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ABSTRACT 10 

When defining bacterial populations through whole genome sequencing (WGS) the samples often 11 

have detailed associated metadata that relate to disease severity, antimicrobial resistance, or even 12 

rare biochemical traits. When comparing these bacterial populations, it is apparent that some of 13 

these phenotypes do not follow the phylogeny of the host i.e. they are genetically unlinked to the 14 

evolutionary history of the host bacterium. One possible explanation for this phenomenon is that 15 

the genes are moving independently between hosts and are likely associated with mobile genetic 16 

elements (MGE). However, identifying the element that is associated with these traits can be 17 

complex if the starting point is short read WGS data. With the increased use of next generation WGS 18 

in routine diagnostics, surveillance and epidemiology a vast amount of short read data is available 19 

and these types of associations are relatively unexplored. One way to address this would be to 20 

perform assembly de novo of the whole genome read data, including its MGEs. However, MGEs are 21 

often full of repeats and can lead to fragmented consensus sequences. Deciding which sequence is 22 

part of the chromosome, and which is part of a MGE can be ambiguous. We present PlasmidTron, 23 

which utilises the phenotypic data normally available in bacterial population studies, such as 24 

antibiograms, virulence factors, or geographic information, to identify sequences that are likely to 25 

represent MGEs linked to the phenotype. Given a set of reads, categorised into cases (showing the 26 

phenotype) and controls (phylogenetically related but phenotypically negative), PlasmidTron can be 27 

used to assemble de novo reads from each sample linked by a phenotype. A k-mer based analysis is 28 

performed to identify reads associated with a phylogenetically unlinked phenotype. These reads are 29 

then assembled de novo to produce contigs. By utilising k-mers and only assembling a fraction of the 30 

raw reads, the method is fast and scalable to large datasets. This approach has been tested on 31 

plasmids, because of their contribution to important pathogen associated traits, such as AMR, hence 32 

the name, but there is no reason why this approach cannot be utilized for any MGE that can move 33 
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independently through a bacterial population. PlasmidTron is written in Python 3 and available 34 

under the open source licence GNU GPL3 from https://goo.gl/ot6rT5 . 35 

 36 

 37 

DATA SUMMARY 38 

 39 

1. Source code for PlasmidTron is available from Github under the open source licence GNU 40 

GPL 3; (url – https://goo.gl/ot6rT5 ) 41 

 42 

2. Simulated raw reads files have been deposited in Figshare; (url – 43 

https://doi.org/10.6084/m9.figshare.5406355.v1 ) 44 

 45 

3. Salmonella enterica serovar Weltevreden strain VNS10259 is available from GenBank; 46 

accession number GCA_001409135. 47 

 48 

4. Salmonella enterica serovar Typhi strain BL60006 is available from GenBank; accession 49 

number GCA_900185485. 50 

 51 

5. Accession numbers for all of the Illumina datasets used in this paper are listed in the 52 

supplementary tables.  53 

 54 

I/We confirm all supporting data, code and protocols have been provided within the article or 55 

through supplementary data files. ☒    56 

 57 

IMPACT STATEMENT 58 

 59 

PlasmidTron utilises the phenotypic data normally available in bacterial population studies, such as 60 

antibiograms, virulence factors, or geographic information, to identify sequences that are likely to 61 

represent MGEs linked to the phenotype.  62 

 63 

INTRODUCTION 64 
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When defining bacterial populations through whole genome sequencing (WGS) the samples often 65 

have detailed associated metadata that relate to disease severity, antimicrobial resistance, or even 66 

rare biochemical traits. When comparing these bacterial populations, it is apparent that some of 67 

these phenotypes do not follow the phylogeny of the host i.e. they are genetically unlinked to the 68 

evolutionary history of the host bacterium. One possible explanation for this phenomenon is that 69 

the genes are moving independently between hosts and are likely associated with mobile genetic 70 

elements (MGE). However, identifying the element that is associated with these traits can be 71 

complex if the starting point is short read WGS data. With the increased use of next generation WGS 72 

in routine diagnostics, surveillance and epidemiology a vast amount of short read data is available 73 

and these types of associations are relatively unexplored. One way to address this would be to 74 

perform assembly de novo of the whole genome read data, including its MGEs. However, MGEs are 75 

often full of repeats and can lead to fragmented consensus sequences. Deciding which sequence is 76 

part of the chromosome, and which is part of a MGE can be ambiguous (1).  77 

A number of recent methods have been developed to address the problem of assembling some of 78 

these MGEs, from NGS data (1). plasmidSPAdes (2) detects plasmids by analysing the coverage of 79 

assembled contigs to separate out chromosomes from plasmid like sequences. By filtering the 80 

dataset, a higher quality assembly is possible. However, if the copy number of the plasmids are 81 

similar to the chromosome, it is not possible to separate out plasmids. Unicycler (3) is a hybrid 82 

assembler which can combine short and long read data to produce fully circularised chromosomes 83 

and plasmids. It essentially fixes many of the deficiencies of SPAdes (4)  and fine tunes it for 84 

assembling bacteria. Recycler (5) takes an assembly graph and aligned reads to search for cycles in 85 

the graph which may correspond to plasmids. The method is only partially implemented with 86 

substantial work required on the researcher's part to generate input files in the correct formats. It is 87 

shown to work well on small simple plasmids, however it does not scale to larger more complex 88 

plasmids. All of these software applications utilise SPAdes within their methods, work on a single 89 

sample at a time, and require no a priori knowledge about the samples themselves. 90 

We present PlasmidTron, which utilises the phenotypic data normally available in bacterial 91 

population studies, such as antibiograms, virulence factors, or geographic information, to identify 92 

sequences that are likely to represent MGEs linked to the phenotype. Given a set of reads, 93 

categorised into cases (showing the phenotype) and controls (phylogenetically related but 94 

phenotypically negative), PlasmidTron can be used to assemble de novo reads from each sample 95 

linked by a phenotype. A k-mer based analysis is performed to identify reads associated with a 96 

phylogenetically unlinked phenotype. These reads are then assembled de novo to produce contigs. 97 

By utilising k-mers and only assembling a fraction of the raw reads, the method is fast and scalable 98 

to large datasets. This approach has been tested on plasmids, because of their contribution to 99 

important pathogen associated traits, such as AMR, hence the name, but there is no reason why this 100 

approach cannot be utilized for any MGE that can move independently through a bacterial 101 

population. The method is tested on simulated and real datasets, compared to other methods, and 102 

the results are validated with long read sequencing. PlasmidTron is a command-line tool, is written 103 

in Python 3 and is available under the open source licence GNU GPL3 from https://goo.gl/ot6rT5 . 104 

 105 

 106 
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METHOD 107 

PlasmidTron takes two spreadsheets as input, one containing paired ended reads in FASTQ format 108 

for samples displaying the phenotype (cases), the other containing FASTA or FASTQ files for samples 109 

not displaying the phenotype (controls).  The full method is shown in Figure 1. A k-mer analysis of 110 

each of the samples is performed using KMC (syntax versions v2.3.0 or v3.0.0) (6,7) to produce 111 

databases of k-mer counts. k-mers occurring less than 5 times are excluded by default since 112 

assembly is more error prone below this level of coverage. A union is taken of the cases k-mer 113 

databases to produce a new database of all k-mers ever seen in any of the trait samples, and 114 

similarly for the controls.  The two sets are then subtracted from each other, leaving only k-mers 115 

uniquely present in the cases dataset. The raw reads, plus their mates, which match these unique k-116 

mers are extracted from each sample where each read must be covered by a defined percentage of 117 

k-mers. Each set of reads is assembled de novo with SPAdes. The assembly contigs are filtered to 118 

remove small contigs (default 300 bases), and low coverage contigs (below 10X). This is because a 119 

single erroneous k-mer can draw in reads on either side equating to approximately the fragment size 120 

of the library.  The resulting sequences can be fragmented so a second scaffolding step is 121 

undertaken. A k-mer database is generated for each assembly and the raw reads, plus their mates, 122 

are extracted for a second assembly with SPAdes. This allows for gaps of up to twice the fragment 123 

size to be closed. A final filtering step of the assembled sequences is performed, as previously 124 

described. An assembly in FASTA format is created for each of the trait samples, along with a plot of 125 

the shared k-mers in each sample, indicating the level of identity between samples. Parallelisation 126 

support is provided by GNU parallel (8). 127 

 128 

RESULTS 129 

To evaluate the effectiveness of PlasmidTron three datasets were used including: 1) simulated reads 130 

to show the impact of copy number variation in identifying plasmids, 2) the effectiveness of different 131 

methods in recalling plasmid type sequences on real world data, and 3) identification of a novel AMR 132 

plasmid with subsequent validation using long read sequencing. All experiments were performed 133 

using the Wellcome Trust Sanger Institute compute infrastructure, running Ubuntu 12.04. 134 

 135 

IMPACT OF COPY NUMBER VARIATION 136 

Simulated reads were generated to show the impact of copy number variation compared to other 137 

methods. A trivial set of simulated perfect reads was generated.  A reference genome, which was 138 

sequenced using the PacBio RSII for Salmonella enterica serovar Weltevreden (S. Weltevreden) 139 

(accession number GCA_001409135), was shredded using FASTAQ (v3.15.0) 140 

(https://github.com/sanger-pathogens/fastaq) to generate perfect paired-ended reads with a read 141 

length of 125 bases and a mean fragment size of 400 bases. The reference contains a single 142 

chromosome (5,062,936 bases) and single plasmid (98,756 bases), where the chromosome depth of 143 

coverage was fixed at 30X, and the plasmid depth of coverage was varied from 1 to 60X in steps of 2. 144 

The break point for the plasmid was varied, in steps of 500 bases, to simulate a circular genome. 145 
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 146 

The results of PlasmidTron (v0.3.5) were compared to 4 other methods, recycler (v0.6), Unicycler 147 

(v0.4.0), SPAdes (v3.10.0), and plasmidSPAdes (v3.10.0). SPAdes (v3.10.0) was used as the assembler 148 

for each of these methods.  recycler required pre-processing steps using bwa (v0.7.12) (9)  and 149 

samtools (v0.1.19) (10).  SPAdes and Unicycler are not dedicated plasmid assemblies and are 150 

agnostic to the underlying structures being sequenced, however they provide a good baseline for 151 

what is possible, though the final plasmid sequences are contained in a large collection of 152 

chromosome sequences.  plasmidSPAdes and PlasmidTron are dedicated plasmid assemblers, and 153 

recycler is post assembly plasmid analysis tool, with each employing a fundamentally different 154 

analysis strategy. 155 

 156 

Each resulting assembly was measured based on the percentage of plasmid assembled, how 157 

fragmented the plasmid was, and the proportion of non-plasmid bases to plasmid bases (signal to 158 

noise ratio). The assemblies are blasted (v.2.6.0) (11) against the expected plasmid sequence, with 159 

an e-value of 0.0001. Blast hits of less than 200 bases long or less than 90% identity were excluded.   160 

Recycler identified no plasmids on the real or simulated data, which appears to be due to the large 161 

complex size of the plasmid. 162 

 163 

Figure 2 shows that as the copy number of the plasmid in the input reads changes, the percentage of 164 

the plasmid recovered changes. plasmidSPAdes only begins to start identifying plasmid sequences at 165 

40X, recovering the full plasmid sequence. Below this level the plasmid copy number is too similar to 166 

the chromosome coverage so the algorithm filters it out.  The SPAdes and Unicycler assemblers 167 

identify all of the plasmid sequence with less than 10X coverage, however the plasmid sequences 168 

are fragmented and makes up only ~1.9% of the final assembly as show in Figure 3.  PlasmidTron 169 

requires slightly more coverage (16X) to generate an assembly which covers the full plasmid 170 

sequence. At 16X more than 90% of the resulting assembly contains plasmid sequences, increasing 171 

to 100% at 40X.  172 

 173 

RECOVERY OF TYPING SEQUENCE 174 

A real dataset of 114 isolates of S. Weltevreden, was sequencing using Illumina as described in (12). 175 

The samples are clonal, with most sharing a similar plasmid, although the payload of the plasmid 176 

itself varies greatly. To get a baseline for what plasmids are present in the input dataset, all of the 177 

samples were compared to the PlasmidFinder (13) database (retrieved 2017-07-25) using Ariba 178 

(v2.10.0) (14), providing the Incompatibility group. PlasmidFinder identifed one plasmid group, 179 

IncFIIS, as present in 89.5% of samples. plasmidSPAdes, Unicycler, SPAdes, Recycler and PlasmidTron 180 

were provided with the dataset and the results were searched for the IncFIIS sequence using blastn, 181 

with full details listed in Supplementary Table 1.  In 4 cases PlasmidFinder failed to identify the 182 

sequence, when it was found by 2 or more other applications. SPAdes and Unicycler identify the 183 

sequence in 88.6% and 87.7% of samples. plasmidSPAdes identifies the plasmid sequence in just 184 
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8.8% of samples. Recycler failed to identify the plasmid sequence in any sample.  PlasmidTron 185 

identified the plasmid sequence in 87.7% of cases where the chromosome sequence of S. 186 

Weltevreden strain VNS10259 was used as the control, giving identical results to Unicycler. The 187 

benefit though over Unicycler is that the majority of the assembled sequences correspond only to 188 

the plasmid. 189 

 190 

OUTBREAK AMR 191 

PlasmidTron was used to analyse an outbreak of 87 Salmonella enterica serovar Typhi (S. Typhi) 192 

samples with a resistance profile which had not been previously observed in the haplotype (H58, 193 

4.3.1)(15). Further analysis using PlasmidFinder, as previously described, indicated that the antibiotic 194 

resistance may reside on an IncY plasmid, a plasmid type which had not been associated before with 195 

this haplotype. The chromosomes of 6 complete reference genomes for S. Typhi were used as the 196 

controls (accessions GCA_000195995, GCA_000007545, GCA_001157245, GCA_000245535, 197 

GCA_001302605, GCA_000385905) for PlasmidTron, and 87 Illumina sequenced outbreak samples 198 

were used as cases (Supplementary Table 2).  For each outbreak sample, PlasmidTron identified 199 

similar sequences, split over 4-5 contigs. One contig carried the IncY sequence and a second carried 200 

AMR genes. Subsequent resequencing of 1 sample (ERS1670682) using long read technology (Oxford 201 

Nanopore MinION), revealed that these 4 sequences comprised a single plasmid (accession number 202 

GCA_900185485.1), which was identical in all of the outbreak strains. The sequences generated by 203 

PlasmidTron recovered an average of 96% of the plasmid sequence. The fragmentation (mean 4.6) of 204 

the plasmid in the Illumina sequenced samples was due to repeats which could not be resolved with 205 

short read sequencing.  Overall 65% of the sequences in the resulting assemblies were part of the 206 

plasmid sequence, with the remainder resulting from a phage recombination in the main 207 

chromosome. This indicates the power of PlasmidTron to rapidly, accurately and cost effectively 208 

extract sequences of clinical importance from short reads alone. 209 

 210 

 211 

CONCLUSION 212 

We can utilise the wealth of phenotypic data usually generated for bacterial population studies, be it 213 

routine diagnostics, surveillance or outbreak investigation, to reconstruct plasmids responsible for a 214 

particular phenotype. Rather than just identifying that an AMR or virulence gene exists in a sample, 215 

PlasmidTron can reconstruct all of the sequences of the plasmid it is carried on, providing more 216 

insight into the underlying mechanisms.  We demonstrated with simulated and real sequences that 217 

PlasmidTron more accurately reconstructs large plasmids compared to other methods. We present 218 

the results of a real outbreak of S. Typhi where PlasmidTron was used to identify the plasmid 219 

sequence carrying a novel AMR resistance profile, not previously described in S. Typhi H58/4.3.1, 220 

and validated the results using long read sequencing. Whilst plasmid assembly remains difficult with 221 

short reads, PlasmidTron allows for phenotypic data to be utilised to greatly reduce the complexity 222 

of the challenge.  223 
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ABBREVIATIONS 231 

MGE: mobile genetic element 232 

WGS: whole genome sequencing 233 

AMR: anti-microbial resistance 234 

 235 
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 306 

Figure 1: The PlasmidTron algorithm. FASTQ files are denoted as squares, FASTA files as 307 

triangles and k-mer databases as circles. 308 

 309 
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 310 

Figure 2: The percentage of the plasmid sequence which was assembled with different 311 

software applications as the depth of coverage of a plasmid increases in the raw data. 312 
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 313 

 314 

Figure 3: The ratio of the plasmid sequence to the chromosome sequence in the final 315 

assembly produced by each software application as the depth of coverage of the plasmid 316 

increases in the raw reads.  This is akin to the signal to noise ratio. 317 

 318 
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