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ABSTRACT 26	

Chronic infection by oncogenic Human papillomaviruses (HPVs) leads to cancers. 27	
Public health interventions, such as cancer screening and mass vaccination, radically 28	
change the ecological conditions encountered by circulating viruses. It is currently 29	
unclear how HPVs communities may respond to these environmental changes, 30	
because little is known about their ecology. Predicting the impact on viral diversity by 31	
the introduction of HPV vaccines requires answering the unresolved question of how 32	
HPVs interact. Although it is commonly believed that they do not interact (neutral 33	
theory), there are suggestions that HPV types may compete for resources or via the 34	
immune response (niche-based or non-neutral theory). Here, we applied for the first 35	
time established biodiversity measures and methods to epidemiological data in order to 36	
assess whether niche-partitioning or neutral processes are shaping HPV diversity 37	
patterns at the population level. We find that as infections progress toward cancer, 38	
HPVs communities become more uneven and a few HPVs play a stronger dominance 39	
role. By fitting species abundance distributions, we found that neutral models were 40	
always out-performed by non-neutral distributions, both in asymptomatic infections and 41	
in cancers. Our results suggest that temporally moving from a more even to a less 42	
even community implies an increase in competition, probably due to environmental 43	
changes linked to infection progression. More ecological thinking will be required to 44	
understand present-day interactions and to anticipate the future of the long lasting 45	
interactions between HPVs and humans. 46	

 47	

  48	
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SIGNIFICANCE STATEMENT 49	

Human papillomaviruses (HPVs) are very diverse. Infections by HPVs are very 50	
common and chronic infections may lead to cancers. The more oncogenic HPVs are 51	
now targetted by effective vaccines, and this has raised the question of whether there 52	
may be a viral replacement if these dominant types were removed. This is a medical 53	
version of a classical ecological controversy, namely how much biodiversity 54	
distributions and community dynamics are explained by neutral theory plays out across 55	
ecosystems. For HPVs, epidemiologic studies before and after the vaccination have led 56	
to the widespread belief that these viruses do not interact. Here, we apply different 57	
methods developed in macroecology to the best available epidemiologic data to 58	
address this issue. Consistently, we find that HPVs form non-neutral communities. 59	
Instead, competitive niche-partitioning process and dominance explain best HPVs 60	
communities. We also find that the vaccine might not change such competitive niche 61	
processes. Beyond clinical implications, this garners support that niche processes often 62	
best explain biodiversity patterns, even in human viral communities. 63	

  64	
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INTRODUCTION 65	

Distribution and abundance of species is a historical and central interest of ecology. 66	
One research school has focused on niche-based explanations to address the 67	
structuring of communities and the distributions of species across ecosystems (1). 68	
Meanwhile, neutral theories have challenged this niche-centrist view, suggesting that 69	
random dispersal, ecological drift (i.e., stochasticity in births and deaths) and speciation 70	
may better explain ecological patterns (2). Specifically, Hubbell’s Unified Neutral 71	
Theory of Biodiversity and Biogeography (UNTB) argues that species are ecologically 72	
equivalent, i.e. functionally similar (3). Both niche processes and neutrality shape 73	
metacommunity patterns (e.g., species-area or species-occupancy relationships), and 74	
thus, inferring from these patterns what potential underlying processes might have 75	
molded them has a long tradition in ecology. Fitting distributions to species abundance 76	
curves is a common way to infer such underlying processes, especially since several 77	
alternative distributions have been derived from either niche-based or neutral models 78	
(4-6). Our knowledge about host-associated microbial communities has grown mature 79	
enough to incorporate ecological approaches to elucidate multispecies interactions and 80	
dynamics. Here we apply these macroecology methods to try and understand 81	
communities of important viruses in the human virome.  82	

Whether viral communities are structured by neutral or niche processes has not been 83	
addressed at great length. For certain viruses, lineages strongly compete with one 84	
another, so that competitive exclusion occurs rapidly, some at the host-population level 85	
(e.g. Influenza viruses (7)), but also within-host during the course of the infection (e.g., 86	
Hepatitis C virus (8) or Human immunodeficiency virus (9, 10)). Indeed, at the cellular 87	
level, many different viruses have evolved mechanisms to hinder the entry of new 88	
virions into already infected host cells thus preventing from sharing intracellular 89	
resources, and precluding recombination between viral strains (e.g., in 90	
Alphaherpesviruses (11)). In this study, we will focus on Papillomaviruses (PVs), a 91	
large family of viruses, with hundreds of stable and largely divergent viral linages 92	
(known as “types” in the field; often considered as the relevant taxonomic unit of study 93	
at the genotypic and phenotypic level) that are known to coexist with each other inside 94	
the same individual hosts, often for years. 95	

PVs are a numerous family of small dsDNA viruses that infect virtually all mammals, as 96	
well as other aminotes and fishes (12). Human PVs (HPVs) are the most studied 97	
members in the family, because of their medical importance. A handful of closely 98	
related HPVs are responsible for around one third of all human cancers linked to 99	
infections (13), and HPVs are the causative agents of cancers of the cervix, vagina, 100	
anus, vulva, penis and head and neck (14). However, oncogenic HPVs are a clear 101	
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minority among the more than 200 different HPVs hitherto described: most HPVs are 102	
retrieved from healthy skin and mucosas and are never found associated to lesions; 103	
some HPVs cause benign wart-like lesions; and only a few can be classified as 104	
oncogenic (see (12) and the Papillomavirus Episteme https://pave.niaid.nih.gov/). 105	

Public health interventions to decrease the burden of HPVs-associated cancers include 106	
systematic screening to detect HPVs chronic anogenital infections –e.g. the 107	
Papanicolau test- and more recently mass vaccination against the most oncogenic 108	
HPVs. The introduction of human-driven selective pressures targeting a subset of the 109	
circulating PV diversity implies an important change in the ecological pressures to virus 110	
circulation (12). Therefore, evolutionary and ecological considerations of vaccines and 111	
PV dynamics have both fundamental and clinical implications. It is currently unclear 112	
how viral communities might respond to these environmental changes. This is often 113	
referred to in the PV field as the type replacement problem, the underlying question 114	
being whether upon a hypothetical disparition of the highly oncogenic HPVs targeted 115	
by vaccination their niche (in terms of oncogenicity and cancer burden) will be occupied 116	
by other HPVs. Predicting the impact caused by the introduction of HPVs vaccines on 117	
viral diversity requires an answer to the still unresolved question of interactions 118	
between HPVs.	119	

Little is known about interactions between HPVs. The most common hypothesis for 120	
interactions between HPVs is simply that they do not interact (15-18). Studies using 121	
classic statistical methods have concluded that infections by HPVs occur randomly and 122	
lead to cervical disease independently, so that type replacement after vaccination is 123	
unlikely (16-20). However, theoretical works at both the within-host (21) and 124	
epidemiological levels (22-24) have supported the idea that HPVs infecting the same 125	
host likely interact with one another via the immune system (both innate and adaptive). 126	
Most vaccine trials have not detected significant increases in prevalence of non-127	
vaccine HPVs in vaccinated healthy women (20, 25) which seems to support the 128	
neutrality hypothesis. Nevertheless, two HPVs have been flagged as potentially having 129	
a competitive advantage (17) and certain non-vaccine types, including probably 130	
oncogenic HPVs, displayed higher prevalence in vaccinated patients (26).	131	

Here, we have applied ecological methods to epidemiological data to study which intra-132	
host processes (niche or neutral) are more likely to explain epidemiological (i.e., 133	
metacommunity) patterns of HPVs communities. 134	
  135	
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 136	

RESULTS 137	

Diversity patterns change with disease progression 138	

Communities of HPVs in the uterus cervix are by far the best described across all 139	
stages of the natural history of the disease, from initial asymptomatic infections to 140	
invasive cancers. In order to describe cervical HPVs community composition, we 141	
performed a correspondence analysis (CA) using viral prevalence data in four different 142	
clinical stages and in different geographical regions (see Methods for details). HPVs 143	
were stratified based on their carcinogenicity according to the International Agency for 144	
Research on Cancer (IARC) classification: carcinogenic HPVs (HPV16, 18, 31, 33, 35, 145	
39, 45, 51, 52, 56, 58, 59); probably or possibly carcinogenic HPVs (HPV26, 30, 34, 146	
53, 66, 67, 68, 69, 70, 73, 82, 85, 97); these two groups are often referred to in the 147	
literature as “high-risk” HPVs; finally, HPVs not classifiable as to their carcinogenicity to 148	
humans, typically referred in the literature as non-oncogenic or “low-risk” HPVs (HPV6, 149	
11, 44, 74, 7, 40, 91, 57, 81, 29). Our results (Figure 1A) are consistent with the current 150	
understanding of cervical disease as they clearly show that HPVs classified as non-151	
oncogenic are more strongly associated with viral communities in asymptomatic and 152	
low-grade lesions, whereas oncogenic HPVs are mainly associated to high-grade and 153	
cancer communities. 154	

While HPVs can infect various anatomical regions of the body and are associated with 155	
a number of cancers, only the uterus cervix is systematically screened for early cancer 156	
detection. Our knowledge of the natural history of the infection in other anatomical sites 157	
is thus poorer and the quality and amount of data about HPVs in asymptomatic 158	
infections or in pre-neoplastic lesions also lag behind. Consequently, for the vagina, 159	
vulva, anus, penis, and head and neck we only have reliable data for HPV prevalence 160	
in cancers. The results of our CA including these cancer communities (Figure 1B) 161	
showed that, similar to cervical cancers, oncogenic HPVs were found to be strongly 162	
associated to these cancer communities (Figure 1B). Remarkably, we found that 163	
HPV26 (classified as probably/possibly carcinogenic) was strongly associated with 164	
other cancer communities different to the cervix, mainly due to the high prevalence of 165	
HPV26 in head and neck cancers. 166	

Communities of HPVs become more uneven with advancing disease progression 167	

We have analysed the diversity profile of HPVs communities across the different 168	
stages of the cervical infection leading to cancer (Figure 2A), as well as for the different 169	
cancers associated to HPVs infections (Figure 2B). A single community was defined as 170	
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the assemblage of HPVs recorded at each stage of the infection in each anatomical 171	
region. Diversity was proxied using the diversity index (q) at different orders: species 172	
richness (q=0), Shannon entropy (q=1), and the inverse of Simpson index (q=2). The 173	
more uneven the distribution of relative abundances, the more steep the diversity 174	
profile declines with the increasing order of the diversity index. We observed first that 175	
all cervical communities exhibited similar levels of HPV species richness (q=0), 176	
independently of the stage of progression. For higher orders of the diversity index we 177	
observed a decline with the progression of the disease, indicating that in advanced 178	
stages of the infection (cancer and high-grade lesions), viral communities become less 179	
even in comparison with early stages (asymptomatic and low-grade lesion). HPVs 180	
communities in asymptomatic and low-grade lesions were moderately uneven while 181	
high lesion grades and cancer displayed the steepest slopes and thus were highly 182	
uneven communities (Figure 2A, Table S1). Since the number of different HPVs is not 183	
different in the various communities, we interpreted that the observed changes in 184	
evenness during cancer progression are likely due to changes in the species 185	
interaction dynamics. 186	

We also found that the species richness of HPVs in cervical cancer communities was 187	
highest compared to other cancers (Figure 2B, Table S1), whereas head and neck and 188	
anal cancer communities were the least rich. These differences in terms of diversity 189	
were sharply reduced with increasing values of q. Overall, communities of HPVs in 190	
infection-related cancers of various anatomical regions were highly uneven 191	
communities with q=2 ranging from 1.8 to 3, demonstrating that only a few HPVs 192	
completely dominate cancer communities.  193	

Very few types dominate HPV communities 194	

In order to improve the ecological understanding of HPVs, we have also studied the 195	
species abundance distribution (SAD) of each viral community. We represented these 196	
distributions using rank-abundance plots, which were generated after fitting different 197	
alternative SADs to the data. Rank-abundance distributions (RADs) were drawn by 198	
representing HPV rank in a descending order on the abscissa and the corresponding 199	
HPV frequencies on the ordinate axis. We confronted the following five alternative 200	
models with each data set to assess how well each accounted for the data: Broken-201	
stick (27), geometric distribution (28), Power law (29), Poisson lognormal (30), and the 202	
Zero-sum multinomial (3) (Table S2). We assessed robustness of the results by data 203	
resampling (see Methods for more details). This resampling strategy was applied to all 204	
anatomical sites and in the case of the cervix separately to all stages in the natural 205	
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history of the infection and for data from asymptomatic infection in the cervix after 206	
stratifying by geographical origin and by age.  207	

For communities of HPVs in asymptomatic infections and in low-grade lesions, the 208	
geometric distribution and the broken-stick model displayed the lowest AICc values 209	
(with ΔAICc<3 between them) compared with the other candidate distributions (Figure 210	
3, Table S3). Overall, the best fits for communities in the early stages of the natural 211	
history of the disease corresponded to a niche-partitioning model (broken-stick or 212	
geometric) or to independence of interactions between HPVs (geometric). In the cases 213	
in which broken-stick and geometric were tied, the lognormal distribution (compatible 214	
with non-neutral interactions between HPVs) systematically outperformed the neutral 215	
model ZSM (compatible with neutral interactions between HPVs). Thus, in the cases of 216	
such ties for conflicting models, it is more likely that niche-partitioning and not neutral 217	
processes underlie these communities. Overall, our results suggest that during early 218	
stages of the natural history of the HPV infection, niche-partitioning processes structure 219	
communities of HPVs, but create a population level pattern that can be difficult to 220	
distinguish from neutrality. We found similar results across geographical regions and 221	
ages (see Table S3 in Supplementary Material).  222	

For communities in high-grade lesions and in cervical cancer the best fit corresponded 223	
always to the lognormal model (Figure 3, Table S3). This was also the case for 100% 224	
of the randomly generated communities. The lognormal distribution also fitted best all 225	
cancer communities, independently of anatomical location (Figure 4, Table S3). Only in 226	
one community was the lognormal statistically tied to another distribution (the ZSM, 227	
ΔAICc=2.8) and that was in cervical carcinoma using a more restricted dataset (Figure 228	
4, Table S3). However for this same community in the meta-analysis dataset the ZSM 229	
was out-performed by the lognormal and by other distributions (Figure 4). Except for 230	
this one tie, the ZSM was systematically outperformed by the lognormal in all our 231	
datasets. Thus, in the late stages of the natural history of the infection, viral 232	
communities are structured by non-neutral interactions between HPVs. 233	

Remarkably, the strong drop in prevalence between the first ranked HPV type and the 234	
rest (see Figures 3 and 4) was not captured well by any of the theoretical model 235	
distributions used. This gap was especially large in the cancer data in all anatomical 236	
locations, where HPV16 largely dominates other HPVs, particularly for head and neck 237	
cancers. Thus, all models (even those assuming non-neutral interactions) anticipate 238	
more evenness in these first few ranked types than it is actually observed. This failure 239	
of all models at capturing the steep drop at the beginning of the curve, suggests that 240	
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the strong dominance of HPV16, combined with the long tail of rare HPVs, are not 241	
easily captured by current SAD models.  242	

Interactions among HPVs may remain unchanged post-vaccination 243	

We have also fitted SADs to the few available pre- and post-vaccination asymptomatic 244	
cervical data, in order to assess the potential impact of vaccines on communities of 245	
HPVs. We found that the best-fitting SAD models for both communities remained the 246	
geometric distribution and the broken-stick model (followed by the lognormal 247	
distribution with ΔAICc<9 in both cases), suggesting that the novel vaccination 248	
pressures might not change the processes driving type distribution in HPV communities 249	
(Figure 5, Table S3). Therefore, even if the vaccine reduced the prevalence of the 250	
targeted viruses, which often dominate the community, interactions in the viral 251	
community in asymptomatic infections may remain sufficiently uneven to reject 252	
neutrality. 253	

DISCUSSION  254	

We analyse here the diversity patterns of HPVs along the gradient of clinical 255	
presentations of infection, from asymptomatic to cancer. With the ultimate aim of 256	
understanding the nature of interaction dynamics in oncogenic pathogen communities, 257	
we specifically tried to discern between neutral and non-neutral viral interactions in 258	
HPV communities. 259	

First, we show the sharp distinction between communities of HPVs in health and 260	
disease. On one hand, we confirm the clear gradient in HPV repertoire and prevalence 261	
(Figure 1), with HPVs classified as non-oncogenic being more strongly associated to 262	
viral communities in asymptomatic and low-grade lesions, and oncogenic HPVs mainly 263	
associated to high-grade and cancer communities. On the other hand, we uncover the 264	
transition from an evenly distributed community to a highly uneven community along 265	
the natural history of these infections (Figure 2). We find that species richness changes 266	
little with disease progression while dominance clearly increases, suggesting that there 267	
is an increase in the strength of the interactions of the types. 268	

Second, our analyses of global data on viral prevalence in different anatomical sites 269	
using macroecology methods show the low explanatory power of neutrality to account 270	
for viral community diversity (Figure 3 and Figure 4). We find that interactions in the 271	
initial steps of the carcinogenic process are best fitted by a niche partitioning model, 272	
while those in the advanced steps correspond best to dominance, non-neutral 273	
interaction model.  274	
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Given the natural history of infections by HPVs, niche partitioning appears biologically 275	
meaningful in the initial steps of the infection. The target cells for HPVs are located in 276	
the basal layer of the epithelium, and virions reach them through epithelial abrasions 277	
and microtroauma. Since the infection targets are not constantly exposed and available 278	
for viral entry, different viruses compete for access to basal cells through these entries 279	
of the epithelium. At any one time the availability of the target cell resource is thus 280	
limited and dependent on the stochastic opening up of abrasions.  281	

Previous epidemiological studies of HPVs prevalence in non-cancer communities have 282	
used statistical approaches so that if the probability of finding a pair of HPV types 283	
together in a co-infection is lower than expected by chance, it is then assumed that 284	
these two HPVs compete. The most common of these approaches is odds ratios 285	
(reviewed in (16)), while others have used logistic regression models (e.g. (31)). 286	
Recently a hazard ratios approach was used on cohorts of women, where HPV 287	
acquisition or clearance was analysed with Cox proportional hazards regression (18). 288	
All of these studies have generally found that pairwise co-occurrence patterns do not 289	
significantly deviate from independence. This appearance of independence is also 290	
found by our study in the asymptomatic and low-grade lesion HPV communities (but 291	
not in high-grade lesions nor cancer) due to the statistical tie in AICs that we find 292	
between the broken-stick and the geometric distribution. Our results demonstrate the 293	
difficulty in inferring local processes from global patterns, when both independence and 294	
niche processes can create similar patterns (32-34). The broken-stick (niche 295	
partitioning model) and the geometric distribution (statistical independence model) are 296	
derived from completely opposite sets of assumptions and yet they are, in fact, related 297	
because the geometric distribution is the discrete equivalent of the exponential 298	
distribution which was shown to generate the same RAD as the broken-stick (28). In 299	
this study, we argue that, given that the Poisson lognormal systematically outperformed 300	
the ZSM in all cases, niche partitioning is more likely than neutrality as a explanatory 301	
scenario for viral interactions in the early stages of the HPVs infection (independence 302	
being a special case of neutrality). This result matches also similar studies for other 303	
ecosystems, where neutrality performs poorly against the lognormal (5, 35, 36). 304	

The movement towards a lognormal distribution with disease progression, coupled with 305	
reduced community evenness suggests an increase in competitive ability of some 306	
types in the community during carcinogenesis. Disease progression towards cancer is 307	
accompanied by a change in the local environment, namely an increase in immunity 308	
activity (e.g., more immunity effectors, cytokines, etc.) and the types persisting are 309	
using more of the host resources (i.e., leaving less resource and space for other types 310	
to invade). Viral loads have been shown to increase with disease progression (37) and 311	
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it is possible that this may increase competition for newly open abrasions in the 312	
mucosa. Relatedly in other anatomical sites, the biology of the site may play a role in 313	
increasing the strength of the dominance of the oncogenic types (e.g., head-and-neck 314	
and anal cancers have the lowest inverse Simpson index). It is not known whether this 315	
could be due to less available resources or to a more active immune response (e.g., 316	
being close to lymph nodes) in these particular body sites. It should be noted that this 317	
potential increase in competition is not strong, because if this were the case the high-318	
grade and cancer communities would be fitted best by a power law or by other less 319	
even SADs, which is not the case. 320	

Post-vaccination data were best fitted by the same distribution as the pre-vaccination 321	
data, suggesting then that the vaccine is not changing the underlying processes that 322	
govern HPV type distributions in healthy women. While the exact kind or relative 323	
strengths of interactions between types have yet to be evaluated, there is a need to 324	
unravel the complex interactions between types (direct or indirect) in order to better 325	
evaluate the effect of the vaccines long-term. It is important to highlight that the dataset 326	
used to perform this analysis was collected over only three years after vaccine 327	
implementation, and are from samples across the USA where vaccination coverage is 328	
very heterogeneous and often very low in some areas. Thus, these conclusions should 329	
be seen as preliminary at best. To evaluate potential type replacement in the post-330	
vaccine era will require other forms of type-specific studies of non-cancer communities 331	
that are sufficiently long-term to distinguish true changes in type prevalence from 332	
natural fluctuations or noise and that can take into account sampling biases from 333	
detection methods (e.g., the unmasking effect; (16)). 334	

In order to check the validity of our results and rule out the possibility of sampling 335	
artefacts in our analyses, we checked the effect of the sample size in the selection of 336	
the best-fit model (Figure S1). We found that in undersampled communities, the 337	
probability to best-fit a Power law model increases. Indeed, the lognormal distribution is 338	
believed to better-fit large datasets. Previous published studies showed that in about 339	
500 SADs, the best fit SAD model changed depending on whether the community had 340	
been fully censored or not [35]. These study also found that “fully censored” 341	
communities were best fit by the lognormal, while “incompletely sampled” communities 342	
were best fit by the Power Law model [35]. We also found that the lognormal best 343	
described even the smallest datasets. Hence, we can conclude that lognormal fits are 344	
not a sampling artefact. 345	

To our knowledge, the only other examples of host-associated microorganism 346	
communities that have been analysed for niche and neutral patterns using similar 347	
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methods are bacterial. Cobey and Lipsitch (38) found that both competition and neutral 348	
processes, mainly through immunity interactions, best explained Streptococcus 349	
pneumoniae diversity patterns across observed carriage populations. Jeraldo and 350	
coworkers (39) investigated the roles of niche and neutral processes in shaping 351	
gastrointestinal microbiome communities. Using their own method that combines 352	
ecological measures with phylogenetic analysis, they found that while community 353	
RADs were explained well by the ZSM, further analysis of genomic data was consistent 354	
with niche selection as the dominant process. This, once again demonstrates that 355	
apparently neutral-like patterns can be generated by underlying non-neutral processes. 356	
Bacterial and viral communities have very marked differences so more studies into the 357	
roles of niche and neutral processes shaping viral communities are needed. 358	

One possible future direction would be to assess whether non-cancer communities of 359	
HPVs could be described by emergent neutrality theory (40-42), where patterns that 360	
appear neutral are the outcome of competition and evolutionary processes, such that 361	
species evolve to be functionally similar and thus coexist. Most of the HPVs datasets 362	
we examined appear as though they could be explained by multimodal SADs, possibly 363	
the two-mode Poisson lognormal distribution, which have been found to explain several 364	
empirical datasets (42). Indeed, Alphapapillomaviruses infecting the mucosa are in 365	
many respects functionally similar with only a few clear life history differences in the 366	
functions of the oncogenes of oncogenic and non-oncogenic viruses (43). Moreover, as 367	
discussed previously (21), data on competition experiments under varying conditions 368	
are still needed that to best characterize HPV type interactions. As environmental 369	
conditions change, the relative importance of niche and neutral processes can shift and 370	
are not static. In addition, it has been well documented that large-scale diversity 371	
patterns can be limited in their ability to infer local interactions or to tell how they will 372	
change when perturbed (34). Given this and that the PVs are a highly diverse family of 373	
viruses that readily coexist, signals of underlying interactions maybe be subtle. 374	
Therefore, we call on the HPV community to not be over confident in predictions 375	
generated by methods not designed to infer ecological interactions and, instead, seize 376	
the opportunity to investigate the interesting ecology of these viruses more 377	
mechanistically. 378	

  379	
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 380	

MATERIALS AND METHODS 381	

Dataset 382	

For this study the unit of analysis is the HPV at the level of type, according to the 383	
definition of the International Committee for the Taxonomy of Viruses, i.e., when we 384	
write “different HPVs” we mean “different types of Human Papillomaviruses”. For time-385	
trends analyses, worldwide HPV type-specific prevalence values in different stages of 386	
the natural history of the cervical HPV infection (i.e. asymptomatic, low-grade 387	
squamous intraepithelial lesions (LSIL), high-grade squamous intraepithelial lesions 388	
(HSIL) and invasive cervical carcinoma (ICC)) were obtained from a meta-analysis 389	
previously published (44) (Table S4). For site-specific analyses, worldwide HPV type-390	
specific prevalence values in squamous carcinomas of different anatomical locations 391	
(i.e. cervix, anus, penis, vulva, vagina and head and neck) were obtained from the 392	
retrospective cross-sectional study by the Catalan Institute of Oncology (45-50) (Table 393	
S5). We also obtained information on HPV prevalence values stratified by continent for 394	
asymptomatic and invasive carcinomas of the cervix from the WHO/ICO Information 395	
Center (https://hpvcentre.net) (Table S6 and S7). Finally, HPV type prevalence values 396	
both pre- and post-vaccination asymptomatic cervical communities were obtained from 397	
a published study (51) (Table S8). Communities were defined as the species 398	
assemblages recorded at each stage of the infection in each anatomical region. 399	

Correspondence Analysis 400	

HPV type-specific prevalences were subjected to dimensionality reduction techniques 401	
to analyse HPV communities on the basis of their type composition. Correspondence 402	
analysis (CA) consists in a multivariate statistical method widely used to summarize the 403	
lack of independence between objects represented through rows and columns of a 404	
matrix (here communities and HPV type prevalences, respectively) as a small number 405	
of derived variables, called axes. By definition, the axes are ordered according to the 406	
amount of variance in the data explained by them. Data were plotted on the first two 407	
axes with the information on the amount of variance explained in these two 408	
dimensional representations.  409	

Non-parametric measures of diversity 410	

We used Hill numbers to estimate diversity within each community. Hill numbers were 411	
computed using the following equation for q ≠ 1(52).  412	
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 413	

where S is the number of species sampled, pi is the species frequency of the ith 414	
species, and the parameter q, which is the order of diversity, determines its sensitivity 415	
to species frequencies. To calculate diversity within each community, p was calculated 416	
from the vector of the relative abundance of N species. As q increases, the qD is more 417	
strongly affected by the abundances of the most dominant species and rare species 418	
are weighted less. The Hill numbers are directly related to commonly used indexes. 419	
When q = 0, 0D is equivalent to species richness and when q = 2, 2D equals the inverse 420	
Simpson index. The measure is undefined when q = 1, but the limit as q approaches 1 421	
equals the exponential of Shannon entropy. 422	

We chose to use this diversity measure because it quantifies the effective number of 423	
species in the dataset, which refers to the number of equally abundant species 424	
necessary to produce the observed value of diversity. Moreover, these effective 425	
numbers obey the replication principle, which states that if two communities with X 426	
equally abundant species are combined, then the diversity of the combined community 427	
should be twice that of the original communities (53). Moreover, the unit of these 428	
diversity indices is the “effective number of species” (ENS) and thus values of diversity 429	
are comparable across different metrics. Hill numbers were computed using the Vegan 430	
package implemented in R (http://www.r-project.org/).  431	

Species Abundance Distribution 432	

We studied the HPV type-specific distribution of each community by using species 433	
abundance distribution (SAD) plots. Model fitting was performed using the sads 434	
package implemented in R and visualized by means of RAD plots. We evaluated six 435	
models: Geometric, Zero-sum multinomial, Poisson Lognormal, Weibull and Power law. 436	
These models were chosen because they are most commonly considered to be of 437	
ecological relevance. The estimated parameters were inferred by maximum likelihood 438	
methods. Model diagnostics were computed by using quantile-quantile and percentile-439	
percentile graphs of the observed vs. predicted abundances. Finally, the observed 440	
SADs were compared with the hypothetical models using a Bayesian approach: an 441	
Akaike Goodness of fit calculation. The lower the calculated Akaike information 442	
criterion (AICc) value, the better the fit. 443	

Random communities 444	

We generated 1,000 random communities, drawing for each HPV a prevalence value 445	
within the 95% Confidence Intervals (CI) of the prevalence in the real data. These 446	

€ 
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synthetic communities were used to calculate the 95% CI of Hill numbers. We also 447	
used these randomly generated communities to calculate the number of times that 448	
each RAD model best fit each community. When differences in the AICc values among 449	
models were below 3, these models were considered as equally probable.   450	
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 458	

TABLES AND FIGURES 459	

Figure 1: Correspondence analysis using type prevalences for communities of HPVs. A) Includes 460	
data for cervical communities stratified for each continent in asymptomatic (Asym), low-grade lesions 461	
(LSIL), high-grade lesions (HSIL) and invasive cancer (ICC) communities. B) Includes different cancer 462	
anatomical locations: cervix, vagina, vulva, anus and head and neck (HN). Full circles, oncogenic HPVs 463	
(group 1 IARC classification); squares, probably/possibly oncogenic HPVs (group 2A/2B IARC 464	
classification); triangles, uncertain oncogenic HPVs (group 3 IARC classification); empty circles, non-465	
evaluated oncogenic HPVs (non-evaluated by IARC) 466	

Figure 2: Diversity (qD) profiles for A) different stages of HPV infection in cervical lesions 467	
(Asymptomatic, Low-grade Lesions, High-grade Lesions and cancer) and B) squamous carcinomas 468	
of different anatomical regions (cervix, vulva, vagina, anus, penis and head and neck). Three orders 469	
of diversity (q = 0, 1 and 2) were calculated at each stage of the infection. As parameter q increases, rare 470	
types are weighted less and q becomes a measure of evenness. 471	

Figure 3: Rank abundance distribution for cervical communities of HPVs at different stages of 472	
cervical infection. A) Asymptomatic (N=86,696); B) Low-grade Lesions (N=46,402); C) High-grade 473	
lesions (N=51,616) and D) Invasive Cancer (N=50,084). Model fits are also shown for the 1000 random 474	
communities resampled from empirical data. Fits are shown for 5 models: Broken-Stick (orange), 475	
Lognormal (green), Geometric (violet), Power law (blue) and Zero Sum Multinomial (brown). The inset 476	
shows the calculated Akaike Information Criterion for the best fit (in brackets), and the difference for the 477	
second and third best-fits. Broken-stick curve is not visible as it overlaps with the geometric model one. 478	

 479	

Figure 4: Rank abundance distribution for cancer communities at different anatomical locations. A) 480	
Cervix (N=8,977); B) Vulva (N=488); C) Vagina (N=303), D) Penis (N=334), E) Anus (N=438), Head and 481	
Neck (N=453) Model fits are also shown for 1,000 random communities resampled from empirical data. 482	
Fits are shown for 5 models: Broken-Stick (orange), Lognormal (green), Geometric (violet), Power law 483	
(blue) and Zero Sum Multinomial (brown). The inset shows the calculated Akaike Information Criterion for 484	
the best fit (in brackets), and the difference for the second and third best-fits. Note the very large gap for 485	
the first and the second more frequent HPV. Broken-stick curve is not visible as it overlaps with the 486	
geometric model one. 487	

Figure 6: Rank abundance distribution for A) pre-vaccination (N= 1479) and B) post-vaccination 488	
(N=575) asymptomatic cervical HPV communities. Model fits are also shown for the 1000 random 489	
communities resampled from empirical data. Fits are shown for 5 models: Broken-Stick (orange), 490	
Lognormal (green), Geometric (violet), Power law (blue) and Zero Sum Multinomial (brown). The inset 491	
shows the calculated Akaike Information Criterion for the best fit (in brackets), and the difference for the 492	
second and third best-fits. Broken-stick curve is not visible as it overlaps with the geometric model one. 493	

 494	

 495	
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