent, flickering streams was more
pronounced in the low-coherence condition: (low coherence, cue-incongruent: R = 0.127,
bootstrap P = 0.087; low coherence, cue-congruent: R = −0.0384, bootstrap P = 0.161;
Cohen’s d = −1.586; high coherence, cue-incongruent: R = −0.0886, P = 0.117; high
coherence, cue-congruent: R = −0.0633, P = 0.066; Cohen’s d = 0.4229; Figure 6c).

Together, these results support a role for the dynamic accumulation of memory evidence
in perceptual decisions, via a continous perceptual inference process linking memory, sensa-
tion, and action.

Discussion

Humans [6, 21], animals [9], and even intelligent machines [22] rely on expectations, derived
from experience, in order to act quickly and accurately [16]. While important empirical and
theoretical work has described ways in which expectations influence dynamic, deliberative
decisions [6, 7], these investigations have set aside the question of how the expectations
themselves are set. Our study examined a corner of the space left unaddressed by previous
work – that in which the dynamics of expectation setting could be separately manipulated,
and measured, on a trial-by-trial basis. In doing so, we reveal that perceptual inference
begins before sensory evidence is available.

The evidence accumulation framwork used to model perceptual decisions also has roots
in the study of recognition memory [3] – behavior that is, by definition, an inference over
past experiences. Recently, we showed that decisions for reward are informed in part by
“samples” of relevant past experiences [10, 12, 13]. At each new choice, decision-makers
brings to mind similar previous choices, and take the outcomes of those choices as evidence
for one option or the other. We reasoned that a similar dynamic inference process could
underlie expectations formed before the onset of perceptual decisions.

We tested this hypothesis in two experiments using a novel cue-guided perceptual in-
ference task that separately varied the content and reliability of expectations derived from
previous experience, as well as the content and reliability of sensory input. Participants
viewed a fractal cue followed, after a variable-length delay, by a “flickering” stream where
two photographs were presented in rapid alternation, at a trial-specific ratio. Their task
was to press a key corresponding to the photograph that appeared most often in the stream.
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Participants learned to use the cues to anticipate which photograph would be the target, and
also how difficult it would be to decide on the basis of sensory information alone. Accord-
ingly, their responses reflected the influence of associations drawn from memory and online
sensory evidence.

Response times were best-fit by a two-stage evidence accumulation model. This model
describes decisions as arising from a continuous inference process that samples evidence at
one drift rate until a given deadline, and then samples evidence at a second drift rate. The
critical prediction of this model is that evidence accumulated during the first stage should
influence responses made during the second stage. To test this directly, we used fMRI
to observe, on each trial, participants’ neural responses to the cue, in anticipation of the
flickering stream. This measure was indeed a reliable predictor of response times – the more
participants anticipated the photograph predicted by the cue, the faster they were to respond
after the onset of the perceptual stimulus. Taken together, our results demonstrate that the
dynamics of expectation-setting combine with those of sensory inference to affect responses.

Previous theoretical and empirical work has outlined the normative conditions under
which expectations should bias inference [6, 7], and the mechanisms by which expectations
are incorporated into the decision itself [9]. Several possible mechanisms have been proposed,
and tested, across a range of tasks. These approaches differ on the form that expectations
should have: a shift in the starting point of accumulation, the drift rate, or a dynamic bias
on the accumulation process. In the case that memories are reliable, and also consistent
with sensory information, then – to a model fit across many trials – accumulated memory
evidence would appear as a change to the starting point, if memories are reliably predictive,
or drift rate, if less predictive. The degree of this effect would be proportional to the average
congruence of memory and sensory evidence: if memory and sensory evidence are reliably
consistent with each other, then the effect of expectations on starting point and drift rate
should be correspondingly higher. However, in cases where memory evidence is reliable, but
sensory evidence is less decisive, the same process could appear as a dynamic bias signal,
with steadily increasing influence over the course of a given decision. The rate of increase of
this influence would be proportional to the coherence of memory evidence.

Continuous accumulation of memory and perceptual evidence also predicts that these
effects vary, trial-by-trial, as a function of the relative reliability and consistency of the
two kinds of evidence. In perceptual sampling models, this sort of variability in decision
parameters tends to be modeled as noise [23]. Here, we attempt to unpack that noise,
providing both an instrumental justification for, and a process-level explanation of, time-
varying properties of the decision process.

These findings fit with a burgeoning literature on the influence of memory on decisions.
Empirical work, by ourselves and others [4, 10, 12, 24, 25] has outlined a process by which
decisions can be made on the basis of evidence accumulated from individual memories of past
decisions (see Shohamy and Shadlen [11] for a proposal framing these findings in terms of
evidence accumulation). Though we were motivated by our work on sampling from episodic
memory, the exact content of the internal representation used to set expectations in this task
remains unclear (e.g., individual episodes, semantic knowledge, motor responses).
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A key differentiating factor of our study relative to previous work is that expectations were
based on a relatively small number of direct, but variable, experiences – rather than explicit
instruction or overtraining, which can diminish the need to rely on memory accumulation.
Of particular relevance, Hanks and colleagues [9] evaluated how perceptual decisions can be
aided by statistical regularities. They observed that the influence of priors grew as a function
of the elapsed decision time on a given trial. On this basis they inferred that decision time
was used as an online estimate of decision difficulty. Interestingly, the investigators report
that neural “ramping” activity preceding stimulus onset reflected the prior expectations
participants were trained to develop. While this activity did not predict eventual decision
outcome in their task, the effect may have been impeded by the fact that the task was not
designed to probe memory evidence accumulation – specifically, that the task offered limited
time before the onset of sensory information, a reliable correspondence between expectations
and sensory information, and expectations set either by overtraining or instruction, thus
limiting the likelihood that subjects would need to dynamically infer expectations.

The synthesis of our results with theirs implies an interesting path for future research.
Specifically, our results suggest that the weighting process they observe could begin before
decision onset, while theirs suggest that inference over experiences may continue in parallel,
after stimulus onset. An ongoing mixture of expectations and sensory information should
fit with their account when sensory information is largely congruent with expectations, but
may qualitatively diverge when trial-varying expectations – observed before the onset of
the sensory stimulus – are incongruent with sensory information. A conclusive test of this
hypothesis will likely require a method with finer temporal resolution than fMRI, as well as
wider spatial coverage than single-unit recording.

More broadly, this sort of cooperative evidence accumulation – whether in serial or in
parallel – may be present in other neural computations. Though various kinds of decisions
have been modeled as arising from the competition of one or more “racing” accumulators [26,
27], the idea that multiple types of information might be sampled in a cooperative fashion,
towards a single decision resolution, has been less widely investigated. Most interesting is the
possibility that these two approaches – competitive and cooperative accumulation – need not
be at odds, or entirely distinct. Race models are supported by the observation that response
time distributions correspond to the accrued evidence for one alternative or the other, rather
than the net between. A unifying explanation could be that accumulation is competitive
at the level of each sensory modality or internal representation, but integrative across such
inputs. For instance, ongoing samples from past experience could amplify consistent sensory
evidence samples, or weigh against inconsistent ones.

A related question is how exactly it is that information is transmitted downstream from
memory. One possibility is that reinstated memories provide a feedback signal that shapes
processing in earlier visual regions; Recalled memories, triggered by visual information and
internal state, could serve as a “teaching signal” that propagates upstream, perhaps as far
as primary visual cortex. A recent framework proposes that such a mechanism explains a
wealth of observations in perceptual learning and inference [28] Another, not incompatible,
possibility is that accumulated memory evidence persists as a form of visual working memory.
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In some decisions, participants may choose to forego further sampling, even if they have
accumulated only partially to bound [29], though the accumulated evidence may still carry
forward to the later inference process. In a separate study, we examined how reinstated
episodic memories persist across a delay by altering the existing contents of working memory
[30]. In that study, because participants could not anticipate the exact decision they would
be asked to make, cues provided information about the range of options that would be
available, resulting in anticipatory memory samples that affected the drift rate, but not the
starting point, of response selection. Task demands may thus modulate the form of the
influence that memory sampling has on later evidence accumulation.

More broadly, this finding has important implications for the study of decisions in many
fields. Economic decisions, for instance, require integrating learned and/or inferred infor-
mation about multiple attributes of the choice options. Individuals may differ in how they
combine these attributes. The mechanisms by which they do so have been proposed to
underlie some of the observed “irrationalities” of behavioral economics [31, 32] and measure-
ments of the variation in the attention paid to different options has been shown to improve
predictions of choices [33]. Here, we show how sampled memories can combine with sam-
pled features, improving choice predictions over those made on the basis of either type of
information alone.

Because expectations are nearly omnipresent in decision-making, it is possible that pre-
vious investigations have obscured an important source of trial-by-trial variation. Decisions
may often be biased by samples from internal information – memories, but also emotions,
values, and rules – that give rise to expectations established in the moment, rather than
fixed across time. Biases, derived from experience, are necessary for helpful, even necessary,
for efficient decision-making – they help us take account of, and leverage, the statistics of our
environment. But biases aren’t just learned regularities. The fact that they are constructed
means that they can be changed, either by changing experiences, or by targeted interactions
with the construction process itself. That biases can be altered in the service of better deci-
sions may be a crucial adaptation, allowing organisms to adapt their behavior at a timescale
faster than the long-run statistics of their environment. More broadly, it means that, when
it comes to individual decisions, the link between past and present can be revisited, even
changed, when the need arises.
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Methods

Participants

33 participants (15 male, 30 right-handed; ages 18-50, mean 21.9) each performed two repe-
titions of the task in Experiment 1. Ten blocks were excluded for failing to meet one or more
criteria: if the participant failed to respond on 10% of learn or test-phase trials (nine blocks);
if the combined number of skipped trials and post-stimulus error trials during the test phase
were greater than 30% (four blocks); if the difference between calibrated accuracies for any
pair of stimuli was less than 5% (one block). Three participants failed to meet criteria for
all blocks they performed; they were excluded entirely from analysis. In all, 30 participants
and 56 blocks were included in the final analysis.

36 participants (10 male, 29 right-handed; ages 18-33, mean 23.19) each performed one
(5) or two (31) repetitions of the task in Experiment 2. (Five blocks were excluded due to
scanner malfunction (1), participant discomfort (1), or programming error (3).) 15 blocks
were excluded for failing to meet one or more criteria: nine for failing to respond on enough
learn or test-phase trials; one for failing to respond correctly or at all on enough test-phase
trials; nine for failing the calibration accuracy threshold. Five participants failed to meet
criteria for all blocks they performed; they were excluded entirely from analysis. In all, 31
participants and 52 blocks were included in the final analysis.

In Experiment 1, participants were compensated with course credit. In Experiment 2,
participants were paid a flat fee of $50. All participants reported themselves as free of
neurological or psychiatric disease, and fully consented to participate. The study protocol
was approved by the Institutional Review Board for Human Subjects at Princeton University.

Task

The experiment was controlled by a script written in Matlab (Mathworks, Natick, MA, USA),
using the Psychophysics Toolbox [34]. Both Experiment 1 and Experiment 2 consisted of
the following four phases, repeated for two blocks for each participant, with different stimuli
and task conditions as detailed below. Experiment 2 was performed in an fMRI scanner,
and consisted of an additional, fifth phase, a Localizer task described below.

In Phase 1, the Response training phase, particpants learned to map response keys to
stimuli. Four response keys – numbers one through four on a standard US keyboard – were
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each associated with one of four stimuli – black and white photographs, two faces and two
natural scenes.

Stimulus photographs were chosen from a set of four possible scenes and four possible
faces. Each category was subdivided into two sets of two paired photographs. Each photo-
graph was black and white, normalized for contrast and brightness, and chosen to be highly
confusible with the paired face or scene.

Participants were first shown each photograph, centered on a black background, in order
of the associated response keys, and asked to press the current key in the sequence. In
all experiments. keys one and two corresponded to the faces, and keys three and four
corresponded to scenes. Then, the photographs were shuffled, and presented one at a time
for two seconds each. Participants were instructed to press the corresponding key. If they
pressed the correct key, a green box appeared around the photograph. If they pressed the
incorrect key, the photograph remained on the screen. Each photograph was displayed ten
times. If participants pressed the incorrect key on the first try more than twice for any
photograph, they were made to repeat the response training phase in its entirety.

Phase 2, the Calibration phase, measured the ability of participants to discriminate
between each pair of photographs when they were presented in a noisy, “flickering” stream
(Figure 1). On each trial, participants were shown a rapid stream of pictures, displayed for
1/60th of a second apiece. They were instructed to press the key corresponding to the target
– the photograph shown most often. Each frame consisted of either the target photograph,
the paired same-category photograph, or a perceptual mask consisting of a phase-scrambled
version of the previously shown photograph. Perceptual masks were shown for between one
and three frames, with mask display length chosen from a truncated, discretized exponential
distribution of mean 2. Calibration trials lasted three seconds, regardless of response. When
participants pressed a key, the stream stopped, and the target was shown for the remainder
of the trial length. If the participant pressed the correct key, a green box appeared around
the photograph. If the participant pressed the incorrect key, a red box appeared around the
photograph. A one second inter-trial-interval (ITI) followed each trial. On each trial, the
proportion of frames that contained the target photograph – the coherence – was updated
according to a Quest algorithm [35], with the goal of calibrating participants responses to
either 65% (low) or 85% (high) accuracy. Each block measured the coherence necessary
to elicit either high or low accuracy for each photograph. In Experiment 1, the first 24
participants performed 60 calibration trials per photograph, while the last 9 participants
performed 40 calibration trials per photograph. In Experiment 2, participants performed
30 calibration trials per photograph. Although Experiment 2 participants remained in the
fMRI scanner for this phase, no scanner data was collected. This is the only phase for which
scanner data was not collected.

In Experiment 1, for stimuli calibrated to low accuracy (65%), the average coherence
(proportion of non-mask frames that contained the target photograph), across participants,
blocks, and stimuli, was 60.98% (SEM 1.06%); whereas for the high-accuracy (85%) condi-
tion, the target photograph was shown on 75.88% (SEM 1.08%) of frames. In Experiment
2, these figures were 62.17% (SEM 1.03%) coherence in the low-accuracy condition, 77.66%
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(SEM 1.15%) coherence in the high-accuracy condition.
Phase 3, the Cue learning phase, provided participants with a set of experiences that

linked each of four fractal cues to the photographs (Figure 1). On each trial, participants
were shown one of four fractal cues, displayed on the screen for 750ms. In Experiment 1,
the cue was followed by a variable inter-stimulus-interval (ISI). For 24 participants, this ISI
was either 500ms, 1000ms, or 4000 ms, selected pseudorandomly at each trial according to a
uniform distribution. For the remaining 9 participants in Experiment 1, and all participants
in Experiment 2, this ISI was a fixed length of one second. After the ISI, participants were
shown either of two photographs linked to the cue, both from the same category (face or
scene). The photographs that followed the cue were selected according to one of four binomial
distributions – 50/50, 60/40, 70/30, or 80/20. The two cues in each category (face or scene)
predicted their consequents using symmetric distributions – if one cue predicted Face A with
80% probability, the other cue predicted Face B with 80% probability. Participants were
instructed to press the button corresponding to the displayed photograph. If the response
was accurate, the photograph was surrounded by a green box. If the response was inaccurate,
the photograph was surrounded by a red box. Regardless of response time or accuracy, the
picture remained on the screen for two seconds. In Experiment 1, the trial was followed
by an ITI of two seconds. In Experiment 2, the trial was followed by an ITI of between
500ms and 8000ms, chosen from a truncated exponential distribution, discretized in units
of 500ms, with mean 2000ms. This phase consisted of 100 trials, 25 for each cue, ordered
pseudorandomly.

Phase 4, the Cued inference task, was the primary test of our hypotheses. On each
trial during this phase, participants first viewed a fractal cue that predicted the likelihood
of the target photograph during the following flickering stream. Cues were presented for
750ms, and followed by an ISI of variable length, selected at each trial from a uniform
distribution. For the first 24 participants of Experiment 1, this ISI was either 500ms, 1000ms,
or 4000ms. For the remaining 9 participants of Experiment 1, this ISI was either six, eight,
or ten seconds. In Experiment 2, this ISI was either four, six, or eight seconds. In both
experiments, ISI durations were chosen from a uniform distribution over the possible values.
The flickering stream used one of the two mixture proportions calibrated during Phase 2;
mixture proportions were fixed for each category – e.g. faces might be set to low coherence,
and scenes to high coherence. Thus, the fractal cue predicted both the likely identity of the
target photograph, and also the coherence of the subsequent stream. The stream remained
on the screen for three seconds. When a key was pressed, the target photograph appeared,
and remained on the screen until the three seconds were finished. If the keypress was correct,
the photograph was surrounded by a green box. If the keypress was incorrect, the photograph
was surrounded by a red box. Participants were instructed to press the key corresponding
to the identity of the target photograph. Critically, however, participants were allowed to
respond early – during the ISI, before the flickering stream began. Participants were not given
any explicit or implicit inducement to respond early or accurately – they were informed that,
regardless of the speed or correctness of their response, all trials were of fixed length, modulo
the ISI. This phase continued for 80 trials, 20 trials of each cue, ordered pseudorandomly.
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Phases one through four were repeated as two blocks, each with different fractal cues and
picture stimuli. Cue were selected pseudorandomly for each block, and the mapping from
coherence level to category was counterbalanced between blocks.

After the two blocks, Experiment 2 participants completed a final phase, Phase 5, the
Localizer task. We used the data collected in this phase to localize regions of cortex prefer-
entially active during processing of face and scene images. Participants performed a 1-back
image repeat detection task. Images were presented in mini-blocks of 10 trials each. Eight
of the pictures in each block were trial-unique, and two were repeats of the picture on the
immediately preceding trial. Repeats were inserted pseudorandomly according to a uniform
distribution. Stimuli in each mini-block were chosen from a large stimulus set of pictures not
used in the main experiment. The pictures belonged to one of four categories – faces, objects,
scenes or phase-scrambled scenes. Pictures were each presented for 500ms, and separated by
a 1.3s ISI. A total of 12 mini-blocks were presented (3 per category), with each mini-block
separated by a 12 second inter-block interval.

Imaging methods

Experiment 2 was collected while participants were laying in the fMRI scanner. Data were ac-
quired using a 3T Siemens Prisma scanner with a 64-channel volume head coil. We collected
three functional runs with a T2*-weighted gradient-echo multi-band echo-planar sequence
(44 slices oriented parallel to the long axis of the hippocampus, 2.5mm isotropic resolution,
echo time 26 ms; TR 1000 ms; flip angle 50 deg; field of view 192 mm). To allow for T1
equilibration, we discarded the first six volumes of each functional run (6s). We also col-
lected a high-resolution 3D T1-weighted MPRAGE sequence (1mm isotropic resolution) for
registration across participants to standard space. Functional image preprocessing was per-
formed using FSL (FMRIB Software Library version 5.0.8; [36, 37]). Anatomical images were
coregistered to the standard MNI152 template image, then individual participant functional
images were coregistered to the realigned anatomical images. The transformation matrices
generated during this coregistration process were used to transform Region of Interest (ROI)
images (described below, ROI definition). Functional images were motion corrected and
spatially smoothed using a 5mm full-width half-maximum Gaussian kernel prior to analysis.
Data were scaled to their global mean intensity and high-pass filtered with a cutoff period
of 128s.

Behavioral analysis

Response time analyses

Bimodality. We tested whether response time distributions within each ISI condition were
bimodal, using Hartington’s Dip Test [15]. This test measures the relative spread between
modes to the mean of the distribution – larger values indicate a higher likelihood of true
bimodality in the tested data. P-values are estimated via bootstrap against distributions
with the same summary statistics as the tested data, provided by the MATLAB function
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HartigansDipTest [38].
Permutation tests for across-condition correlations. Each participant performed a different
subset of the task conditions (cue level, perceptual coherence). To provide a robust mea-
sure of the relationship between response times and conditions, we therefore performed a
bootstrap analysis, across participants and conditions [39]. On each iteration, we sampled,
with replacement, the number of participants in the study group (33 in Experiment 1, 33 in
Experiment 2). We then computed, on this selected group, the correlation of interest. By
repeating the process 10,000 times, we obtained a distribution of correlation values across
shuffled permutations of the study group. The reported p-value is thus the fraction of corre-
lation values with a different sign from the base effect size (the correlation across the entire
original group). We also leveraged these shuffled permutations to measure the difference
between correlations across conditions (coherence levels, early versus late responses). To do
this, we performed the paired bootstrap analyses using the same set of 10,000 permutations
– each permutation of participants was matched between the two correlations. We then
measured the effect size using Cohen’s d [40]; by convention effect sizes measured in this
way greater than 0.80 are “Large”, and likely reliable.

Model comparison

Multi-stage DDM. Our primary model of interest is an extension of the drift-diffusion model
[3] to allow for a time-varying drift rate [14]. The model specifies drift rate as a time-
varying, piecewise constant function – each shift in drift rate defines a separate stage of the
accumulation process. Critically, the endpoint of one stage leads to the starting point of the
next. Our instantiation used two stages. The free parameters were the drift rates, d1 and d2,
threshold a, non-decision time T0, and starting point x0. We refer to this model as MSDDM.

Our comparison models were matched to this MS-DDM in parameters, with selective
disabling of each key feature – the time-varying drift rate, and the connection between stages.
The first comparison model of interest was a single DDM, with continuous accumulation until
the time of response, but no change in drift rate across the entire period between cue onset
and response. We refer to this model as 1DDM, with free parameters d1, a, T0, and x0.
The second comparison model of interest was two DDMs, each fit to pre-stimulus and post-
stimulus responses separately and thus mirroring the change in drift rate found in MS-DDM,
but with the second starting point its own free parameter. We refer to this model as 2DDM,
with free parameters d1, d2, a, T0, and starting points x0,1 and x0,2. Each model was fit
to participant responses aggregated according to cue, coherence, and ISI condition. The
fitting procedure minimized the difference between the χ2 of the distribution of RTs in each
cue-coherence-ISI bin and the RT distribution generated by the chosen model at the given
parameters. Fitting was performed using a genetic algorithm (MATLAB ga) that ran for
1,000 generations per parameter, at a population size of 50 per parameter. The summed
residuals across conditions were used to calculate likelhood.
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Imaging analysis

To identify neural markers of stimulus reinstatement, we first defined patterns of activity in
ventral visual stream regions that indicated participants were processing “face” or “scene”
photographs. We then analyzed the degree to which these patterns were present during the
post-cue, pre-stimulus ISIs in Phase 4. Because no pictures were present on-screen during
this period of interest, we reasoned that greater evidence of stimulus reinstatement would
indicate that participants were recalling the cued photograph. We therefore predicted that
this reinstatement evidence would be reflected in response accuracies, response times, and
DDM model parameters.
ROI definition. We identified a region of interest consisting of voxels that (across the group)
showed preferential activation to face or scene photographs, using the following procedure.

First, for each participant, we performed a GLM analysis of BOLD signal during the
localizer task. We identified voxels that responded more to scenes or faces, relative to other
categories (univariate contrasts: faces > scenes | scrambled scenes | objects; scenes > faces
| scrambled scenes | objects). For each participant, we selected clusters in the posterior
parahippocampal region (matching the reported Parahippocampal Place Area (PPA); [19])
and posterior fusiform gyrus (matching the reported Fusiform Face Area (FFA); [18]) that
were significant at p < 0.005, uncorrected. Next, each per-participant voxel mask was
binarized; all above-threshold voxels were set to 1. To regularize the ROIs and ensure they
were consistent across participants, the resulting individual mask was then warped to match
the group average anatomical; these group-space masks were added together and the summed
image thresholded to include all voxels present in more than 90% of participants. This final
group ROI was then warped back to the individual participant space, and the result used as
the final mask for pattern analysis.
Stimulus-specific pattern analysis. We computed the pattern of activity for each target photo-
graph, across the corresponding category-preferring ROI. For each photograph in each block,
we took the average pattern of activity over the last five presentations of the photograph
during Phase 1. (The first five presentations were excluded to allow repetition suppression
and learning effects to stabilize.)

We next used these four three-dimensional patterns as a template for analyzing activity
during the post-cue, pre-stimulus ISI in Phase 4. For each trial, we computed, within the
ROI corresponding to the cued category, the pattern of activity between the time of cue onset
and the time of response or one TR before the onset of the flickering stream, whichever came
first. We then correlated this three-dimensional activity pattern with the corresponding
target pattern, defined above. These correlation values, one for each Phase 4 trial, were then
fisher-transformed and used as predictor variables in our analyses of interest. We refer to
these values as the reinstatement index.
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