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Abstract 

Hi-C is currently the most widely used assay to investigate the 3D organization of the 

genome and to study its role in gene regulation, DNA replication, and disease. 

However, Hi-C experiments are costly to perform and involve multiple complex 

experimental steps; thus, accurate methods for measuring the quality and reproducibility 

of Hi-C data are essential to determine whether the output should be used further in a 

study. Using real and simulated data, we profile the performance of several recently 

proposed methods for assessing reproducibility of population Hi-C data, including 

HiCRep, GenomeDISCO, HiC-Spector and QuASAR-Rep. By explicitly controlling noise 

and sparsity through simulations, we demonstrate the deficiencies of performing simple 

correlation analysis on pairs of matrices, and we show that methods developed 

specifically for Hi-C data produce better measures of reproducibility. We also show how 

to use established (e.g., ratio of intra to interchromosomal interactions) and novel (e.g., 

QuASAR-QC) measures to identify low quality experiments. In this work, we assess 

reproducibility and quality measures by varying sequencing depth, resolution and noise 
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levels in Hi-C data from 13 cell lines, with two biological replicates each, as well as 176 

simulated matrices. Through this extensive validation and benchmarking of Hi-C data, 

we describe best practices for reproducibility and quality assessment of Hi-C 

experiments. We make all software publicly available at 

http://github.com/kundaje/3DChromatin_ReplicateQC to facilitate adoption in the 

community.   

Introduction 

The Hi-C assay couples chromosome conformation capture (3C) with next-generation 

sequencing, making it possible to profile the three-dimensional structure of chromatin in 

a genome-wide fashion [1]. Recently, application of the Hi-C assay has allowed 

researchers to profile the 3D genome during important biological processes such as 

cellular differentiation [2, 3], X inactivation [4-6] and cell division [7]; and to identify 

hallmarks of 3D organization of chromatin, such as compartments [1], topologically 

associating domains (TADs) [8, 9] , and DNA loops [10]. Because the Hi-C assay 

measures the 3D conformation of a genome in the form of pairs of mapped reads 

(“interactions”) connecting different loci, many such pairs are required to adequately 

characterize all pairwise interactions across a complete genome [10-12]. Consequently, 

the Hi-C assay can be costly to run. It is thus essential to have accurate and robust 

methods to evaluate the quality and reproducibility of Hi-C experiments, both to ensure 

the validity of scientific conclusions drawn from the data and to indicate when an 

experiment should be repeated or sequenced more deeply.   Reproducibility measures 
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are also important for deciding whether two replicates can be pooled, a strategy that is 

frequently used to obtain a large number of Hi-C interactions [10]. 

A rich collection of literature for assessing the quality and reproducibility of a large 

collection of next generation sequencing based genomics assays, such as ChIP-seq 

[13]  and DNase-seq [14], has been complied over the past decade [15-17]. For these 

assays, enrichment of signal (“peaks”) at loci of interest [18] and assay-specific 

properties of sequencing fragments have been used as indicators of the quality of an 

experiment [15]. Correlation coefficient [19-21] and statistical methods such as the 

irreproducible discovery rate (IDR) [16] have been used to measure the reproducibility 

of such assays. However, all of these methods are designed to operate on data that is 

laid out in one dimension along the genome. Furthermore, unlike other functional 

genomics assays, Hi-C data must be analyzed at an effective resolution determined by 

the user [12, 22, 23]. For these reasons, existing methods for assessing genomic data 

quality and reproducibility are not directly applicable to Hi-C data. 

A variety of methods have been used previously to measure the quality and 

reproducibility of Hi-C experiments  Ad hoc measures include using, for reproducibility, 

the Pearson or Spearman correlation coefficient [2, 24-26] and, for data quality, 

statistics that describe the properties of Hi-C fragment pairs [1, 27]. The drawbacks of 

using correlation as a reproducibility measure for genomics experiments, both because 

of its susceptibility to outliers and because it implicitly treats all elements of the Hi-C 

matrix as independent measurements, has been documented [15, 28]. In practice, 

because most of the Hi-C signal arises from interactions between loci less than 1 Mb 

apart [22, 23], the correlation coefficient will be dominated by these short range 
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interactions. To alleviate such problems, distance based stratification [29] and 

dimensionality reduction of Hi-C signal [30], prior to measuring the correlation, have 

been proposed. Conversely, simple mapping statistics may be used to indicate a high or 

low percent of invalid or artefactual Hi-C fragments [23, 31], but such statistics reflect 

only the mapping stage of the analysis and cannot be immediately combined into a 

robust quality score. 

To overcome these problems, members of the ENCODE Consortium have recently 

developed methods for assessing both the quality and the reproducibility of the Hi-C 

assay [32-34]. In this study, we used large sets of real and simulated Hi-C data to 

assess and compare the performance of methods for measuring the reproducibility of 

Hi-C data and evaluating Hi-C data quality. We generated multiple benchmarks for 

testing the performance of reproducibility measures and established that all of these 

methods can accurately measure reproducibility of Hi-C data, whereas correlation 

coefficient cannot. Similarly, we have used real and simulated datasets to profile the 

performance of quality control methods and compared these methods to established 

statistics that have been used as indicators of high quality Hi-C experiments. Here, we 

offer a thorough assessment of quality control and reproducibility methods and describe 

best practices for analyzing the quality and reproducibility of Hi-C data. 
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Results 

Experimental and simulated Hi-C datasets for performance 

evaluation 

We performed two replicate Hi-C experiments on cells from 11 immortalized human 

cancer cell lines from a variety of tissues and lineages (Supp. Table. 1). After aligning 

and filtering of paired end sequencing reads, we obtain 10 to 61 million paired reads per 

experiment. These Hi-C interactions serve as a readout of three dimensional proximity 

of the corresponding genomic loci. The interactions are binned into fixed-sized bins, and 

a count of the number of Hi-C interactions that connect each pair of bins is stored in a 

Hi-C contact matrix. Unless otherwise noted, we used 40 kilobase (kb) bins because 

this value achieves reasonable sparsity of the Hi-C contact matrices, based on the 

depth of sequencing of the data sets used in our study. Also, this resolution has been 

adopted in multiple previous studies [7, 8]. We use the resulting Hi-C matrices as input 

to every reproducibility and quality control analysis in this study, except where indicated. 

For use in assessing reproducibility and quality measures for Hi-C data, we designed a 

model for simulating noisy Hi-C experiments (Fig. 1A). Our noise model aims to 

simulate a contact matrix from a Hi-C experiment performed on chromatin that lacks any 

high order structure, such as loops and topologically associating domains. For this 

purpose, our simulation models two main phenomena: the “genomic distance effect,” 

i.e., the higher prevalence of crosslinks between genomic loci that are close together 

along the genome [1], and random ligations generated by the Hi-C protocol [23]. For the 
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first phenomenon, we use real Hi-C data, and we sample from the empirical marginal 

distribution of counts as a function of genomic distance. The second phenomenon, 

random ligation noise, is modeled by generating Hi-C interactions between random bin 

pairs (see Methods for details). Counts generated by these two “noise” components of 

the model can be mixed with different proportions to produce simulated “pure noise” Hi-

C matrices.  We then mix the simulated contacts with experimental contact matrices in 

varying proportions to obtain noise injected matrices.  

In addition to noise, we tested the effects of sparsity and the resolution of Hi-C matrices 

on the performance of each method. We profiled the effects of sparsity explicitly by 

downsampling real Hi-C matrices to contain a set of fixed total number of intra-

chromosomal Hi-C interactions. Binning resolution further controls the sparsity of a Hi-C 

matrix, at the same time dictating the scale of chromatin organization that can be 

observed in a Hi-C matrix. By binning deeply sequenced Hi-C datasets containing at 

least 400 million intrachromosomal Hi-C interactions from two cell types, we generated 

Hi-C matrices binned at high, mid and low resolutions (10 kb, 40 kb, 500 kb) and used 

these to investigate the effect of resolution on each method as well (Supp. Table. 1). A 

schematic of the full range of datasets used in this study to validate each method is 

shown in Fig.1B. 

Measures for quality and reproducibility of Hi-C data 

Four recently developed methods for measuring the quality of and reproducibility of Hi-C 

experiments were assessed in this study (Fig. 1C). HiCRep [33], GenomeDISCO [34], 

HiC-Spector [32] and QuASAR-Rep (in submission) measure reproducibility, and 
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QuASAR-QC measures quality of Hi-C data. The four reproducibility methods we 

evaluate employ a variety of transformations of the Hi-C contact matrix. HiCRep 

stratifies a smoothed Hi-C contact matrix according to genomic distance and then 

measures the weighted similarity of two Hi-C contact matrices at each stratum. In this 

way, HiCRep explicitly corrects for the genomic distance effect and addresses the 

sparsity of contact matrices through stratification and smoothing, respectively. 

GenomeDISCO uses random walks on the network defined by the Hi-C contact map to 

perform data smoothing before computing similarity. The resulting score is sensitive to 

both differences in 3D DNA structure and differences in the genomic distance effect 

[34], and makes it thus more challenging for two contact maps to be reproducible, as 

they have to satisfy both criteria to be deemed similar. HiC-Spector transforms the Hi-C 

contact map to a Laplacian matrix and then summarizes the Laplacian by matrix 

decomposition. QuASAR calculates the interaction correlation matrix, weighted by 

interaction enrichment. The two variants of QuASAR, QuASAR-QC and QuASAR-Rep, 

both assume that spatially close regions of the genome will establish similar contacts 

across the genome, and they measure quality and reproducibility, respectively, by 

testing the validity of this assumption for a single and pair of replicates.  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 14, 2017. ; https://doi.org/10.1101/188755doi: bioRxiv preprint 

https://doi.org/10.1101/188755


8 

Reproducibility measures correctly rank noise-injected datasets 

To assess the performance of the reproducibility measures, we simulated pairs of Hi-C 

matrices with varying noise levels. Intuitively, a good reproducibility measure should 

declare the least noisy replicate pair as most reproducible and the noisiest replicate pair 

as least reproducible. We paired a real Hi-C contact matrix with a noisier version of the 

same matrix using a wide range of simulated noise levels (5%, 10%, 15%, 20%, 30%, 

40% and 50%). This procedure yielded seven pairs of replicates for each of 11 different 

cell types. We performed this approach using two different sets of randomly generated 

noise matrices, using one-third genomic distance noise and two-thirds random ligation 

noise or vice versa. Each replicate pair was assigned a reproducibility measure by 

HiCRep, GenomeDISCO, HiC-Spector, QuASAR-Rep and Spearman correlation.  

Our analysis showed that all reproducibility measures were able to correctly rank the 

simulated datasets. Averaged over 11 different cell types, we observed a monotonic 

trend for all of these measures (Fig. 2A). Indeed, for every cell type and every measure, 

increasing the noise level always led to a decrease in estimated reproducibility (Supp. 

Fig. 1). 
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Comparing the two noise models, we saw less consistent trends. HiC-Spector assigned 

higher reproducibility scores to matrices with 66% genomic distance noise and 33% 

random ligation noise. Spearman correlation and GenomeDISCO showed the opposite 

behavior whereas QuASAR-Rep and HiCRep gave similar scores regardless of the 

underlying noise proportions. This variability suggests that the various reproducibility 

measures exhibit different sensitivities to different sources of noise, thus potentially 

yielding complementary assessments of reproducibility. 

Assessment using real data sets reveals differences among 

reproducibility measures 

Inevitably, any simulation approach is only as good as its underlying assumptions; thus, 

we also analyzed the performance of the four reproducibility measures using real data. 

Specifically, we asked whether the reproducibility measures can discriminate between 

pairs of independent Hi-C experiments repeated on the same cell type versus pairs of 

experiments from different cell types. In this setup, we used three types of replicate 

pairs: matrices from the same cell type (which we call “biological replicates,” although 

each pair represents the same cells being prepped twice, rather than two different sets 

of cells), matrices from different cell types (non-replicates) and matrices sampled from 

combined biological replicates (pseudo-replicates). 

Because pseudo-replicates are generated from pooled biological replicates, their 

variation solely stems from statistical sampling, with no biological (including distance 

effect) or technical variance. Therefore, we expect pseudo-replicates to exhibit the 

highest reproducibility. Conversely, non-replicate pairs are expected to have the lowest 
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degree of reproducibility, because they contain all the experimental variation observed 

in biological replicates, as well as cell type specific differences in 3D chromatin 

organization. 

In contrast to the simulation analysis, the analysis using real datasets showed distinct 

differences among the five methods. For each of the eleven cell types and each 

reproducibility measure, we assigned reproducibility scores to a single biological 

replicate pair, 20 non-replicate pairs, and three pseudo-replicate pairs (Fig. 2B). The 

reproducibility score of a replicate pair is the score obtained by averaging reproducibility 

scores assigned to each chromosome. Strikingly, the Spearman correlation failed to 

separate biological replicates from non-replicates, whereas all four other measures 

succeeded (Supp. Fig. 2A). These differences are statistically significant according to a 

one-sided Kolmogorov-Smirnov test (P < 0.01). Intuitively, we prefer a measure that 

separates non-replicates from biological replicates with a clear margin. By this measure, 

the HiC-Spector measure yields the largest separation, followed by HiCRep, QuASAR-

rep and GenomeDISCO (Fig. 2B).  Among them, HiC-Spector and HiCRep correctly 

rank all replicates types for all eleven comparisons, with a clear separation between 

biological replicates and non-replicates. GenomeDISCO ranks a biological replicate 

lower than a non-replicate for a single case out of eleven. The pair of biological 

replicates that GenomeDISCO ranks lower than non-replicates shows a marked 

difference in genomic distance effect (Supp Fig 3), to which this method is sensitive 

[34]. QuASAR-rep is able to correctly rank most replicate types. The one exception is 

SKNDZ, where the biological replicate and pseudo-replicate pairs receive very similar 

scores.  This phenomenon likely occurs because of the extremely low sequencing depth 
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in this sample pair (approximately 15 and 9 million of intra-chromosomal Hi-C 

interactions). Indeed, we also observe that all of the non-replicate pairs that receive very 

low scores (<0.2) involve SKNDZ.  As expected, the Spearman correlation performs 

worse than the Hi-C-specific measures, ranking non-replicates higher than biological 

replicates in eight cases.  

Pseudo-replicate reproducibility scores provide an upper bound for each reproducibility 

measure. In general, these scores show similar trends to those described above. For 

example, the Spearman correlation scores assigned to pseudo-replicates show a wide 

separation from the rest of the scores, even though non-replicates and biological 

replicates are intermingled. On the other hand, GenomeDISCO, HiC-Spector, HiCRep, 

and QuASAR-rep show the desired behaviour: a high degree of separation between 

non-replicates and biological replicates, and a relatively small separation between 

biological replicates and pseudo-replicates.  

Reproducibility can be determined over a range of experimental 

coverage 

To directly investigate the effects of the coverage of a Hi-C experiment on the 

reproducibility measures, we downsampled real Hi-C matrices to contain fewer 

interactions and examined the effects on the resulting reproducibility scores. We limited 

this analysis to real data from six cell types with higher coverage, and we subsampled 

each replicate multiple times to contain 5 to 30 million total Hi-C interactions (see 

Methods for details). These datasets were used for testing the ability of each method to 
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distinguish among different replicate types at lower coverage levels, and for explicitly 

profiling the dependence of reproducibility scores on coverage levels. 

All four Hi-C reproducibility measures retained their ability to distinguish between 

replicate types, even at extremely low coverage levels. Visualization of the 

reproducibility scores revealed that all four measures successfully separate non-

replicates from biological replicates even with only five million Hi-C interactions, a feat 

that Spearman correlation cannot achieve at even the highest coverage level (Fig. 2C). 

As before, pseudo-replicate pairs continue to serve as an upper bound for 

reproducibility measures. However, the separation between pseudo-replicates and 

biological replicates is reduced at lower coverage levels, and so is the separation 

between biological replicates and non-replicates. Furthermore, this analysis suggests 

we can infer empirical thresholds for these reproducibility measures that can effectively 

separate all biological replicates from non-replicates at a given coverage levels, as 

explained in methods section. These empirical thresholds, selected as the midpoint 

between the most reproducible non-replicate pair and the least reproducible replicate 

pair, are shown as dashed lines in Fig. 2C and can be found in Supp. Table 2. 

Consistent with the trends observed in the analysis of real datasets, the reproducibility 

of downsampled replicate pairs exhibits a dependence on sequencing depth. We 

observe that reproducibility scores associated with biological replicates become 

significantly smaller as coverage decreases, according to a one-sided Wilcoxon signed 

rank test (P < 0.05, Supp. Fig. 4). The HiCRep, GenomeDISCO, QuASAR-rep and 

Spearman correlation scores exhibit a statistically significant drop for every level of 

coverage. In contrast, reproducibility scores from HiC-Spector only start to significantly 
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decay below 20 ×106 interactions, exhibiting a lesser degree of dependence on the 

coverage level.  This may be because the leading eigenvectors used by HiC-Spector 

tend to capture local or mesoscopic structures, which are less likely to be affected by 

coverage. Despite varying levels of dependence on coverage, downsampling analysis 

convincingly shows that all measures exhibit a dependence on coverage. Thus, 

coverage of different replicate pairs must be factored into reproducibility analyses, 

especially for comparative purposes. 

Reproducibility measures are robust to changes in resolution  

The resolution of a Hi-C matrix effectively dictates the scale of 3D organization 

observable from the data: a low resolution matrix can only reveal compartments and 

TADs[1, 8], whereas high resolution matrices reveal additional finer scale structures like 

chromatin loops [10]. To investigate the effect of resolution on reproducibility, we used 

deeply sequenced Hi-C replicates with at least 400 million intra-chromosomal 

interactions generated from the HepG2 and HeLa cell lines. From these data, we 

generated real and simulated replicate pairs at 10kb, 40kb and 500kb resolution, and 

we measured the reproducibility of each replicate pair. 

HiCRep, GenomeDISCO, HiC-Spector and QuASAR-Rep accurately measure 

reproducibility at both high and low resolutions, whereas Spearman correlation 

performance is dependent on resolution. The four Hi-C-specific methods can correctly 

rank pseudo, biological and non-replicate pairs at 10kb, 40kb and 500kb resolutions 

(Fig. 3A) with a clear margin between biological replicate and non-replicate pairs; 

however, Spearman correlation fails at this task for data binned at 10kb resolution for 
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biological replicate data sets obtained from HepG2. Notably, the reproducibility scores 

from the four methods are largely independent of resolution. While GenomeDISCO and 

QuASAR-rep exhibit some dependence of resolution, assigning lower reproducibility 

scores to replicates with lower coverage, they maintain a clear boundary between 

biological and non-replicates at all resolutions. However, the Spearman correlation 

exhibits the highest degree of dependence to resolution and fails to maintain such 

boundaries. Simulated datasets further validate that reproducibility scores from each 

method decrease with increasing levels of noise at 10kb, 40kb and 500kb resolution 

(Fig. 3B) 

Next, we used deeply sequenced datasets to further investigate the effect of coverage 

on reproducibility scores of biological replicates at three resolution levels using a wider 

range of coverage values (30, 60, 120, 240, and 400 million intra-chromosomal 

interactions). For HiCRep, QuASAR-rep and GenomeDISCO, we observed that 

reproducibility scores tend to plateau at 240 million interactions at 10kb and 40kb 

resolutions, whereas reproducibility scores of 500kb resolution matrices benefit little 

from higher coverage (Fig. 3C). Consistent with our previous observations, HiC-Spector 

exhibits a lower degree of dependence on coverage, with scores reaching maxima at 

120kb. Spearman correlation exhibits different trends at different resolutions, 

underscoring its unsuitability to the task. Overall, the four Hi-C reproducibility measures 

exhibit robustness to coverage and resolution differences, as measured by their ability 

to distinguish between replicate and non-replicate pairs. 
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Noise reduces the consistency and the prevalence of higher order 

structures in Hi-C matrices 

Having investigated four different methods for evaluating the reproducibility of a given 

pair of Hi-C matrices, we now focus on methods for evaluating the quality of a single Hi-

C matrix. As before, we perform this evaluation by injecting noise into real Hi-C data, 

producing a collection of 88 matrices corresponding to 11 cell types and 8 different 

noise profiles (see Methods). Among our four Hi-C reproducibility measures, only one 

(QuASAR-QC) provides a variant to assess the quality of a single matrix. The procedure 

yields a single, bounded summary statistic indicative of homogeneity of the underlying 

sample population and the signal-to-noise ratio of the interaction map. In addition to 

QuASAR-QC analysis, we profiled two well-known features of 3D organization: 

statistically significant long range contacts [35, 36], which include DNA loops, and 

topologically associating domains (TADs). Intuitively, we expect that significant contacts 

and TADs should be harder to detect in noisy matrices, and that such matrices should 

have a lower degree of consistency. 

Our analysis suggests that QuASAR-QC is indeed sensitive to the noise and the 

coverage of a Hi-C matrix. For each simulated Hi-C matrix from 11 cell types, QuASAR-

QC detects a perfectly monotonic relationship between the noise level and the 

consistency of the matrix (Fig. 4A). The same trend is observed in deeply sequenced 

HepG2 and HeLa cell types at 10kb, 40kb and 500kb resolutions (Supp. Fig 5). 

Although the majority of noise-free combined replicates are assigned a QuASAR-QC 

score ranging from 0.23 to 0.30, three cell types have strikingly lower QuASAR-QC 
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scores ranging from 0.12 and 0.6. The Hi-C matrices from these three cell types 

(LNCaP, SKNDZ, SKNMC) contain fewer Hi-C interactions. Thus, the lower consistency 

scores are likely due to the sparsity that results from low experimental coverage (Supp. 

Table 1). Furthermore, investigation of contact probabilities at given genomic distances 

for each cell type revealed that the three cell types with lower QuASAR-QC scores have 

significantly higher contact probabilities at genomic distances larger than 50 megabases 

(Supp. Fig. 6). Because such long range contacts are unlikely to occur due to the 

organization of chromatin, it is likely that such long range contacts represent random 

ligation of uncrosslinked DNA fragments, which is a known source of noise in a Hi-C 

experiment [23]. Thus, the QuASAR-QC measure is potentially sensitive to both the 

level of simulated noise and the differences in level of inherent noise that each 

combined replicate contains. 

Statistically significant mid-range (50kb-10Mb) interactions are depleted in noisy Hi-C 

matrices. We identified statistically significant Hi-C contacts using Fit-Hi-C [35] for each 

of the Hi-C matrices that make up our simulated dataset. Because robust identification 

of such contacts requires deeply sequenced datasets that contain large numbers of Hi-

C interactions, we chose to use a somewhat liberal false discovery rate threshold of 

0.05 to facilitate discovery of statistically significant contacts. For 11 cell types, we 

observed that eight out of eleven cell types exhibit a perfect or near perfect anti-

correlation between the injected noise percentage and the total number of significant 

interactions (Fig. 4B). For the other three cell lines (LNCaP, SKNDZ, SKNMC), Fit-Hi-C 

identifies almost no significant contacts with or without any noise injection, further 

supporting the conclusion that these Hi-C data sets have low quality. These three cell 
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lines are also the cell lines that have the lowest QuASAR-QC scores, corroborating the 

results between these two independent analyses. For the deeply sequenced two data 

sets (HepG2 and HeLa), we observed a similar trend at both 10kb and 40kb resolutions, 

with a higher number of significant mid-range contacts due to the higher coverage, as 

expected (Supp. Fig. 7). 

Surprisingly, we found that topologically associating domain detection is highly robust to 

noise. We identified TADs using the insulation score [5, 37] method for the 88 simulated 

matrices, and we characterized the changes in total number of TADs and TAD size 

distribution and the changes to TAD boundaries with respect to noise level. The total 

number of identified TADs and their size distribution are only altered at the highest level 

of noise injection (Supp Figure 8 and 9). In addition, TAD boundaries between the 

original replicate and noise injected levels exhibit the same degree of variation between 

two biological replicates, further supporting the idea that TAD boundaries identified with 

the insulation score approach are highly robust to noise (Fig. 4C, Supp Fig. 10).  

Quality control measures require different levels of experimental 

coverage 

Continuing our assessment of Hi-C quality measures, we used downsampled Hi-C 

matrices to investigate the relationship between experimental coverage and each QC 

measure using a similar setup as before (see Methods). 

Quality control metrics exhibit a predictable dependence on the coverage of Hi-C 

matrices. For each of the six cell types we downsampled, we observed that QuASAR-

QC scores are lower for Hi-C matrices with fewer interactions (Fig. 4D). We observe the 
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same trend for deeply sequenced matrices at 10kb and 40kb resolutions; however, 

QuASAR-QC scores at 500kb tend to benefit less from deeper coverage, likely because 

coarse resolutions do not require large numbers of Hi-C interactions. (Supp. Fig. 11). 

Similarly, the number of statistically significant long range interactions also decreases 

as we reduce the number of total Hi-C interactions. However, the number of significant 

interactions decrease at a much higher rate: even at 15 million interactions most cell 

lines lose the majority of significant interactions (Fig. 4E). Larger numbers of significant 

interactions are detected in deeply sequenced datasets, due to added statistical power, 

but a similar relationship between coverage and number of significant contacts is 

observed at both 10kb and 40kb resolutions (Supp. Fig. 12). Conversely, we found that 

TADs detected by insulation score are robust to low coverage levels. Using the same 

approach for noise-injected datasets, we found that total number of TADs and their size 

distribution are not altered by lower coverage (Supp Figures 13 and 14). Indeed, the 

distances between TAD boundaries identified at lower coverage and original replicates 

only differ from the baseline distribution at 10 million or fewer interactions (Fig. 4F, Supp 

Fig15).  

Quality control measures are consistent with mapping statistics  

To further validate the performance of the quality controls measures at our disposal, we 

investigated the relationship between the QuASAR-QC scores assigned to real Hi-C 

matrices and various read-mapping statistics that have been used previously to 

evaluate Hi-C data quality [23]. The three statistics we compared against are 

percentage of fragment pairs that can be mapped uniquely to the genome (aligned 
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pairs), percentage of fragment pairs from the same restriction fragments (invalid pairs), 

and the percentage of intrachromosomal interactions (intra-chromosomal percentage).  

 

Overall, we observe varying degrees of correlation between the quality control 

measures and the mapping statistics for biological replicates. The percentage of aligned 

pairs is correlated with higher quality experiments, consistent with what one would 

intuitively expect from high quality sequencing libraries (Fig. 5A). The percentage of 

invalid pairs is also weakly anti-correlated with QuASAR-QC scores, consistent with the 

fact that invalid pairs represent uninformative Hi-C interactions (Fig. 5B). However, we 

observed the highest degree of correlation between QuASAR-QC scores and intra-

chromosomal percentage (Fig. 5C). In a typical Hi-C experiment, a portion of inter-

chromosomal interactions result from random ligation of non-crosslinked fragments; 

thus, a significant enrichment of inter-chromosomal interactions, which results in a 

depletion of intra chromosomal interactions, indicates a low quality Hi-C experiment. In 

particular, six biological replicates with lower than 30% intra-chromosomal interactions 

have the lowest QuASAR-QC scores; these replicates are from the LNCaP, SKNDZ, 

and SKNMC cell types. These replicates were also identified to have lower quality in our 

simulation studies (Fig. 5A) and are depleted for significant mid-range interactions, 

establishing the consistency of quality control measures overall. We note that this 

finding is consistent with the previously suggested range of 40-60% intra-chromosomal 

interactions for high quality experiments [23]. These trends can be reproduced when we 

include deeply sequenced Hi-C data, except for aligned pair percentage (Fig. 4D-F). 

The deeply sequenced datasets are generated by a four cutter enzyme (DpnII), which 
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presumably results in a different range of successful alignment percentage compared to 

HindIII. 

Discussion 

We evaluated recently proposed methods for measuring the quality and reproducibility 

of Hi-C experiments. Using a rich set of Hi-C experiments from a variety of human cell 

types, we tested whether these methods can identify reproducible and high quality 

experiments. Furthermore, we generated Hi-C contact matrices with controlled levels of 

noise by designing a simulated noise injection process. Our analysis shows that these 

measures perform well and improve upon the shortcomings of using generic or 

qualitative approaches. 

The Hi-C reproducibility measures that we evaluated measure reproducibility more 

accurately than the Spearman correlation for real and simulated datasets. In particular, 

measures specifically designed for Hi-C data can better distinguish subtle differences in 

the 3D organization of different cell types, because these methods directly account for 

the specific noise properties of this data type [32, 33]. Although all four methods perform 

satisfactorily, we found that they exhibit different sensitivities to different sources of 

noise and different spatial patterns, thus potentially yielding complementary 

assessments of reproducibility. HiC-Spector, QuASAR-rep HiCRep exhibit similar 

performance across all tests. For example, previously reported analysis suggests that 

GenomeDISCO is particularly sensitive to differences in the genomic distance 

effect.[34]. Given that the reproducibility methods are successful at distinguishing 
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biological replicates from non-replicates, these methods can also be used to check for 

sample swaps during large-scale experiments. 

The QuASAR-QC measure provides an interpretable score that can accurately rank 

simulated datasets according to noise levels and distinguish low quality real Hi-C 

experiments from high quality ones (in submission). This measure correlates with 

previously established statistics that indicate high quality in a Hi-C experiment and have 

been used as qualitative indicators of quality. Each of these statistics captures different 

sources of error in a Hi-C assay. In contrast, QuASAR-QC offers a single score that 

allows direct ranking of multiple experiments.  

Significant mid-range interactions, such as DNA loops, are also depleted in low quality 

Hi-C experiments in both simulated and real datasets. Surprisingly, we found that TAD 

detection is fairly robust to all but high levels of noise, presumably because TAD 

detection only requires that a dataset contains a sufficient proportion of valid short 

range Hi-C interactions and ignores mid- and long-range interactions. Unfortunately, it is 

challenging to convert the enrichment of such features into a quality control measure, 

due to other quality-independent biological processes which can cause variation of 

these features. However, a near total depletion of these features, mid-range interactions 

in particular, may certainly indicate lower quality overall. 

In practice, different Hi-C experiments are performed with very different levels of 

coverage, reflecting library complexity and the amount of sequencing performed. Hi-C 

data can be binned at high or low resolutions which, combined with resolution, 

determines the sparsity of the resulting Hi-C contact matrix [12, 22]. Only at high 

resolutions are fine-scale structures such as DNA loops detectable [10]. Our 
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experiments confirmed that sparser datasets yield lower reproducibility and quality 

scores. Interestingly, we observed that the four reproducibility measures can distinguish 

between replicates from the same cell type versus replicates from different cell types at 

high levels of sparsity and at both high and low resolutions. The robustness of 

reproducibility methods to differences in coverage and resolution shows that they can 

be applied to Hi-C datasets of smaller genomes where higher resolutions are more 

common and can assess reproducibility reliably for experiments that have not been 

deeply sequenced. By using the suggested empirical thresholds, experimenters can 

assess with relatively low sequencing depth whether a pair of Hi-C libraries yields data 

that is reproducible enough to warrant sequencing more deeply. 

We release a software package that incorporates the four reproducibility measures and 

the QuASAR-QC measure (https://github.com/kundajelab/3DChromatin_ReplicateQC). 

Until recently, proven measures have been lacking and currently there is no standard 

for measuring for quality and reproducibility of Hi-C data. This tool will both greatly 

simplify the task of measuring both the quality and reproducibility of Hi-C datasets 

robustly by using the methods we show to be accurate in this study. We also propose a 

set of empirical quality and reproducibility thresholds for use at various coverage levels, 

which are built into the software package to make it easy to determine whether samples 

pass quality and reproducibility standards (Supp. Table 2).  

While the methods we compared are tailored for Hi-C data, similar chromosome 

conformation capture assays such capture Hi-C [38, 39]and ChIA-PET [40] are used to 

study three dimensional interactions in the genome. These assays differ from Hi-C due 

to their targeted nature; however, they share many properties of Hi-C assay, such as 
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the genomic distance effect, and can be represented as a contact matrix similar to Hi-C 

[41]. Reproducibility and quality measures of these assays are lacking in general, 

raising the possibility of adaptation of the methods we evaluate here to these assays. 

In summary, we show that recently proposed Hi-C quality and reproducibility measures 

accurately measure these qualities on a large collection of real and simulated data. By 

profiling various parameters of Hi-C contact matrices, we describe best practices for 

applying and interpreting these measures. We also make available a convenient 

software tool that simplifies the application of these measures to Hi-C datasets. We 

hope that adoption of this standard toolkit will help to improve the quality and 

reproducibility of Hi-C data generated in the future. 

Methods 

Measures of reproducibility 

HiCRep. This method assesses reproducibility by taking into account two dominant spatial 

features of Hi-C data: distance dependence and domain structure. The method first smooths the 

given Hi-C matrices to help capture domain structures and reduce stochastic noise due to 

insufficient sampling. It then addresses the distance-dependence effect by stratifying Hi-C data 

according to genomic distance. Specifically, the method consists of two stages. 

In the first stage, HiCRep smooths the Hi-C raw contact map using a 2D mean filter, which 

replaces the read count of each contact with the average counts of all contacts in its 

neighborhood. The neighborhood size is obtained from a deeply sequenced benchmark dataset 

using a training procedure. In this analysis, neighborhood size parameter of 20, 5, and 1 are 
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used for the resolutions of 10 kb, 40 kb, and 500 kb, respectively.  Smoothing improves the 

contiguity of regions with elevated interaction, consequently enhancing the domain structures. 

In the second stage, HiCRep takes into account the distance dependence effect by a 

stratification and aggregation strategy. This stage consists of two steps.  The algorithm first 

stratifies the contacts according to the genomic distances of the contacting loci and computes 

the correlation coefficients within each stratum. HiCRep then assesses the reproducibility of the 

Hi-C matrix by applying a novel stratum-adjusted correlation coefficient statistic (SCC) to 

aggregate the stratum-specific correlation coefficients using a weighted average, with the 

weights derived from the Cochran-Mantel-Haenszel (CMH) statistic. The SCC has a range of [-

1, 1] and is interpreted in a way similar to the standard correlation coefficient.  

GenomeDISCO. This method focuses on two key aspects of contact maps: the need for 

smoothing, and the multiscale nature of these maps. The need for smoothing arises because 

contact maps are insufficiently sampled, especially at low sequencing depths. This means that a 

pair of genomic regions can exhibit a low count either from a lack of contact or from insufficient 

sampling. This problem is addressed by smoothing the data, essentially assuming that two 

contact maps are reproducible as long as they capture similar higher order structures, even if 

they differ in terms of individual contacts. GenomeDISCO investigates contact maps at multiple 

scales by comparing them at different levels of smoothing and computing a reproducibility score 

that takes all these comparisons into account. 

The smoothing approach is based on random walks on networks. Each contact map is treated 

as a network, where each node is a genomic region and each edge is weighted by the Hi-C 

count matrix, following normalization. In this work, square root was used normalization, but 

similar results were obtained by using alternative normalization methods, including simple row- 

and column-based normalization or Knight-Ruiz normalization [42] (Data not shown). Random 

walk are performed on networks to smooth the data, asking for each pair of nodes what is the 
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probability of reaching node i from node j, if t steps are allowed in a random walk biased by the 

edge weights. The smoothed data can be computed by raising the adjacency matrix of our 

weighted network to the power t. Lower values of t perform local smoothing of the data, 

revealing structures such as domains, while larger values of t emphasize compartments.  This 

graph-based smoothing scheme aims to preserve sharp domain boundaries that 2D methods 

may dilute. 

To obtain the GenomeDISCO reproducibility score, each contact map is separately smoothed 

across a range of t values. For each value of t, the L1 distance (i.e., the  sum of the absolute 

values in the difference matrix) between the two smoothed contact maps is computed and 

normalized by the average number of nodes with nonzero total counts across the two original 

contact maps compared. Afterwards, a combined distance between the two contact maps is 

obtained by  computing the area under the curve of the L1 difference as a function of t. This 

allows us to consider multiple levels of smoothing and thus multiple scales when computing our 

scores. Finally, this distance is converted into a reproducibility score as follows: 

Reproducibility = 1 - (combined distance) 

This score is in the range [-1,1], with higher scores representing higher reproducibility. This is 

because, for each node, the maximum L1 difference is 2, corresponding to the case when the 

node has mutually exclusive contacts in the two contact maps being compared. Thus, the 

combined distance lies in the range [0, 2], making the reproducibility score fall in the range [-1, 

1].  

Parameter optimization on an orthogonal dataset revealed the optimal t={3} [34], which was 

used in this study. 

In all pairwise comparisons in this paper, the sample with higher coverage was downsampled to 

match the coverage of the other sample. 
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HiC-Spector. The starting point of spectral analysis is the Laplacian matrix L, which is defined 

as L=D-W, where W is a symmetric and non-negative matrix representing a chromosomal 

contact map, and D is a diagonal matrix in which 𝐷𝑖𝑖 = ∑ 𝑊𝑖𝑗𝑗 . The matrix L is further normalized 

by the transformation 𝐷−1/2𝐿𝐷−1/2, and its leading eigenvectors are found. As in other 

commonly used dimensionality reduction procedures, the first few eigenvalues are of particular 

importance because they capture the basic structure of the matrix, whereas the latter 

eigenvalues are essentially noise. Given two contact maps 𝑊𝐴  and 𝑊𝐵, their corresponding 

Laplacian matrices 𝐿𝐴 and 𝐿𝐵 and corresponding eigenvectors are calculated. Let 

{𝜆0
𝐴, 𝜆1

𝐴,…, 𝜆𝑛−1
𝐴 } and {𝜆0

𝐵, 𝜆1
𝐵,…, 𝜆𝑛−1

𝐵 } be the spectra of 𝐿𝐴 and 𝐿𝐵. A distance metric is defined 

as: 

 𝑆𝑑(𝐴, 𝐵) = ∑ ‖𝑣𝑖
𝐴 − 𝑣𝑖

𝐵‖𝑟−1
𝑖=0 .  

Here ‖ ‖ represents the Euclidean distance between the two vectors. The parameter r is the 

number of leading eigenvectors used. In general, 𝑆𝑑 provides a metric to gauge the similarity 

between two contact maps. The distance is then linearly rescaled to a reproducibility score 

ranging from 0 to 1. 

 

QuASAR. The Quality Assessment of Spatial Arrangement Reproducibility (QuASAR) measure 

uses the concept that within a distance matrix, as the distance between two features 

approaches zero, the correlation between the rows corresponding to those two features will 

approach one. This relationship is highlighted by calculating the interaction correlation matrix, 

weighted by interaction enrichment. To determine reproducibility across replicates, the 

correlation of weighted correlation matrices was calculated, as follows. For the reproducibility 

analyses of 11 cell types, contact matrices were re-binned from 40kb to 120kb resolution prior to 

analysis by QuASAR-rep. In the other reproducibility analyses using deeply sequenced data 
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sets, the contact matrices were not re-binned. In every case, matrices were filtered by removing 

intra-chromosomal interaction matrix rows and columns such that all remaining rows and 

columns contained at least five non-zero entries. The background signal-distance relationship 

was estimated as the mean number of reads for each inter-bin distance. The interaction 

correlation matrix was calculated across all pairwise sets of rows and columns from the log-

transformed enrichment matrix excluding bins falling on the diagonal in either set from the 

correlation calculation. Row/column pairs with zero reads occurriThe Quality Assessment of 

Spatial Arrangement Reproducibility (QuASAR) measure uses the concept that within a 

distance matrix, as the distance between two features approaches zero, the correlation between 

the rows corresponding to those two features will approach one. This relationship is highlighted 

by calculating the interaction correlation matrix, weighted by interaction enrichment. To 

determine reproducibility across replicates, the correlation of weighted correlation matrices was 

calculated, as follows. For the reproducibility analyses of 11 cell types, contact matrices were 

re-binned from 40kb to 120kb resolution prior to analysis by QuASAR-rep. In the other 

reproducibility analyses using deeply sequenced data sets, the contact matrices were not re-

binned. In every case, matrices were filtered by removing intra-chromosomal interaction matrix 

rows and columns such that all remaining rows and columns contained at least five non-zero 

entries. The background signal-distance relationship was estimated as the mean number of 

reads for each inter-bin distance. The interaction correlation matrix was calculated across all 

pairwise sets of rows and columns from the log-transformed enrichment matrix excluding bins 

falling on the diagonal in either set from the correlation calculation. Row/column pairs with zero 

reads occurring at their intersection were excluded from the correlation matrix.  Note that, to 

distinguish the use of QuASAR for assessing reproducibility versus data quality (described 

below), we refer in the main text to “QuASAR-Rep” and “QuASAR-QC”. 
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Processing of reproducibility scores. All the reproducibility measures we use in this study 

assign a reproducibility score to a pair of Hi-C contact matrices. Due to the sparsity and noise 

nature of inter-chromosomal matrices, reproducibility scores are only calculated for intra-

chromosomal matrices. The final reproducibility score assigned to a pair of Hi-C experiments in 

this study is the mean of the reproducibility scores assigned to pairs of Hi-C contact matrices of 

each chromosome.  

Empirical reproducibility score thresholds. To infer empirical thresholds for distinguishing 

non-replicates for biological replicate pairs for each method, we used the distribution of 

reproducibility scores assigned to non-replicate pairs and biological replicate pair at a given 

coverage level. Similar to the concept of a maximal margin hyperplane, the empirical threshold 

we inferred is midpoint of the reproducibility score of the highest scoring non-replicate pair and 

the reproducibility score of the lowest scoring biological-replicate pair. For each coverage level 

from 30 million Hi-C interactions to 5 million interactions, we inferred a single empirical threshold 

for each reproducibility metric. These thresholds are available in Supp. Table 2. 

Measures of quality 

QuASAR. The sample quality measure from QuASAR (“QuASAR-QC”) uses the same 

transformation as described above for reproducibility except contact matrices were re-binned at 

1Mb resolution. However, instead of looking at weighted correlation matrices between samples, 

the quality score is found by taking the weighted mean across all chromosomes and subtracting 

the unweighted mean of correlation matrices across all chromosomes. 

TAD boundary calling and analysis TAD boundaries were identified using the insulation score 

[37]. This score captures the density of signal in the Hi-C contact matrix around the diagonal, as 

a function of genomic position. Because the signal is weaker at the boundary of two TADs, 

minima in the insulation score profile correspond to TAD boundaries. We used the TAD calling 
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software described in Giorgetti et al. [5], employing the previously used parameters (--ss 80000 

--im iqrMean --is 480000 --ids 320000) for calculation of the insulation score and identification of 

minima.  

To characterize the effects of noise and coverage on TAD boundary identification, we used 

noise injected and downsampled datasets as explained before and used insulation score 

method as desribed in the previous section. For noise injected datasets, we found that number 

of identified TADs across the genome are only altered at the highest noise levels: the number of 

total TADs increased only by 5% with 50% noise injection (Supp. Fig 8). Consistent with the 

changes in the total number of TADs, the distribution of TAD sizes is only altered at high noise 

levels. For 7 out of 11 cell types, we detect a statistically significant reduction in the TAD size 

distribution (P < 0.01, Kolmogorov-Smirnov test) only at either 40% or 50% noise (Supp. Fig 9). 

Furthermore, positions of TAD boundaries are not altered with increasing noise levels. For 11 

cell types, we calculated the distances between the TAD boundaries of the combined noise-free 

biological replicate and the TAD boundaries from noise-injected replicates. These distances 

were compared against the TAD boundary distances from biological replicate pairs, which 

serves as a baseline for how much the TAD boundaries fluctuate between different replicates 

from the same cell type. Again, we found that the boundary distances are significantly larger 

than the baseline distribution (one sided KS test, P < 0.05) only at the 50% noise level for four 

cell types and never larger for the remaining four cell types (Fig. 4C, Supp Fig. 10).  

We adopted the same approach for investigating the effect on coverage on insulation score 

identified TADs. For each of the six downsampled cell lines, we identified TADs using insulation 

score method and compared total number of TADs, the size distribution of TADs and the 

differences between TAD boundaries between the original replicate and downsampled 

replicates. We observe that the total number of TADs detected and TAD size distributions are 

similar at all coverage levels (Supp. Figures 13 and 14). We calculated the distances between 
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TAD boundaries identified from downsampled replicates against the TAD boundaries from 

original biological replicates, and we compared this distribution against the distances between 

biological replicates as a baseline. For five of the six cell types, downsampling causes the TAD 

boundaries to shift away from the original boundaries significantly (Kolmogorov-Smirnov test, P 

< 0.05) only 10 million and lower number of interactions, further supporting the idea that TAD 

boundary by insulation score detection is mostly robust to low coverage (Fig. 4F, Supp Fig. 15). 

 Number of significant contacts For a given normalized Hi-C contact map, we computed the 

number of contacts that are deemed statistically significant using Fit-Hi-C [35]. Hi-C contact 

maps were binned at 40kb resolution and normalized using the Knight-Ruiz matrix balancing 

algorithm [42]. Deeply sequenced Hi-C data from 2 cell types were binned at 10kb and 40kb 

resolutions for Fit-Hi-C analysis (Supp. Table 2). Fit-Hi-C assigns a statistical significance to 

each contact between two bins by assigning a p-value and a q-value. For each experiment, we 

counted the number of contacts that are above a given q-value threshold for every intra-

chromosomal interactions and aggregated them over all chromosomes and used this sum as 

the total number of significant contacts for a given experiment.  

Mapping statistics 

We have used three statistics to summarize alignment quality, valid Hi-C fragment pairs, and 

the ratio of intrachromosomal and interchromosomal Hi-C interactions. A thorough description of 

these statistics and their application is reviewed in Lajoie et al [23]. First statistic we use is 

percentage of aligned pairs, which corresponds to the percentage of Hi-C fragment pairs that 

uniquely map to the genome on both sides. Typically, single sided and non-unique alignments 

are discarded in Hi-C pipelines [22, 23]. The second statistic is invalid pairs, which the 

percentage of aligned pairs that map against the same restriction fragment. These fragment 

pairs are non-informative since they do not correspond to a fragment between two different 
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regions [23]. The third statistic is the percentage of intra-chromosomal valid pairs. Random 

ligations are much more likely to result in interchromosomal fragments; thus a high ratio of non-

informative random ligation events result in an enrichment of inter-chromosomal interactions 

and a depletion of intra-chromosomal interactions [23].  

Simulation of noisy Hi-C matrices  

To generate noise for Hi-C data in a realistic manner, we simulated two Hi-C contact matrices 

that would result from two processes that are not dictated by the 3D organization of chromatin. 

These “pure noise” matrices are mixed with the real Hi-C contact matrix to generate the final, 

noisy Hi-C matrix. The first noise matrix models the genomic distance effect, namely the higher 

probability of observing a Hi-C interaction between two regions that are close along the one 

dimensional length of a chromosome. Because such regions are constrained to be close to 

each other, they are more likely to interact compared to more distal regions, in the absence of 

any higher order structure. This effect has been documented early on and is generally corrected 

in Hi-C contact matrices to better visualize medium and long range interactions [1]. The second 

noise matrix models the ligation of non-crosslinked DNA fragments during the ligation step of 

the Hi-C protocol. Fragments pairs that results from random ligation are uninformative since 

they can link two regions independently of 3D organization.  

Additionally, the Hi-C assay is subject to the same biases that other next generation sequencing 

assays suffer from. These biases result include a bias in favor of GC rich regions and a bias 

against regions of low mappability. During the generation of both types of noise matrices, we 

factored in such biases by using the sum of each row as a proxy for the the overall bias of a bin. 

Coverage normalization of Hi-C matrices [1] similarly uses marginals to counter such biases.  

To generate the genomic distance noise matrix G, we sampled from empirical distributions 

derived from of real Hi-C matrix. In this setting, the genomic distance D is defined as the 
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number of bins that lie between a pair of bins i and k, i.e. |𝑖 − 𝑘|  =  𝐷. For every value of D, we 

build a vector S by collecting the set of real Hi-C matrix entries Mik for which |𝑖 − 𝑘|  =  𝐷. We 

then randomly select values from S for insertion into G, again considering only entries Gik for 

which |𝑖 − 𝑘|  =  𝐷. This sampling strategy effectively shuffles the matrix entries in M at a fixed 

distance, thus preserving the original genomic distance effect while disrupting other higher order 

structures. However, instead of uniformly sampling from S, we adopted a stratified sampling 

strategy to better model GC and mappability biases. Specifically, S was broken into multiple 

strata before sampling. The strata are determined by products of marginals, i.e. Mik is assigned 

to a certain stratum based on the product of the marginals of bin i and bin k. For a given value of 

D, we chose stratum size in such a way that each each stratum contains 100 elements. When 

sampling the Gik, we sampled a value from from the stratum that Mik belongs to. By repeating 

the stratified sampling for every value of D, the final matrix G is obtained. 

To generate the random ligation noise matrix R, we generated random Hi-C interactions and 

aggregated them to build a Hi-C contact matrix. We generated these interactions by randomly 

choosing two bins i and k, and adding one to the matrix entry Rik in the random noise contact 

matrix. Instead of sampling the bins uniformly, the probability of sampling a bin was set 

proportional to marginal of that bin, thus modeling the GC and mappability bias of each bin. The 

sampling process was repeated N times, where N is the total number of interactions in the 

original Hi-C contact matrix M, to generate a random ligation noise matrix. 

After both noise matrices are generated from the original Hi-C matrix, these matrices were 

mixed in varying proportions to generate a series of noisy Hi-C matrices. Each such matrix is a 

mixture of three matrices: a real matrix, a genomic distance noise matrix, and a random ligation 

noise matrix. To generate a simulated matrix with c total counts from, we sampled counts 

uniformly at random from one real and two simulated matrices at a given target ratios.  In 

practice, we varied the total proportion of noise from 0% to X%, and for each total noise level we 
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consider two settings for the relative proportions of genomic distance noise random ligation 

noise: we either used one third of matrix G and two thirds of matrix R, or vice versa. We note 

that most analyses in this study were robust to either scenario. 

The software for injecting noise into Hi-C contact matrices is available at 

https://github.com/gurkanyardimci/hic-noise-simulator. 

 

Downsampling 

Downsampled data sets were generated by converting an input Hi-C matrix into a set of 

pairwise individual intra-chromosomal interactions and uniformly sampling a given number of 

interactions from this set. Following downsampling, we re-binned the set of chosen interactions 

into a Hi-C matrix. 

For analysis of reproducibility measures, we limited the analysis to real data from six cell types 

with replicates of at least 30 million interactions, and we downsampled each individual replicate 

to have a wide range of total interactions (30 ×106, 25 ×106, 20 ×106, 15 ×106, 10 ×106, 5 ×106 ). 

Using a single pseudo-replicate and a single biological replicate pair for each cell type and 15 

non-replicates at each coverage level, we generated a total of 162 replicate pairs. These 

datasets were used for testing the ability of each method to distinguish among different replicate 

types at lower coverage levels, and for explicitly profiling the dependence of reproducibility 

scores on coverage levels. 

For analysis of QC measures, we generated downsampled biological replicates from the same 

six cell types to have fewer interactions (30 ×106, 25 ×106, 20 ×106, 15 ×106, 10 ×106, 5 ×106, 

106), resulting in a set of 84 matrices. In addition, we applied the same setup to deeply 

sequenced datasets from two cell types at a wider range of coverage values (30 ×106, 60 ×106, 
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120 ×106, 240 ×106, 400 ×106), at multiple resolutions, resulting in 30 matrices.  For each 

downsampled matrix, we calculated QuASAR scores and identified statistically significant long 

range contacts and TAD boundaries.  

Generation of pseudo-replicates 

Given two biological replicate experiments, we generated pseudo-replicates by aggregating the 

two replicates and downsampling from the combined matrix. Combination of two biological 

replicates is performed by summing the two Hi-C contact matrices of these replicates. Following 

combination, the resulting combined Hi-C matrix is downsampled as described above to 

generate pseudo-replicates. We forced the pseudo-replicates to have the average of total 

number of interactions of two seed biological replicates. 
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Fig 1. Overview of the study. (A) Schematic showing the approach for generating 

noise-injected Hi-C matrices. In the upper panel, we generate two types of noise from 

real Hi-C data (center): random ligation noise (right) and genomic distance effect noise 

(left). The three matrices are then mixed to generate noisy datasets (lower panel). By 

changing the mixing proportions, we can create datasets with varying percentages of 

noise. (B) To benchmark the performance of various quality control and reproducibility 

measures, we compiled a large number of Hi-C replicates from 13 cell types, and 

simulated noise-injected datasets from the original data. Real and simulated datasets 

binned at different resolutions and downsampled to different coverage levels are the 

inputs to reproducibility and quality control measures where each replicate pair and 

single replicate are assigned a score. Performance of each measure is evaluated on 

their ability to correctly rank real and simulated datasets. (C) Summary of the basic 

principles of the four reproducibility methods evaluated in this study. 
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Figure 2. Comparison of reproducibility measures. (A) Curves showing the mean 

reproducibility score assigned to 11 cell types at each noise injection level for 33% and 

66% random ligation noise configurations. Vertical bars represent one standard 

deviation away from the mean. The monotonic decay of each curve shows that each 

measure is able to capture the expected decay in reproducibility levels with respect to 

noise level. (B) Reproducibility scores assigned to biological replicate (blue), non-

replicate (red) and pseudo-replicate (purple) pairs for each cell type. Note that the point 

corresponding to the pseudo-replicate pair for SKNDZ for QuASAR is occluded by one 

of the biological replicate points. (C) Reproducibility scores assigned to biological 

replicate (blue), non-replicate (red), and pseudo-replicate (purple) pairs from six cell 

types at seven different coverage levels. Dashed lines indicate empirical threshold for 

distinguishing biological replicate pairs from non-replicate pairs. 
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Fig 3. Effects of resolution on reproducibility measures. (A) Reproducibility scores 

assigned to biological replicate (blue), non-replicate (red), and pseudo-replicate (purple) 

pairs from HepG2 and HeLa Hi-C datasets at 10kb, 40kb and 500kb resolutions. (B) 

Reproducibility scores of noise injected replicate pairs decay with increasing levels of 

noise at low and high resolutions. (C) Reproducibility scores assigned to downsampled 

biological replicate pairs at different resolutions. Reproducibility scores from each 

measure plateau around 120 or 240 million interactions for all resolutions.  
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Figure 4. Quality measures. (A) QuASAR-QC scores assigned to noise injected 

matrices from 11 cell types (B). Total number of significant contacts above a 5% FDR 

threshold from noise injected matrices from 11 cell types. (C) Violin plots showing the 

distribution of TAD boundary distances between biological replicates and noise-injected 

replicates for T470 cells. There is no significant change in the distribution of TAD 

boundary distances at any given noise level. (D) QuASAR-QC scores assigned to 

downsampled replicates from six different cell types. (E) Total number of significant 

contacts above a 5% FDR threshold from downsampled replicates from six different cell 

types. (F) Violin plots showing the distribution of distances between domain boundaries 

in biological replicates and noise-injected replicates for T470 cells. In panels C and F, 

asterisks indicate that the distribution of boundary distances is significantly larger than 

the null distribution, which is obtained by comparing biological replicates. 
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Figure 5. Comparison of QuASAR-QC to previously described statistics. (A-C) 

Scatter plots of QuASAR-QC scores of biological replicates from 11 cell types plotted 

against quality statistics that describe (A) alignment mapping percentage, (B) 

percentage of artefactual Hi-C fragments and (C) percentage of intra-chromosomal 

interactions. (D-F) Same as (A-C), but deeply sequenced Hi-C replicates are included in 

the scatter plots as triangles, regular replicates are shown as circles. In each plot, the 

Spearman correlation between the QuASAR-QC scores and the statistic are indicated in 

the upper right corner. 
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Supp. Fig. 1. Reproducibility scores assigned to each noise injected replicate pair for 

each cell type for 33% random ligation configuration. For every cell type and every 

measure, we see a monotonic trend of decreasing scores with higher levels of noise. 

The same trends for each measure are observed in the 66% random ligation noise 

configuration (not shown). 
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Supp. Fig. 2. Boxplots showing the distribution of reproducibility scores assigned to 

each replicate pair category by each measure: pseudo replicates (PR), biological 

replicates (BR) and non-replicates (NR). Asterisks indicate that the marked distribution 

is significantly larger than the preceding one according to a one-sided Kolmogorov-

Smirnov test (P < 0.01). 
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Supp Fig 3. Contact probability curves for biological replicates pairs from each replicate 

pair. The curve for first replicate is shown in red and the second replicate is in blue.  
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Supp. Fig. 4. Boxplots showing the distribution of reproducibility scores assigned to six 

downsampled biological replicates at each coverage level. Asterisks above each 

distribution indicate that the distribution of reproducibility scores assigned to that 

distribution is significantly larger than the previous distribution according to a one-sided 

Kolmogorov-Smirnov test (P < 0.05) 
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Supp. Figure 5. QuASAR-QC scores assigned to noise injected simulated datasets from deeply 

sequenced replicates. QuASAR-QC scores decrease with increasing levels of noise at all 

resolutions.  

 

 

 

 

 

 

 

 

 

 

 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 14, 2017. ; https://doi.org/10.1101/188755doi: bioRxiv preprint 

https://doi.org/10.1101/188755


49 

 

Supp Figure 6. Curves showing the probability of contact between two loci against 

genomic distance. The blue curves are generated using Hi-C experiments done on 

SKNDZ, SKNMC and LNCaP cell lines.  
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Supp. Figure 7. Total number of significant mid-range contacts identified by Fit-Hi-C with an 

FDR threshold of 0.05 from simulated datasets at 10kb and 40kb resolutions. The total number 

of contacts for each cell type and resolution decreases monotonically with increasing levels of 

noise. 
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Supp. Fig 8. Bar plots showing the number of TADs for each cell line (coded by color) at 

each noise injection level. 
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Supp. Fig 9. Boxplots showing the distribution of TAD sizes at each noise injection level. 

Each plot corresponds to a simulated dataset from an individual cell type. Distributions 

marked with an asterisk are significantly different from the original distribution TAD sizes 

detected from the noise-free replicate (KS test, P < 0.01).  
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Supp. Fig 10. Violin plots showing the distribution of distances between domain 

boundaries between biological replicates and simulated replicates. Each panel 

corresponds to a single cell type. 
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Supp. Figure 11. Curves showing the QuASAR scores assigned to deeply sequenced 

cell types downsampled to 30, 60, 120, 240 and 400 million interactions at 10kb, 40kb 

and 500kb resolutions. 
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Supp. Figure 12. Curves showing the total number significant mid-range interactions 

detected by FIt-Hi-C from deeply sequenced cell types downsampled to 30, 60, 120, 

240 and 400 million interactions at 10kb,40kb. 
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Supp. Fig 13. Barplots showing the number of TADs for each downsampled cell line 

(coded by color) at each coverage level. 
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Supp. Fig 14. Boxplots showing the distribution of TAD sizes at downsampling level. 

Each plot corresponds to a simulated dataset from an individual cell type.  
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Supp. Fig 15. Violin plots showing the distribution of distances between domain 

boundaries between biological replicates and downsampled replicates. Each panel 

corresponds to a single cell type. 
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Biosample Tissue/Morphology 1st replicate 
coverage 

2nd replicate 
coverage 

ENCODE sample 
IDs 

Resolutions  

A549 Lung/Epithelial 33,028,385 30,167,658 ENCSR444WCZ 40kb 

CAKI2 Kidney/Epithelial  36,297,274 47,032,721 ENCSR401TBQ 40kb 

G401 Kidney/Epithelial  61,278,507 52,988,386 ENCSR079VIJ 40kb 

LNCaP Prostate/Epithelial 17,976,198 15,357,134 ENCSR346DCU 40kb 

NCIH460 Lung/Epithelial 41,579,896 28,892,164 ENCSR489OCU 40kb 

PANC1 Pancreas/Epithelial 37,454,217 50,535,714 ENCSR440CTR 40kb 

RPMI7951 Skin/Epithelial 31,953,729 48,764,886 ENCSR862OG 40kb 

SKMEL5 Skin/Stellate 45,742,471 10,651,488 ENCSR312KHQ 40kb 

SKNDZ Brain/Epithelial 15,631,291 9,813,185 ENCSR105KFX 40kb 

SKNMC Brain/Epithelial 24,914,561 12,578,436 ENCSR834DXR 40kb 

T47D Mammary 
Gland/Epithelial 

33,902,719 35,957,065 ENCSR549MGQ 40kb 

HepG2 Liver/Epithelial 412,741,167 456,705,426 In procession 10kb,40kb,500kb 

HeLa Cervix/Epithelial 515,837,715 494,774,796 In procession 10kb,40kb,500kb 

 

Supp. Table 1. Thirteen human cancer cell types that Hi-C experiments were performed 

on, together with the tissue type and lineage the cells were immortalized from. Two 

replicate experiments were performed in each cell type. The coverage columns list the 

total number of intra-chromosomal interactions for the 1st and the 2nd replicate for each 

cell type. ENCODE sample ID of each experiment is provided in the corresponding 

column. The first 11 cell types with lower coverage vaues are binned at only 40kb 

resolution, whereas the last 2 cell types with large number of Hi-C interactions are 

binned at three different resolutions. 
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 30 ✕ 106  25 ✕ 106 20 ✕ 106  15 ✕ 106  10 ✕ 106 5 ✕ 106  

HiC-Spector 0.471 0.46 0.455 0.454 0.443 0.376 

GenomeDISCO 0.849 0.843 0.834 0.82 0.794 0.722 

QuASAR-Rep 0.885 0.87 0.849 0.816 0.747 0.547 

HiCRep 0.882 0.877 0.868 0.855 0.829 0.765 

 

Supp. Table 2. Empirical thresholds for distinguishing non-replicates from biological 

replicates for each measure at a given coverage level. Each column corresponds to 

empirical threshold inferred by using biological replicates and non-replicates that have 

been downsampled to the value in the column header (see Methods). 
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