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Abstract 

Background: Central African hunter-gatherer Pygmy populations have reduced body size compared with 

their often much larger agricultural non-Pygmy neighbors, potentially reflecting adaptation to the 

anatomical and physiological constraints of their lifestyle in tropical rainforests. Earlier studies 

investigating the genetics of the pygmy phenotype have focused on standing height, one aspect of this 

complex phenotype that is itself a composite of skeletal components with different growth patterns. Here, 

we extend the investigations of standing height to the variability and genetic architecture of sitting height 

and subischial leg length as well as body mass index (BMI) in a sample of 406 unrelated West Central 

African Pygmies and non-Pygmies. 

Results: In addition to their significantly reduced standing height compared with non-Pygmies, we find 

Pygmies to have significantly shorter sitting heights and subischial leg lengths as well as higher 

sitting/standing height ratios than non-Pygmies. However, while male Pygmies had significantly lower 

BMI compared with male non-Pygmies, the BMI of females were instead similar. Consistent with prior 

observations with standing height, sitting height and subischial leg length were strongly correlated with 

inferred levels of non-Pygmy genetic admixture while BMI was instead weakly correlated, likely 

reflecting the greater contribution of non-genetic factors to the determination of body weight compared 

with height. Using 196,725 SNPs on the Illumina Cardio-MetaboChip with genotypes on 358 Pygmy and 

169 non-Pygmy individuals together with single- and multi-marker association approaches, we identified 

a single genomic region and seven genes associated with Pygmy/non-Pygmy categorization as well as 9, 

10, 9, and 10 genes associated with standing and sitting height, sitting/standing height ratio, and 

subischial leg length, respectively. Many of the genes identified have putative functions consistent with a 

role in determining their associated trait as well as the complex Central African pygmy phenotype.  

Conclusions: These findings highlight the potential of modestly sized datasets of Pygmies and non-

Pygmies to detect biologically meaningful associations with traits contributing to the Central African 

pygmy phenotype. Moreover, they provide new insights into the phenotypic and genetic bases of the 

complex pygmy phenotype and offer new opportunities to facilitate our understanding of its complex 

evolutionary origins.  
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Background 

Central African hunter-gatherer populations have historically been called “Pygmies” in reference to their 

proportionally reduced body size compared with their agricultural non-Pygmy neighbors [1]. Among 

Pygmy males, mean adult standing height ranges from 142 cm among the Efe from eastern Democratic 

Republic of Congo (DRC; 142 cm) to 161 cm among the Twa from western DRC (161 cm), averaging 

150.6 cm across 23 Central African Pygmy populations (standard deviation [SD]=6.7 cm) [2,3]. This 

average is notably shorter than the average adult standing height of 167.3 cm among males from 252 Sub-

Saharan non-Pygmy populations (SD=5.7 cm) [3]. Nevertheless, no discontinuity in adult standing height 

exists among Pygmies and non-Pygmies, and contemporary populations are categorized as Pygmy based 

on both cultural criteria and adult standing height [1,3-7]. 

It has been hypothesized that the diminutive body size of Central African Pygmies is the outcome 

of adaptive processes in response to hunter–gatherer lifestyles in tropical rainforests with high levels of 

pathogen exposure [8]. Hypotheses for the basis of adaptation have considered morphological adaptation 

to thermoregulation in a hot and humid environment [9], metabolic costs of hunting and gathering in an 

environment in which food is scarce [10-12], and an early onset of reproduction in a context of high 

mortality rates [13]. Physiological studies in both West- and East-Central African Pygmies have found 

altered glucose homeostasis, insulin secretion, and free fatty-acid profiles in the presence of normal 

human growth hormone (HGH) levels [14,15]. In addition, reduced growth rates during the first two years 

of life [16] as well as adolescence [17,18] compared with non-Pygmies have been reported, possibly 

reflecting perturbation of the insulin-like growth factor 1 (IGF1) [19,20] and HGH [21] receptor signaling 

pathways [22]. Limitations on physiological data, however, together with a paucity of demographic, 

epidemiological, and paleoanthropological data for Central Africa have contributed to the importance of 

genetics for assessing hypotheses about contemporary pygmy body size and its evolution [23]. 

Population-genetic studies have inferred a probable common ancestral origin for West Central 

African Pygmy populations ~3,000 years ago and for West- and East-Central African Pygmy populations 

~25,000 years ago, following their divergence from ancestral Central African non-Pygmy populations 

~50,000-70,000 years ago [24-28]. Substantial levels of non-Pygmy genetic admixture have been 

observed across Central African Pygmy populations [24-27,29-31], correlating positively with adult 

standing height [32-34]. The general genetic difference between Pygmies and non-Pygmies together with 

the correlation of genetic admixture and standing height suggests that adult body size differences among 

Central African Pygmies and neighboring non-Pygmies are attributable in large part to genetic factors, 

arguing against a view that diminutive Central African pygmy body size is the consequence solely of 

phenotypic plasticity in a challenging nutritional and parasitic environment [8]. 

Over the past ten years, numerous genome-wide association studies (GWAS) have sought to 

identify genetic factors determining adult standing height [35-51], a high-heritability trait (≥69% [52-54]) 

despite being strongly influenced by environmental factors [55,56]. The largest study to date identified 

697 common single-nucleotide polymorphisms (SNPs) significantly associated with adult standing height 

in a cohort of ~250,000 individuals of recent European ancestry that together explained 16% of the 

variance and 20% of the heritability of adult standing height in their cohort [51]. Recently, two GWAS on 

separate admixed Afro-American cohorts identified novel loci significantly associated with adult standing 

height [57,58], illustrating the potential of populations with a component of recent African ancestry to 

contribute new information to the study of adult standing height. In this context, Central African Pygmy 

and non-Pygmy populations—with marked differences in adult standing height that are strongly 

correlated with levels of genetic admixture—provide a potentially powerful framework within which to 

understand the genetic basis of adult human height. 

A number of recent studies explored the genetic basis of adult standing height variation in Central 

Africans, comparing genome-wide SNP data on ≤3 Pygmy populations and their non-Pygmy neighbors 

[33,34]. These studies uncovered signatures of differential polygenic adaptation between Pygmies and 

non-Pygmies primarily in genomic regions containing genes associated with immunity and metabolism, 

as well as evidence of differential signatures in Western and Eastern Pygmies suggesting a partially 
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convergent origin of the pygmy phenotype in these groups. Perry et al. [34] further identified genetic 

associations with standing height that included four regions previously implicated in adult standing height 

variation in Europeans. However, no association was detected with the ~100 European standing-height-

associated SNPs present in these modestly sized datasets of 67–169 Pygmies and 58–61 non-Pygmies, 

strongly suggesting that the differing stature of Pygmies and non-Pygmies is attributable at least in part to 

genetic factors that have arisen since the ancestral split between Central Africans and Europeans. 

While these recent studies have focused on the differing standing height of Central African 

Pygmies and non-Pygmies, other morphological differences also exist between these two groups. For 

example, Pygmy body weight appears proportionally more reduced relative to standing height compared 

with non-Pygmies [59,60], a difference that cannot be wholly explained by differential nutrition levels in 

Pygmies and non-Pygmies [61]. In the context of the differential diets of hunter-gatherer Pygmies and 

agriculturalist non-Pygmies, and the greater seasonal variation in food availability experienced by hunter-

gatherers compared with agriculturalists, such a difference might reflect the coevolution of differences in 

energy usage and storage in response to their different lifestyles. In addition, craniofacial and skeletal 

dissimilarities are also evident, including skull morphology [59,62] as well as leg and forearm length 

[59,63] where Pygmies generally have shorter legs and forearms relative to trunk length compared with 

non-Pygmies, potentially reflecting evolutionary changes in shared endoskeletal development pathways in 

response to the anatomical constraints of Pygmy hunting and gathering activities in the tropical rainforest. 

The reported dissimilarities in trunk and leg length patterns accord with their differential growth patterns 

in response to nutritional [64,65] and health [64] factors that vary between hunter-gatherer Pygmies and 

agriculturalist non-Pygmies [66-68], and are consistent with the view that both common and distinct 

pathways contribute to the determination of upper and lower body size [44]. In this context, while genes 

contributing to both trunk and leg length determination may be detected by genetic studies investigating 

standing height variation in Central Africans, those distinct to each trait may not because of the 

confounding effects of their variable contributions to standing height across groups. Thus, a joint analysis 

of variability in trunk and leg lengths in Pygmies and non-Pygmies might disentangle their relative 

contributions to Pygmy short stature and provide a more complete picture of the genetic architecture and 

anatomical constraints underlying the diminutive body size of contemporary Central African Pygmies. 

Here, using body size and weight measurements available for individuals from seven Pygmy and 

three non-Pygmy populations from West Central Africa (Figure 1; Table 1) together with a genome-wide 

SNP data, we investigate the genetic basis of standing and sitting height, and subischial leg length in 

Central Africans. Our sample set includes 358 Pygmy and 169 non-Pygmy individuals genotyped on the 

Illumina Cardio-MetaboChip [69], a SNP genotyping microarray that interrogates a set of 68,126 SNPs 

previously identified in well-powered GWAS conducted by the Body Fat Percentage [70], 

CARDIoGRAM (coronary artery disease and myocardial infarction) [71] DIAGRAM (type 2 diabetes) 

[72], GIANT (anthropometric traits) [45,73,74], Global Lipids Genetics (lipids) [75], HaemGen 

(hematological measures) [76], ICBP (blood pressure) [77], MAGIC (glucose and insulin) [78-80], and 

QTIGC (QT interval) [81,82] consortia in addition to 146,453 SNPs chosen to facilitate fine-mapping of 

the genomic regions surrounding these 68,126 SNPs. The Cardio-MetaboChip therefore allows us to both 

investigate potential associations between the 1,050 SNPs associated with adult standing height variation 

[45] in Europeans with adult standing height variation in Central Africans. Moreover, it will allow us to 

explore Pygmy/non-Pygmy genetic differences in genes previously implicated in the determination of 

anthropometric, metabolic, and physiometric traits that we would expect to have been subject to historical 

natural selection under the hypotheses proposed for the evolution of the diminutive body size of Central 

African Pygmies [8-13].  

Using a mixed-effect variance components model to correct for population stratification together 

with a multi-marker gene-based association method, we investigate the genetic determination of adult 

standing and sitting height, subischial leg length, and the ratio of sitting to standing height to identify 

genes and variants specific to their variation in Pygmies and in non-Pygmies. We identify three genomic 

regions containing SNPs with significant allele-frequency differences between Pygmies and non-

Pygmies, and numerous genes significantly associated with each considered trait of which many have 
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known functions compatible with a deterministic role in Central African body size. Our results shed new 

light on the complex genetic architecture of the Central African pygmy phenotype, and highlight novel 

pathways contributing to its height and metabolic aspects that provide new opportunities for more 

comprehensive comparisons of Pygmies and non-Pygmies. 

Results 

Our objective was to perform a GWAS to advance our understating of the genetic basis of phenotypic 

differences between Central African Pygmies and their non-Pygmy neighbors, categorized as such based 

solely on cultural criteria and not on adult standing height (see Materials and Methods). Unlike normal 

GWAS where homogeneity among samples is desirable, we were instead conducting a GWAS in a more 

complex situation where significant phenotypic and genetic differences that provide potentially greater 

power to detect biologically meaningful associations are to be expected. We therefore first had to 

establish the levels phenotypic and genetic diversity that existed in our sample set to facilitate the design 

of the association analyses that we will perform. 

Differences in measured traits between Pygmies and non-Pygmies 

We first investigated whether the height and weight traits with measurements available for our sample set 

exhibited significant differences between Pygmies and non-Pygmies. Of the 527 individual in our sample 

set, we had trait measurements available for 115 Pygmy and 44 non-Pygmy individuals representing 

seven Pygmy and three non-Pygmy populations from West Central Africa (Additional File 1: Table S1). 

Among the 115 Pygmies in our sample set, average male standing height was 155.67 cm 

(SD=6.55) while average female standing height was 148.95 cm (SD=5.82), in contrast to the 44 non-

Pygmies whose average male and female standing heights were 167.21 cm (SD=4.61) and 154.45 cm 

(SD=6.23), respectively (Figure 2A). These values are consistent with average standing heights reported 

by prior studies of Central African Pygmy (males=154.85 cm with SD=3.08 and females=146.30 cm with 

SD=2.87) [3,9,83-88] and non-Pygmy (males=164.98 cm with SD=2.36 and females=155.96 cm with 

SD=0.85) [9,86,87,89] populations [59] and highlight the significant difference in stature that exists 

between Pygmies and non-Pygmies (Pmales=6.13×10-8 and Pfemales=2.65×10-4; Wilcoxon rank-sum test). 

 Consistent with the high correlations expected between standing height and other height-related 

traits (Additional File 2: Figure S1), subischial leg lengths of male (mean=74.97 cm, SD=4.91) and 

female (mean=70.81 cm, SD=3.84) Pygmies were significantly shorter than those of male (mean=82.65 

cm, SD=5.85) and female (mean=75.44 cm, SD=3.97) non-Pygmies (Pmales=0.007 and Pfemales=9.38×10-5; 

Figure 2B). However, while the sitting heights of male Pygmies (mean=80.62 cm, SD=2.92) were 

significantly shorter than those of male non-Pygmies (mean=86.13 cm, SD=1.28; P=0.002), sitting 

heights of female Pygmies (mean=77.74 cm, SD=2.89) were instead similar to female non-Pygmies 

(mean=78.96 cm, SD=3.51; P=0.073; Figure 2C). These findings are consistent with leg length 

contributing more to the differential stature of Pygmies and non-Pygmies than upper body (trunk and 

head) length [59]. If we instead compare the ratio of sitting to standing height between Pygmies and non-

Pygmies (Figure 2D), we observe significantly higher ratios among Pygmies than among non-Pygmies 

for females (P=0.003) but not for males (P=0.203) despite male and female Pygmies exhibiting a similar 

shift toward higher ratios compared with non-Pygmies (Figure 2D). The lack of significance for males 

likely reflects our decreased power to detect such a difference due to only four male non-Pygmies having 

both sitting and standing height data available compared with 67 male Pygmies. 

 Focusing on BMI instead of body weight since it accounts for the differential stature of Pygmies 

and non-Pygmies (Figure 2A), values were similar among male (mean=20.16, SD=1.95) and female 

(mean=20.06, SD=2.56) Pygmies (P=0.587), while those of male non-Pygmies (mean=22.31, SD=2.63) 

were significantly higher than those of female non-Pygmies (mean=20.16, SD=3.07; P=0.031; Figure 

2E). Consequently, Pygmies had significantly lower BMI than non-Pygmies when considering males 

(P=2.74×10-4) but not females (P=0.186). While our BMI are consistent with those reported by prior 

studies for male and female Pygmies in 26 populations (mean=20.04 with SD=0.80 and mean=20.33 with 
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SD=0.90, respectively) and male non-Pygmies in 10 populations (mean=21.48, SD=0.90), our female 

non-Pygmy BMI are notably lower than those of earlier studies (mean=21.65, SD=1.02) [59]. 

 These findings reaffirm earlier observations of significant differences in standing height between 

Central African Pygmies and non-Pygmies, and highlight apparent differences in the contribution of trunk 

and leg length to these differences. However, our findings with BMI contrast with patterns in prior studies 

that indicate differences exist between Pygmies and non-Pygmies for both males (P=1.21×10-4, Wilcoxon 

rank sum test of population means) and females (P=4.57×10-4) and no male-female differences among 

Pygmies (P=0.858, Wilcoxon signed rank test) and non-Pygmies (P=1). 

Genetic structure patterns 

Now that we had established that significant differences existed between Pygmies and non-Pygmies for 

the height-related measurements available in our sample set, we next investigated the levels of genetic 

differentiation that are present among our Pygmy and non-Pygmy samples. Our genetic dataset consisted 

of 406 unrelated individuals from 20 populations with genotypes at 153,798 SNPs included on the 

Illumina Cardio-MetaboChip following the removal of lower quality SNPs and related individuals (see 

Material and Methods). In agreement with earlier studies [24-27,29,30,33], multidimensional scaling 

(MDS) analysis of pairwise allele-sharing dissimilarities (ASD) among these 406 unrelated individuals 

supported three main components to genetic differentiation among Central Africans (Figure 3A). First, 

differentiation between Pygmies and non-Pygmies─categorized as such based on cultural criteria and not 

on height─largely determined the first MDS dimension. Second, though non-Pygmies formed a single 

tight cluster in the first two MDS dimensions reflecting the recent history of these mostly Bantu-speaking 

populations [90-94], differentiation among Pygmy populations was evident in the second dimension, 

driven partly by differences between the West African Baka (CBK, EBK, SBK) and Aka (AKA, AKM) 

populations and the East African Nsua (NSU). Dispersion among Pygmies─measured as the variance 

among their ASD values─was significantly higher than among non-Pygmies (2.07×10-5 and 7.76×10-6, 

respectively; P<10-16, one-sided F-test), consistent with appreciable reproductive isolation following their 

ancestral divergences over the last ~25,000 years [24-26,92,95,96]. Third, the degree of genetic 

differentiation from non-Pygmies varied among Pygmy populations, consistent with what might be 

expected in the presence of variable levels of non-Pygmy gene flow into Pygmy populations. The Bezan, 

Kola and Bongo Pygmies clustered closer to the non-Pygmies (mean ASD=0.2047, SD=0.0027, across 

20,413 pairs of individuals) than did the Baka and Aka (mean ASD=0.2051, SD=0.0025, 16,241 pairs) 

and Nsua (mean ASD=0.2072, SD=0.0036, 1,639 pairs) Pygmies; the first and third quantiles of the full 

distribution of ASD values were 0.1983 and 0.2053, respectively.  

Genetic admixture patterns 

To further explore the presence of potential signals of variable genetic admixture between Central African 

Pygmies and non-Pygmies suggested by our MDS analysis, we applied the Bayesian clustering algorithm 

implemented in STRUCTURE [97,98] to four non-overlapping sets of 10,106 low-linkage-disequilibrium 

(LD) genome-wide SNPs. At K=2 (Figure 3B), Pygmies were assigned greater membership in one cluster 

(“red”) while non-Pygmies were assigned greater membership in the other cluster (“blue”). Per-individual 

membership proportions for the blue cluster varied among Pygmy populations from 0.173±0.103 in the 

Central/Eastern Baka (CBK) to 0.527±0.096 in the Eastern Bongo (EBG). In contrast, among non-

Pygmies, per-individual membership proportions for the red cluster were on average 0.197±0.093. 

Our STRUCTURE results accord with previous studies [24-27,29,31,34,99,100] and can be 

interpreted as signals of asymmetric admixture between Central African Pygmies and non-Pygmies. In 

this view, appreciable membership in the blue “non-Pygmy” cluster among Pygmies reflects substantial 

and variable levels of non-Pygmy admixture, whereas low levels of membership in the red “Pygmy” 

cluster among non-Pygmies suggest low levels of Pygmy introgression into non-Pygmies. 

Correlation between non-Pygmy admixture and trait variation 

Given the phenotypic and genetic differences observed between Pygmies and non-Pygmies in our sample 
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set, we sought to establish whether genetic factors might underlie observed phenotypic patterns. If genetic 

differences between Pygmies and non-Pygmies contribute to their phenotypic differences, we might 

expect measurements for these traits to be correlated with per-individual levels of genetic admixture. We 

therefore separately investigated each trait’s correlation with per-individual membership proportions in 

the blue “non-Pygmy” STRUCTURE cluster at K=2 (Figure 3B; “non-Pygmy admixture” henceforth). 

We observed a significant positive correlation between non-Pygmy admixture and adult standing 

height with the 76 males (Pearson r=0.585, P=2.90×10-8; Figure 4A) and the 57 females (r=0.485, 

P=1.30×10-4; Figure 4B) with standing height data available among the 406 unrelated individuals in our 

genotype dataset. The correlations remained significant when restricted to the 61 male and 31 female 

Pygmy individuals (r=0.311 with P=0.015 and r=0.441 with P=0.013, respectively). These findings are in 

agreement with previous studies on the relationship between levels of non-Pygmy admixture and adult 

standing height in Central African Pygmies [32-34] and provide further support for an appreciable genetic 

component to the determination of body size differences between Pygmies and non-Pygmies. 

The correlations of adult sitting height and subischial leg length with non-Pygmy admixture were 

similar in males (Pearson r=0.431 with P=8.90×10-5 and r=0.475, P=1.41×10-5, respectively; Figures 4C 

and 4E). However, among females the correlation of non-Pygmy admixture with adult sitting height was 

markedly lower (r=0.226, P=0.040; Figure 4C) than with subischial leg length (r=0.574, P=6.53×10-7; 

Figure 4F). Considered together, these findings are consistent with common and distinct genetic factors 

contributing to sitting height and subischial leg length variation among Central Africans, while male–

female differences in the strength of the correlations with non-Pygmy admixture might perhaps reflect the 

differential contribution of genetic variants in estrogen-dependent growth pathways to the determination 

of trunk and leg length [101,102]. 

Finally, while BMI was significantly positively correlated with non-Pygmy admixture in females 

(r=0.262, P=0.015; Figure 5B), BMI was only marginally so in males (r=0.166, P=0.060; Figure 5A). 

These correlations were markedly weaker than those obtained with the height-related measures (Figure 

4), in accordance with smaller Pygmy/non-Pygmy differences in BMI (Figure 2C) than in adult standing 

height (Figure 2A) and compatible with non-genetic factors contributing substantially to body weight 

differences between Central African Pygmies and non-Pygmies. 

These findings are consistent with a significant genetic component in the determination of height-

related differences between Central African Pygmies and non-Pygmies. However, our results do not 

provide similar support for an appreciable genetic component to BMI variation patterns in Pygmies and 

non-Pygmies. Consequently, we next sought to identify genetic factors correlated with variation in height-

related traits in our sample set of Pygmies and non-Pygmies, but not with variation in BMI. 

Association analyses of Pygmy/non-Pygmy categorization 

We have found significant genetic and phenotypic differences between the Central African Pygmies and 

non-Pygmies in our sample set, with correlations between individual trait variation and inferred levels of 

non-Pygmy genetic admixture supporting an appreciable genetic component to the determination of their 

observed phenotypic differences. To investigate the underlying genetic component of their phenotypic 

differences, we first performed single- and multi-marker association tests to identify genomic regions 

harboring SNPs with significant allele frequency differences between the Pygmies and non-Pygmies in 

our genetic dataset of 406 unrelated individuals. 

Single-marker association tests 

To account for genetic structure (Figure 3) and cryptic genetic relatedness among individuals—which 

could inflate type-1 and type-2 errors [103-105]─in our single-marker association tests, we used EMMAX, 

which implements a linear mixed-effect regression model that corrects per-SNP association tests for 

structure and relatedness via a pairwise kinship matrix [105], and included village affiliation as a 

covariate (see Materials and Methods). We identified ten SNPs exhibiting a significant allele frequency 

differences between Pygmies and non-Pygmies after Bonferroni correction for multiple testing (α=5%), 

all lying within a single genomic region on chromosome 2 (Figure 6C). In addition, two further SNPs 
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were marginally significant (α=10%; Figure 6A and Table 2), located on chromosomes 1 (Additional 

File 2: Figure S2A) and 7 (Additional File 2: Figure S2B). Our approach appeared to reasonably correct 

for structure and relatedness among individuals, as judged by the quantile-quantile plot (Figure 6B), 

while marginally inflated P-values were instead observed if village affiliation was not included as a 

covariate in the association tests (Additional File 2: Figure S3). 

Multi-marker gene-based association tests  

Because individual SNPs might fail to achieve the Bonferroni significance threshold owing to insufficient 

power in our modestly sized genetic dataset, we performed multi-marker gene-based association tests 

using VEGAS [106], a multivariate method that combines association signals across all SNPs located 

within a gene, correcting for non-independence between SNPs. We observed seven genes exhibiting a 

significant association with Pygmy/non-Pygmy categorization after Bonferroni correction (α=1%; Table 

3); the genes identified did not differ appreciably if village affiliation was excluded as a covariate 

(Additional File 1: Table S2). 

Relevance to the Central African pygmy phenotype 

While none of the genes in the genomic regions encompassing the ten significant SNPs (Figure 6C) and 

the two marginally significant SNPs (Additional File 2: Figure S2) had putative functions consistent with 

previously reported phenotypic differences between Central African Pygmies and non-Pygmies, one of 

the seven genes identified in the multi-marker analysis had a putative function in limb development. 

GPC6 is a growth factor receptor that is important for correct growth plate formation [107] whose 

abrogation has been observed to cause long-bone growth retardation [108], suggesting that GPC6 is 

important for their longitudinal growth. This association is compatible with the observation that Pygmies 

have significantly shorter legs compared with non-Pygmies (Figure 2B) that are proportionally more 

reduced relative to trunk height (Figure 2D). 

Association analyses of height-related traits 

Despite our modest sample size, we have identified genomic regions associated with an individual’s 

categorization as Pygmy or non-Pygmy that include one gene with a putative function compatible with 

their observed differences in leg length. Building upon this success, we next sought to identify genomic 

regions containing SNPs significantly correlated with variation in the height-related traits that differed 

significantly between the Pygmies and non-Pygmies in our sample set (Figure 2A-D). 

Single-marker association tests 

We performed per-SNP association tests to identify genomic regions harboring genes that contribute to 

variation in adult standing and sitting height and their ratio as well as subischial leg length among the 

132-159 individuals with these data available in our dataset (Additional File 1: Table S1) using EMMAX 

and including sex and Pygmy/non-Pygmy categorization as covariates. Again, EMMAX appeared to 

provide a reasonable correction for structure and relatedness in these analyses (Additional File 2: Figures 

S4E-S4H, respectively) while similar analyses controlling only for sex (Additional File 2: Figures S4A-

S4D) or for sex and village affiliation (Additional File 2: Figures S4I-S4L) instead led to slightly inflated 

or deflated P-values, respectively. 

We did not find any SNPs significantly associated with adult standing (Additional File 2: Figure 

S5) or sitting (Additional File 2: Figure S6) height or subischial leg length (Additional File 2: Figure S7) 

variation after Bonferroni corrections for multiple testing, likely reflecting insufficient power with our 

modest sample sizes. However, we did identify a SNP marginally associated with sitting/standing height 

ratio after Bonferroni correction for multiple testing (α=10%; Figure 7A). 

Multi-marker gene-based association tests  

Gene-based association tests using VEGAS identified 19 genes associated with adult height-based traits 

after Bonferroni correction for multiple testing (α=1%; Table 4): nine with standing height, ten with 

sitting height, nine with sitting/standing ratio, and ten with subischial leg length. The genes identified for 

each trait did not differ markedly if only sex, or sex and village affiliation, were instead considered as 
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covariates (Additional File 1: Table S3). 

Relevance to the Central African pygmy phenotype 

The single SNP marginally associated with sitting/standing height ratio, rs13097517, is located in an 

intron of ERC2 (Figure 7C), a member of the Rab3-interacting molecule (RIM)-binding protein family 

that functions as a regulator of neurotransmitter release [109], which lies ~600 kb upstream of WNT5A, a 

signaling ligand whose loss-of-function causes craniofacial and skeletal abnormalities including shortened 

limbs [110,111]. Thus, this association might reflect the influence of an untyped variant in strong LD with 

rs13097517 that modifies the expression of WNT5A, and potentially contributing to the differential skull 

morphology [59,62] and leg and forearm lengths [59,63] of Pygmies compared with non-Pygmies. 

Three of the 19 genes were associated with all four height-based traits and were also identified in 

our VEGAS analysis for Pygmy/non-Pygmy categorization (Table 3), of which one (GPC6) has been 

implicated in the longitudinal growth of long bones [108]. In addition, ERC2, which is associated with 

both standing/sitting height ratio and subischial leg length (Table 4), contains SNP rs13097517, which 

was marginally associated with standing/sitting height ratio in our SNP-based association tests (Figure 

7C). Importantly, one gene significantly associated with standing and sitting height variation in our 

Central Africans data set (MAGI2) has also been associated with standing height variation in non-Africans 

[112], while another gene significantly associated with subischial leg length (SHANK2) lies within a 

genomic region previously associated with the pygmy phenotype in Eastern Batwa Pygmies [34]. 

Discussion 

We have performed the first large-scale joint investigation of the variability and genetic architecture of 

the major components of adult standing height in Central African hunter-gatherer Pygmies and their 

agriculturalist non-Pygmy neighbors. Our findings accord with prior observations [59,63] that while 

Pygmy body size is generally proportionally reduced relative to non-Pygmies, their leg lengths are 

significantly shorter relative to their trunk length. Importantly, our results provide further support for an 

appreciable genetic component to the determination of body size differences between Pygmies and non-

Pygmies, as implied by the correlations observed between the different measures and inferred levels of 

non-Pygmy admixture that replicate those reported previously for adult standing height [32-34]. 

Although our sample size is modest compared with traditional GWAS frequently conducted 

within populations of mainly European and Asian ancestry, our large-scale genetic association analyses 

using single- and multi-marker approaches identified three genomic regions as well as seven genes 

significantly associated with Pygmy/non-Pygmy categorization after a conservative Bonferroni correction 

for multiple testing. However, we were only able to identify a single genomic region associated with just 

one of the measured traits we considered (Figure 7). Given that for each trait a number of SNPs had 

notably lower P-values than the vast majority of those tested (Additional File 2: Figures S5-S7), our 

inability to identify additional genomic regions associated with variation in these traits likely reflects 

insufficient power with the much smaller sample sizes (132-159) than were available for our comparison 

of Pygmy/non-Pygmy categorization (406). Nevertheless, gene-based multi-marker test identified nine, 

ten, nine, and ten genes enriched for SNPs exhibiting an association with standing height, sitting height, 

sitting/standing height ratio, and subischial leg length, respectively. Importantly, quantile-quantile plots of 

the P-values created in each association analysis (Additional File 2: Figures S3 and S4) indicate that our 

approach appropriately corrected for structure and relatedness present among individuals in our dataset 

(Figure 3). Considered together with our identification of significantly associated genes and genomic 

regions, this would suggest that cross-population GWAS are a viable and powerful approach to identify 

the genetic basis of human phenotypes that naturally vary across populations. 

A number of genes and genomic regions identified here potentially provide novel insight into the 

genetic basis of anatomical and physiological features of the Central African pygmy phenotype. Firstly, a 

number of genes associated with the height-related measures are reported to cause both skeletal and 

craniofacial abnormalities when perturbed: MACROD2 [113,114], GP1BB [115,116], and CACNA1C 
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[117,118]. It is therefore possible that craniofacial differences observed between Pygmies and non-

Pygmies [59,62] may in part reflect the coevolution of these traits with Pygmy short stature; a hypothesis 

that remains to be formally tested in the absence of paleoanthropological data for Central Africa [3]. 

Secondly, the sole SNP marginally associated with sitting/standing height ratio (rs13097517) lies 

~619 kb upstream of WNT5A, a signaling ligand whose abrogation causes craniofacial and skeletal 

abnormalities including shortened limbs [110,111]. Thus, in the context of the significantly higher 

sitting/standing height ratios we (Figure 2D) and others [59,63] have observed in Pygmies compared with 

non-Pygmies, this association would be compatible with a scenario in which Pygmy short stature is 

attributable in part to perturbation of WNT5A expression by one or more genetic variants in high LD with 

rs13097517. Intriguingly, WNT5A mediates the actions of growth factor receptor GPC6 [119], an 

important determinant of long bone growth [107,108] that was associated with Pygmy/non-Pygmy 

categorization (Table 3) and all four height-related traits (Table 4), suggesting that perturbation of the 

GPC6/WNT5A pathway may partly underlie Pygmy short stature. 

Finally, a number of genes associated with Pygmy-non-Pygmy categorization have functions in 

immune rather than developmental processes. For example, IKBKE is an essential regulator of antiviral 

signaling pathways [120,121] and CAPN2 is implicated in immune synapse formation in T-cell receptor 

signaling [122], while FCGR1A functions in monocyte phagocytosis [123] and has been implicated in 

dengue virus infection [124], a mosquito-borne disease present throughout Central Africa [125]. Our 

findings therefore add to the expanding body of evidence suggesting that differential adaptation in both 

immune- and auxologic-related processes have contributed to the evolution of the Central African pygmy 

phenotype [33,34,126]. 

Consistent with prior studies that investigated the contributions of >100 non-African standing-

height-associated SNPs to standing height variation among 5 to 230 Central African Pygmies and non-

Pygmies [33,34,126], none of the 949 SNPs listed in the Cardio-MetaboChip manifest [69] as associated 

with adult standing height were found to be individually associated with the height-related variation in 

our Central African sample set. Indeed, P-values for the 173 standing height SNPs reported by Wood et 

al. [51] and the 949 standing-height SNPs included on the Cardio-MetaboChip [69] based on the findings 

of Lango Allen et al. [45] did not depart from the uniform expectation to a greater extent than non-

standing-height SNPs in our analyses of Pygmy/non-Pygmy categorization (Figure 6B) and subischial 

leg length (Additional File 2: Figure S7B). However, the Wood et al. SNPs did deviate to a greater extent 

in our standing height (Additional File 2: Figure S5B) and sitting/standing height ratio (Figure 7B) 

analyses while both the Wood et al. and Lango Allen et al. SNPs did deviated to a greater extent in our 

sitting height analysis (Additional File 2: Figure S6B). These observations indicate that previously 

reported non-African standing-height SNPs predominantly reflect perturbations of pathways contributing 

to trunk height but not to leg length. In contrast, the genes identified in our analysis of different height 

measures in Central Africans instead appear predominantly to reflect perturbation of pathways 

contributing to the determination of leg length. Our analyses therefore highlight the importance of 

conducting studies in Central African populations that can contribute novel information about the 

determinants of human standing height and body size proportions in general. 

Despite our inability to detect SNP-wise associations with non-African standing height SNPs, 

gene-based association tests did identify one non-African standing height gene as being associated with 

standing and sitting height variation in Central Africans, MAGI2 [112]. Thus, though the non-African 

standing height associated SNPs failed individually to reach significance in our association analyses, our 

identification of MAGI2 using a multi-marker approach suggests that this is at least partly a consequence 

of insufficient power in our sample set. However, we cannot discount the possibility that for a subset of 

the non-African SNPs the absence of a significant association may be a result of discordance in LD 

patterns between Europeans and Central Africans disrupting the linkage between the genotyped SNP and 

the trait-determining variant [127]. 

Conclusions 
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Despite the modest sample size in our study, we have identified genomic regions encompassing genes that 

are biologically meaningful in the context of both the traits themselves and phenotypic differences that 

exist between Central African Pygmies and non-Pygmies. Further, our findings provide additional support 

for an appreciable genetic component to the determination of phenotypic differences between Central 

African Pygmies and non-Pygmies. More generally, our results highlight the need for joint analyses 

considering different anthropometric and physiological measures in larger samples of Central African 

Pygmies and non-Pygmies to facilitate our understanding of the biological basis of the Central African 

pygmy phenotype. Future large-scale studies of worldwide short-stature populations have the potential to 

shed light on relative contributions of shared and distinct pathways in the development and maintenance 

of short stature. In particular, studying populations of different stature living in different ecologic 

environments will provide a greater understanding of adaptive processes underlying the appreciable 

variation in adult height observed across contemporary worldwide human populations. 

Material and Methods 

Samples 

This study was conducted according to ethical principles of the Declaration of Helsinki. IRB approvals 

were obtained from the French Ministry of Higher Education and Research, University of Michigan, 

Stanford University, Washington State University and the University of Manitoba. Prior to sample 

collection, research authorizations were obtained from the Ministry of Public Health in Cameroon, the 

Ministry of Higher Education and Research in Gabon, the National Council for Science and Technology 

in Uganda, and the Ministry of Scientific Research in CAR, and informed consent was obtained from all 

research participants. In total, our study included 558 individuals from 20 Central African populations 

(Figure 1, Table 1). We conducted ethnographic interviews at each sampling site to categorize sampled 

populations a priori as “Pygmy” or “non-Pygmy” based on historical and cultural criteria that do not 

include adult height [4,6,7,23,128-131]. A community was categorized as “Pygmy” when it: (1) is 

recognized by outsiders as specialized in forest activities such as hunting-gathering and medical and 

magical knowledge of the rainforest; (2) shares complex socio-economic relationships with specific 

neighboring outsiders, such as exchanging forest products (e.g. game, wild honey) for iron tools (e.g. 

fishing hooks, iron blades, or spear heads); (3) is designated as “Pygmy” or its literal local translation or 

at least as “other than self” by neighboring populations; (4) distinguishes itself as a community with a 

different ethno-name from other neighboring communities, regardless of languages spoken; (5) has 

differing musical practices and instruments recognized as such by neighbors.  

For each individual, DNA was extracted from either whole blood buffy coats with the DNeasy 

Blood & Tissue spin-column Kits (Qiagen, Valencia, CA), or saliva collected using Oragene kits (DNA 

Genotek Inc., Kanata, ON), following the manufacturer-recommended protocol. For a subset of the 

individuals from seven Pygmy─Baka (Center), Baka (East), Bezan (South), Bongo (Center), Bongo 

(East), Bongo (South), and Koya─and three non-Pygmy─Nzime, Tikar, and Bangando─populations, 

standing and sitting height were measured with a height gauge and weight with a standard weigh scale 

following standard anthropometric procedures [132]. Subischial leg length was calculated as standing 

minus sitting height, while BMI was calculated as body weight in kilograms divided by standing height in 

meters squared (kg m-2). Accurate age data was unavailable for these individuals, as most of the 

communities do not keep track of birth dates. Though we cannot rule out the confounding effect of 

osteoporotic age-related shrinking in our study, we expect it to be minimal as our sample set includes only 

adults and elderly individuals were not considered. 

Genotyping and quality control 

DNA samples for 576 samples─558 individuals from 20 Central African Pygmy and non-Pygmy 

populations (Table 1) and 18 control samples─were genotyped at the University of Michigan Medical 

School DNA Sequencing Core (Ann Arbor, MI) using the Illumina MetaboChip that interrogates 196,725 

genome-wide SNPs [69]. We focus on 196,091 SNPs whose genomic position had been independently 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2017. ; https://doi.org/10.1101/187369doi: bioRxiv preprint 

https://doi.org/10.1101/187369
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

verified (Peter Chines, unpublished data). Genotype calling was performed using the GenomeStudio 

Genotyping Module (v.1.0; Illumina Inc., San Diego, CA). Following quality control procedures 

conducted at the genotype-calling level (Stage 1, Figure S8 [Additional File 2]), the preliminary dataset 

contained 192,903 autosomal SNPs that were polymorphic in a sample of 543 Pygmy and non-Pygmy 

individuals. Next, we conducted population-level quality control procedures (Stage 2, Figure S8 

[Additional File 2]), creating an initial dataset of 154,106 autosomal SNPs polymorphic in a sample of 

543 Pygmy and non-Pygmy individuals. Hardy-Weinberg equilibrium was evaluated separately in each 

population using Yates-corrected chi-squared tests [133], and we used the same exclusion criteria as in 

Pemberton et al. [134]. 

 Pygmy and non-Pygmy neighbors interact socially and economically on a daily basis 

[6,7,130,135]. Thus, individuals from neighboring communities might be present at the time of sampling. 

On rare occasions, some non-Pygmies have fled their communities (to avoid taxes or military recruitment 

for instance) and taken refuge among neighboring Pygmy populations. Therefore, it is possible that some 

sampled individuals were wrongly categorized according to our Pygmy/non-Pygmy categorization 

criteria. To search for categorization errors, we performed MDS analysis of individual pairwise allele-

sharing distances (see below) in our initial dataset. We identified 16 individuals─11 initially categorized 

as Pygmies and five as non-Pygmies─who did not cluster genetically with other individuals sharing the 

same categorization (data not shown) and who might have been miscategorized during sample collection. 

To be conservative, we removed these 16 putative misclassified individuals from the preliminary dataset, 

and repeated the population-level quality control procedures (Stage 3, Figure S8 [Additional File 2]) to 

create a dataset containing 154,029 autosomal SNPs polymorphic in a sample of 527 Pygmy and non-

Pygmy individuals (“527RELAT” henceforth; Table 1); all individuals possessed genotypes at ≥94.9% of 

SNPs. 

Relatedness among all pairs of the 527 individuals in the 527RELAT dataset was evaluated using 

identity-by-state allele sharing and the likelihood approach of RELPAIR (v.2.0.1) [136,137] following the 

methods of Pemberton et al. [134] restricted to sets of 9,999 SNPs. A total of 282 pairs of individuals 

were inferred by RELPAIR to be related at a level closer than first cousins: 230 intra-population and 52 

inter-population pairs. All inter-population relative pairs involved geographically close populations 

(Figure 1); 47 involving the two Bezan populations (BZN and BZS), three involving two Bongo 

populations (CBG and EBG), and two with individuals from the nearby Fang (CFG) and Ngumba (NGB) 

populations. A dataset containing no first- or second-degree relatives was created by removing one 

individual from each of these 282 relative pairs. To minimize the number of individuals removed, we 

preferentially omitted individuals present in two or more relative pairs (either intra- or inter-population). 

In situations where either individual in a relative pair could be removed, we removed the individual with 

more missing data. After the exclusion of 121 related individuals─in addition to the 16 putative 

misclassified individuals─from the preliminary dataset of 543 individuals, many of whom were related to 

multiple individuals in the initial dataset, we repeated the population-level quality control procedures 

(Stage 4, Figure S8 [Additional File 2]) to create an unrelated dataset with 153,798 autosomal SNPs 

polymorphic in a sample of 406 Pygmy and non-Pygmy individuals (“406UNRELAT” henceforth; Table 

1); all individuals possessed genotypes at ≥94.9% of SNPs. Because of small sample sizes for the two 

Bezan populations (11 for BZN, 17 for BZS) in the 406UNRELAT dataset, we combined them into a 

single population (“Bezan” henceforth; BEZ, Table 1). Both the BZN and BZS samples belong to the 

same Bezan ethnic group located in Central Cameroon, which has a census size <400, divided between 

two nearby communities (~50 km apart) in frequent contact (P. Verdu and A. Froment, unpublished data). 

Population genetic analyses 

Multidimensional scaling 

We performed MDS based on ASD matrices constructed for all pairs of individuals in the 406UNRELAT 

dataset using asd (v1.0; https://github.com/szpiech/asd). This program considers in the calculation for a 

given pair only those SNPs for which neither individual was missing genotypes. We applied classic 

metric MDS on the ASD matrix using the cmdscale function in R (v2.11.0) [138]. To estimate the 
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proportion of variation in ASD explained by the first two dimensions of the MDS plot, we calculated the 

Spearman correlation coefficient ρ between the Euclidean distances for all pairs of individuals and their 

corresponding ASD values (using cor.test in R here and for other correlations). To evaluate dispersion 

levels among Pygmies and non-Pygmies in the MDS plot, we compared the variance among their ASD 

values with a one-sided F-test using var.test in R. 

STRUCTURE 

To investigate genetic structure in our 406UNRELAT dataset, we performed model-based Bayesian 

clustering analyses implemented in STRUCTURE (v2.3) [97,98], which probabilistically assigns 

proportions of each individual’s genotypes to each of K genetic clusters, where K is set a priori, based on 

allele frequencies and irrespective of individual population categorizations. We used the admixture model 

with separate Dirichlet parameters in each cluster and correlated allele frequencies, and a burn-in period 

of 20,000 iterations followed by 10,000 iterations. 

 To minimize the number of linked loci owing to the gene-centric design of the Cardio-MetaboChip, 

in the STRUCTURE analyses we used 40,424 SNPs that have minimum spacing 18.75 kb. From these 

40,424 SNPs, we created four non-overlapping panels of 10,106 SNPs, each with minimum marker 

spacing 75 kb. For SNP panel n (1 ≤ n ≤ 4), every fourth SNP along a vector of the considered 40,424 

SNPs was selected, starting at position n – 1. In this vector, SNPs were numbered starting at 0 and 

ordered from chromosome 1 to 22 and by increasing distance along each chromosome (taking genomic 

positions from NCBI database build 37). For each panel, we computed 10 independent STRUCTURE runs 

for values of K between 2 and 4, producing 40 independent replicates for each K. We identified common 

modes among the 40 replicates using CLUMPP [139] with the Greedy algorithm and 1,000 random 

permutations. For each K, all pairs of runs with a symmetric similarity coefficient >0.9 were considered to 

belong to the same mode. For each mode, we computed individual membership proportions averaged 

across runs from that mode, visualizing the most frequent mode at each K using DISTRUCT [140]. 

 To investigate the relationship between non-Pygmy admixture and adult height in Central Africans, 

we calculated the Pearson product-moment correlation coefficient r between individual membership 

proportions in the blue cluster at K=2 and measured adult height where available. 

Association analyses 

Single-marker tests 

Per-SNP association tests were performed using EMMAX [105], which implements a mixed-effect 

regression model [141] to account for genetic structure in a sample set, incorporating variance 

components of random polygenic effects [142,143] and genetic relatedness among individuals using a 

pairwise Balding-Nichols kinship relatedness matrix [144] (equation 7 in [105]). We constructed the 

kinship matrix for all pairs of individuals in the 406UNRELAT dataset using EMMAX, including in the 

calculation only the 94,050 and 93,821 SNPs, respectively, inferred to be in linkage equilibrium (r2<0.5). 

Association analyses for Pygmy/non-Pygmy categorization were performed by labeling Pygmies as 

“cases” and non-Pygmies as “controls.” Association analyses were performed separately for each 

measured trait considering only those individuals with data available. To improve the normality of the 

body weight and BMI distributions and alleviate the impact of outliers, body weight and BMI values were 

rank-based inverse-normal transformed separately for each gender, and association tests performed using 

these transformed values. To control for population structure and sexual dimorphism in our sample set, in 

our analysis of Pygmy and non-Pygmy categorization we considered the residuals of the regression of 

Pygmy/non-Pygmy categorization on village affiliation, while for quantitative-traits we considered the 

residuals of a multiple regression for that trait on sex and Pygmy/non-Pygmy categories. 

Multi-marker gene-based tests 

As individual SNPs may fail to achieve the significance threshold due to insufficient power in our modest 

sample sizes, we performed multi-marker gene-based tests of association using VEGAS [106]. Separately 

for each gene, VEGAS computes a 𝜒2 test statistic from observed EMMAX P-values for all SNPs that lie 

within its boundaries (defined as ±50 kb from the ends of the transcribed region) and evaluates 
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significance via simulations from a multivariate normal distribution with mean 0 and a covariance matrix 

of pairwise LD between SNPs. The transcribed region of each gene was defined using release hg19 of the 

UCSC gene database [145]; for genes with multiple isoforms, begin and end positions were defined as the 

outermost positions in the union of the transcribed regions of all isoforms. Pairwise LD estimates in our 

datasets considered in the calculation only unrelated individuals. 

List of Abbreviations Used 
AR: androgen receptor; ASD: allele-sharing dissimilarity; BMI: body mass index; DRC: Democratic 

Republic of Congo; GWAS: genome-wide association study; HGH: human growth hormone; IGF1: 

insulin-like growth factor 1; MDS: multidimensional scaling; SD: standard deviation; SNP: single 

nucleotide polymorphism. 
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Figure 1. Sampling locations. Pygmy/non-Pygmy categorization was assessed in ethnographic field 
work, relying on numerous cultural criteria that do not include adult height (see Material and Methods). 
Population codes follow Table 1. Population ranges were inferred from ethnographic field work [7]. 
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Figure 2. Distributions of standing height, sitting/standing height ratios, and BMI in Pygmies and 
non-Pygmies. Split violin plot [146] representations of the distributions of (A) standing heights, (B) 
subischial leg lengths, (C) sitting heights, (D) sitting/standing height ratios, and (E) BMI shown 
separately for males (blue) and females (pink). The number (n) of males and females with data available 
for each measurement is provided above each plot. The mean and SD of each group are reported in Table 
S1 (Additional File 1). Each ‘‘violin’’ contains a vertical black line (25%–75% range) and a horizontal 
white line (median), with the width depicting a 90º-rotated kernel density trace.  
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Figure 3. Genetic diversity and admixture patterns. (A) A two-dimensional multidimensional scaling 
(MDS) representation of allele-sharing distances (ASD) for 406 unrelated individuals in the genetic 
dataset. The first dimension is plotted on the horizontal axis, and the second dimension on the vertical 
axis. The Spearman ρ between pairwise Euclidean distances in the MDS plot and ASD matrix is 0.478. 
(B) Population structure inferred by STRUCTURE at K=2 for 406 unrelated individuals. Each individual 
is shown as a thin vertical line partitioned into two components representing inferred genotype 
membership proportions in the two clusters. Black vertical lines separate individuals from different 
populations. The most salient population structure observation is the Pygmy/non-Pygmy distinction at 
K=2.  
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Figure 4. Relationship between non-Pygmy admixture and adult height-related traits. Scatterplots 
are shown of membership proportions in the blue “non-Pygmy” STRUCTURE cluster at K=2 (Figure 3B) 
and standing height for (A) 76 males (r=0.585, P=3×10-8) and (B) 57 females (r=0.485, P=3×10-5), sitting 
height for (C) 71 males (r=0.431, P=8.90×10-5) and (D) 57 females (r=0.226, P=0.040), and subischial 
leg length for (E) 71 males (r=0.475, P=1.41×10-5) and (F) 57 females (r=0.574, P=6.53×10-7). Only 
individuals included in the genetic dataset with a measurement for that trait were included in each 
comparison. Individuals are indicated by the symbols in Figure 3A.  
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Figure 5. Relationship between non-Pygmy admixture and body mass index. Scatterplots are shown 
of membership proportions in the blue “non-Pygmy” STRUCTURE cluster at K=2 (Figure 3B) and BMI 
for (A) 89 males (r=0.166, P=0.060) and (B) 69 females (r=0.262, P=0.015) with both standing height 
and body weight measurements available in the genetic dataset were included in the comparison. 
Individuals are indicated by the symbols in Figure 3A.  
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Figure 6. Association signals for Pygmy/non-Pygmy categorization. (A) Manhattan, and (B) quantile–
quantile plots of the 153,798 autosomal SNPs in the genetic dataset. In A, the gray horizontal dashed line 
indicates the significance level for a Bonferroni correction at the 5% significance level while the dotted 
gray line indicates the significance level for a Bonferroni correction at the 10% significance level. In B, 
the identity line is shown in red, while the 126 SNPs identified by Wood et al. as significantly associated 
with standing height variation in Europeans [51] are plotted separately in green and the 949 SNPs listed in 
the Cardio-MetaboChip manifest [69] as associated with standing height variation are plotted separately 
in blue. (C) LocusZoom plot [147] of the genomic region surrounding the ten significant SNPs (Table 2). 
Top, -log10-transformed P values at individual SNPs colored by the strength of their correlation (r2) with 
the most significant SNP in the region (purple diamond), and HapMap Phase 2 recombination rates [148] 
depicted by the blue line. Bottom, gene locations in release hg19 of the UCSC database [145]. 
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Figure 7. Association signals for adult sitting/standing height ratio. Manhattan (A) and quantile–
quantile (B) plots of the 153,798 autosomal SNPs in the genetic dataset restricted to the 132 individuals 
with measurements for both standing and sitting height (Additional File 1: Table S1). (C) LocusZoom 
plot [147] of the genomic region surrounding the single marginally significant SNP (rs13097517, 
P=6.35×10-7). The figure follows the same format as Figure 6.  
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Table 1. Populations and their sample sizes. 

Category 
Population 

Country 
Trait 

data 

Sample size 

Code Name Total Genetic dataset 

Pygmies 

AKA Aka CAR No 26 21 (M=14; F=7) 

AKM Aka (Mbati) CAR No 17 8 (M=6; F=2) 

CBK Central/Eastern Baka Cameroon Yes 36 29 (M=14; F=15) 

EBK Southeastern Baka Cameroon Yes 11 10 (M=10; F=0) 

SBK Southern Baka Cameroon No 50 41 (M=16; F=25) 

BZNa Northern Bezan Cameroon Yes 27 
27 (M=12; F=15) 

BZSa Southern Bezan Cameroon Yes 48 

CBG Central Bongo Gabon Yes 24 21 (M=14; F=7) 

EBG Eastern Bongo Gabon Yes 30 19 (M=13; F=6) 

SBG Southern Bongo Gabon Yes 34 27 (M=13; F=14) 

KOY Koya Gabon Yes 25 19 (M=12; F=7) 

KOL Kola Cameroon No 31 24 (M=18; F=6) 

NSU Nsua (Efe) Uganda No 17 11 (M=6; F=5) 

 Total 
 

 376 257 (M=148; F=109) 

Non-Pygmies 

AKL Akele Gabon No 12 8 (M=7; F=1) 

CFG Fang Cameroon No 36 33 (M=19; F=14) 

NZI Nzime Cameroon Yes 23 20 (M=3; F=17) 

NGB Ngumba Cameroon No 58 43 (M=20; F=23) 

TIK Tikar Cameroon Yes 20 20 (M=12; F=8) 

BGD Bangando Cameroon Yes 6 6 (M=3; F=3) 

BKJ Konjo Uganda No 27 19 (M=8; F=11) 

 Total 
 

 182 149 (M=72; F=77) 

Numbers of males (M) and females (F) appear in parentheses. 

aThe two Bezan populations were merged into a combined BEZ population in the 406UNRELAT dataset.  
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Table 2. 12 SNPs significantly associated with Pygmy/non-Pygmy categorization. 

Chr Position (bp) SNV ID 
Allelesa  Closest Gene Scaled  

C-Scorec 
β Pd 

Ref Alt  Name Dist. (bp) Location 

     
 
      

2 203,637,779 rs115739423 T C  FAM117B 665 Downstream 11.48 0.186 1.69×10-7 

2 203,647,419 rs115742265 C T  ICA1L – Intronic 0.195 0.181 3.02×10-7 

2 203,704,661 rs74845106 A G  ICA1L – Intronic 3.986 0.189 1.57×10-7 

2 203,737,851 rs75394200 A G  WDR12 1,143 Downstream 1.190 0.189 1.57×10-7 

2 203,741,115 rs77148329 T C  WDR12 – 3’-UTR 0.219 0.189 1.57×10-7 

2 203,762,323 rs114606691 C G  WDR12 – Intronic 11.46 0.189 1.57×10-7 

2 203,776,533 rs115474205 T G  CARF – Intronic 8.407 0.189 1.57×10-7 

2 203,809,373 rs76849941 C T  CARF – Intronicb 8.519 0.188 1.72×10-7 

2 203,839,087 rs78815956 C T  CARF – Synonymous 15.93 0.189 1.57×10-7 

2 203,855,310 rs7561827 T A  CARF 4,250 Downstream 5.831 0.188 1.74×10-7 

                       
            1 206,647,787 rs1539243 T C  IKBKE – 5’-UTR 1.271 -0.102 3.96×10-7 

7 150,594,658 rs12703105 C A  ABP1 36,066 Downstream 2.700 0.134 6.01×10-7 

                       
aAncestral allele is shown in bold. 

bLocated within a CTCF binding site (Ensembl Regulatory Feature ENSR00001046703). 

cScaled C-scores ≥10 (among highest 10% of all observed scores [149]) are shown in bold. 

dP-values in bold are significant after Bonferroni correction at α=5% otherwise significant at α=10%.  
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Table 3. Seven genes significantly associated with Pygmy/non-Pygmy categorization. 

Gene 
Genomic position Number 

of SNPs 

VEGAS 

Pperm Chr Begin (bp) End (bp) 

DLGAP1 18 3,496,029 4,455,266 165 <10-7 

GPC6 13 93,879,077 95,060,273 111 <10-7 

MACROD2 20 13,976,145 16,033,841 183 <10-7 

CACNA1C 12 2,162,415 2,807,115 76 1.00×10-7 

PPP2R2B 5 145,969,066 146,461,083 24 5.00×10-7 

GP1BB 22 19,704,742 19,712,297 6 6.00×10-7 

CLDN10 13 96,085,852 96,232,010 10 1.50×10-6 

Gene names shown in bold were also significantly associated with adult height-based traits (Table 3). 

For each gene, begin and end positions were defined using the union of the ranges of all isoforms.  
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Table 4. 19 genes significantly associated with adult height. 

Gene 

Genomic position 
Number  

of SNPs 

VEGAS Pperm
c 

Chr Begin (bp) End (bp) 
Standing 

height 

Sitting 

height 

Sit/stand 

height ratio 

Subischial 

leg length 

GPC6 13 93,879,077 95,060,273 111 <10-7 <10-7 <10-7 <10-7 

DLGAP1 18 3,496,029 4,455,266 165 <10-7 <10-7 <10-7 <10-7 

MACROD2 20 13,976,145 16,033,841 183 <10-7 <10-7 <10-7 3.00×10-7 

CACNA1C 12 2,162,415 2,807,115 76 2.46×10-5 9.00×10-7 <10-7 3.00×10-7 

DSCAM 21 41,384,342 42,219,039 75 <10-7 0.001 <10-7 <10-7 

DPYD 1 97,543,299 98,386,615 30 0.085 1.00×10-5 <10-7 <10-7 

ERC2 3 55,542,335 56,502,391 36 0.001 0.021 2.00×10-7 8.00×10-7 

XXYLT1 3 194,789,012 194,991,895 21 <10-7 <10-7 0.161 0.003 

MAGI2a 7 77,646,373 79,082,890 132 3.00×10-7 <10-7 0.009 0.002 

NRG1 8 31,497,267 32,622,558 87 2.33×10-5 1.83×10-5 <10-7 <10-7 

FOXN3 14 89,622,515 90,085,494 63 9.00×10-7 9.00×10-7 7.82×10-4 1.83×10-4 

RDH14 2 18,735,988 18,770,846 10 <10-7 0.003 0.073 0.003 

NT5C1B 2 18,735,988 18,770,846 10 <10-7 0.003 0.071 0.003 

NPPA 1 11,900,375 11,907,673 618 1.67×10-5 <10-7 0.002 0.001 

PACRG 6 163,148,163 163,736,524 48 0.002 <10-7 3.70×10-6 0.001 

TNFRSF6B 20 62,289,162 62,330,051 24 0.012 <10-7 3.00×10-5 0.019 

ZNF32 10 44,124,264 44,170,147 24 0.049 0.035 1.50×10-6 5.61×10-5 

SHANK2b 11 70,313,960 70,935,808 27 2.72×10-4 0.031 0.003 <10-7 

CCDC169 13 36,742,344 36,871,992 8 0.009 0.535 1.20×10-4 <10-7 

aAssociated with adult standing height variation in Europeans [112]. 

bWithin 1 Mb of genomic regions identified by Perry et al. as associated with the short stature phenotype 

of East Central African Batwa Pygmies [34]. 

cPermutation P-values shown in bold are significant after Bonferroni correction (α=1%). 

Gene names shown in bold were also significantly associated with Pygmy/non-Pygmy categorization 

(Table 3). 

For each gene, begin and end positions were defined using the union of the ranges of all isoforms. 
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