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Abstract 
 
Coding variants represent many of the strongest associations between genotype and phenotype, 
however they exhibit inter-individual differences in effect, known as variable penetrance. In this work, we 
study how cis-regulatory variation modifies the penetrance of coding variants in their target gene. Using 
functional genomic and genetic data from GTEx, we observed that in the general population, purifying 
selection has reduced haplotype combinations that lead to higher penetrance of pathogenic coding 
variants. Conversely, in the germline genomes of individuals with cancer, we observed an increase in 
predicted penetrance of pathogenic coding variants in disease relevant genes. Finally, we experimentally 
demonstrated that a regulatory variant can modify the penetrance of a coding variant by introducing a 
Mendelian SNP using CRISPR-Cas9 on distinct expression haplotypes and using the transcriptome as 
a phenotypic readout. Our results demonstrate that joint effects of regulatory and coding variants are an 
important part of the genetic architecture of human traits, and contribute to modified penetrance of 
disease-causing variants. 
 
Main Text 
 
Variable penetrance is a common phenomenon that causes individuals carrying the same variant to often 
display highly variable symptoms, even in the case of Mendelian and other severe diseases driven by 
rare variants with strong effects on phenotype 1. This is a key challenge in understanding of how genetic 
variants manifest in human traits, and a major practical caveat in clinical genetics. However, the causes 
and mechanisms of variable penetrance are poorly understood. One potential cause of variable 
penetrance involves genetic variants with additive or epistatic modifier effects 2. While some studies have 
successfully mapped genetic modifiers of, for example, BRCA 3 and RETT 4 mutations, genome-wide 
analysis of pairwise interactions between variants has proven to be challenging in humans 5. Here, we 
use the term variable penetrance as a joint description of both variable expressivity (severity of 
phenotype) and penetrance (proportion of carriers with phenotype). 
 
In this study, we analyze how regulatory variants in cis may modify the penetrance of coding variants in 
their target genes via the joint effects of these variants on the final dosage of functional gene product, 
depending on their haplotype combination. (Figs. 1, S1). This phenomenon has been demonstrated to 
affect penetrance of disease-predisposing variants in individual loci 6-9, and explored in early functional 
genomic datasets 10,11. In this work, we use large-scale functional genomics and disease cohort data sets 
as well as genome editing with CRISPR-Cas9 to demonstrate the role of regulatory variants affecting 
gene expression and splicing as modifiers of coding variant penetrance. We focus on rare pathogenic 
coding variants from exome and genome sequencing data that provide the best characterized group of 
variants with strong phenotype effects, and common regulatory variants affecting gene expression or 
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splicing. Thus, our analysis integrates these traditionally separate fields of human genetics by considering 
joint effects that different types of mutations have on gene function. 
 
First, we analyzed data from the general human population to test the hypothesis that natural selection 
should favor haplotype configurations that reduce the penetrance of pathogenic coding variants. 
Throughout this study, we defined the predicted pathogenicity of variants using their CADD score (see 
Material and Methods – Variant Annotation) 12. Using genotype and RNA-sequencing data of 7,051 
samples from 449 individuals of the Genotype Tissue Expression (GTEx) project v6p 13,14, we first 
measured the regulatory haplotype of coding variants using allelic expression data, which captures cis 
effects of both splice and expression regulatory variation 15 (Fig. 2a). Supporting our hypothesis, 
missense variants showed reduced allelic expression that was proportional to their predicted 
pathogenicity, suggesting that they are enriched on lower expressed or exon-skipping regulatory 
haplotypes (Fig. 2b). When compared to derived allele frequency (DAF) matched benign synonymous 
variants, rare (DAF < 1%) potentially pathogenic missense variants had significantly reduced expression 
(p = 1.80e-6), but rare benign missense variants did not (p = 0.203) (Fig. 2c), consistently across the 44 
GTEx tissues (Storey’s P1 = 0.74; Fig. S2a). This effect remained in an analysis of a small subset of 
variants that were in constitutively included exons in the individual harboring the variant (p = 0.0135; Fig. 
S2b), suggesting that pathogenic variants are enriched in lower expressed haplotypes. Next, we analyzed 
if splice regulatory variation specifically might reduce coding variant penetrance (Fig. 2d). We quantified 
exon inclusion in each sample by percent spliced in (PSI) 16 (Fig. S2c), and analyzed exons showing 
inter-individual inclusion variability (Fig. S2d-e). We observed that in the individual harboring the 
missense variant, the probability that its exon was spliced in was proportional to its predicted 
pathogenicity (Fig. 2e). When compared to DAF matched benign synonymous variants, rare potentially 
pathogenic missense variants had significantly reduced exon inclusion (p = 1.60e-4), but rare benign 
missense variants did not (p = 0.465) (Fig. 2f). This suggests that pathogenic variants are more likely to 
accumulate in haplotypes where the corresponding exon is less likely to be included in transcripts. 
 
While allelic expression and splice quantification provide powerful functional readouts of latent regulatory 
variants acting on a gene in each individual, the phenomenon of modified penetrance can also be studied 
from genetic data alone by analyzing phased haplotypes of coding variants and regulatory variants 
identified by expression quantitative trait locus (eQTL) mapping in cis. Our hypothesis is that in 
pathogenic coding variant heterozygotes, eQTL mediated higher expression of the haplotype carrying 
the “wildtype”, major coding allele reduces the penetrance of the rare allele, and vice versa (Figs. 3a, 
S1). To study this, we developed a test for regulatory modifiers of penetrance that uses phased genetic 
data. For each rare coding variant heterozygote we test whether the major coding allele is on the higher 
expressed eQTL haplotype (Fig. S3a) and determine if this occurs more or less frequently than would be 
expected based on eQTL frequencies in the population studied (Fig. S3b). Using simulated data, we 
found that our test was well calibrated under the null while still being sensitive to changes in haplotype 
configuration (Fig. S3c-d).  
 
To analyze whether the distribution of coding variants on cis-eQTL haplotypes in GTEx showed signs of 
selection towards reduced penetrance, we produced a large set of haplotype phased genetic data from 
GTEx v7, where 30x whole genome sequencing of 620 individuals was available. This was obtained from 
population based phasing paired with read-backed phasing using DNA-seq reads 17 and RNA-seq reads 
18 from up to 38 tissues for a single individual. This allowed us to analyze the haplotypes of 211,575 rare 
(MAF < 1%) coding variants at thousands of genes with known common (MAF > 5%) eQTLs 14 (Fig. S4a, 
Table S1). Using our test for regulatory modifiers of penetrance to analyze all protein coding genes in the 
GTEx data set we did not observe any signs of reduced penetrance of rare potentially pathogenic 
missense variants (p = 0.682). However, hypothesizing that selection may be acting primarily at genes 
that are associated to a phenotype, we focused on a broad set of genes with known phenotypic 
association 19. For rare potentially pathogenic missense variants at these genes, we observed a 
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significant (p = 0.0230) increase of 0.85% in the frequency of haplotypes where the major coding allele 
was more highly expressed than would be expected under the null, while no effect was seen for benign 
missense (p = 0.480) or benign synonymous variants (p = 0.470) (Fig. 3b). Similarly, we also observed 
a significant reduction of predicted penetrance of rare potentially pathogenic missense variants but not 
controls in genes with a strong eQTL (p = 9.92e-3) and the most loss-of-function intolerant genes (p = 
9.60e-4) (Fig. 3b). Altogether, combined with observations from functional data of allelic expression and 
exon inclusion, these results suggest that joint effects between regulatory and coding variants have 
shaped human genetic variation through natural selection favoring haplotype configurations where cis-
regulatory variants reduce the penetrance of pathogenic coding variants (Fig. S1). 
 
Having observed reduced penetrance by analyzing signals of selection in the general population, we next 
sought to investigate whether regulatory modifiers of penetrance affect disease risk in patients. This 
would manifest as patients having an overrepresentation of regulatory haplotype configurations that 
increase penetrance of putatively disease-causing coding variants – the opposite pattern to that seen in 
GTEx. To this end, we investigated the role of regulatory modifiers of penetrance in germline cancer risk 
using genetic data from the Cancer Genome Atlas (TCGA) 20. Cancer is a strong candidate for study, 
due to its well understood genetic basis, large accessible data sets, and the established role that tumor 
suppressor gene dosage plays in disease 21. For 925 individuals across 15 cancers where whole genome 
sequencing reads were available to us (Table S2), we called germline variants and phased these using 
population 22 and read-backed phasing 18, and analyzed haplotypes of coding variants and common 
regulatory variants annotated based on the most significant eQTL variant for each gene in GTEx v6p 
(Fig. S4b). Again, we applied our test, and found that at tumor suppressor genes whose expression was 
downregulated in tumor versus normal TCGA samples 23, TCGA individuals had a significant decrease 
of major coding alleles of rare potentially pathogenic variants found on higher expressed haplotypes (-
2.68%; p = 0.0319), suggesting increased penetrance of potential germline cancer risk variants in cancer 
patients (Fig. 3c). Using GTEx individuals as a control, we observed an increase in major alleles of rare 
potentially pathogenic missense variants found on higher expressed haplotypes (+2.11%, p = 0.0383), 
indicating reduced penetrance. This is consistent with the analysis of a larger class of phenotype-
associated and loss-of-function intolerant genes in GTEx (Fig. 3b), providing additional evidence that 
selection may have favored haplotype configurations that reduce coding variant penetrance in genes 
associated to disease. In both TCGA and GTEx individuals, no significant effect was seen for benign 
missense or synonymous variants in tumor suppressor genes, or any variants in matched control genes. 
Altogether, this suggests that increased penetrance of pathogenic germline coding variants by regulatory 
variation increases cancer risk. 
 
Our population scale analyses provide observational evidence that regulatory modifiers of penetrance 
play a role in the genetic architecture of human traits. We next sought to experimentally validate this 
observation by using CRISPR-Cas9 to introduce a coding variant on distinct regulatory haplotypes, 
followed by quantification of its penetrance from a cellular readout. Our finding that modified penetrance 
of germline variants by eQTLs may be involved in cancer risk lead us to study a missense SNP 
(rs199643834, K>R) in the tumor suppressor gene folliculin (FLCN) that has a common eQTL in most 
GTEx v6p tissues 14, and causes Mendelian autosomal dominant disease Birt-Hogg-Dubé Syndrome 24. 
This disease results in characteristic benign skin tumors, lung cysts, and cancerous kidney tumors and 
shows variable penetrance 25. We edited the SNP in a fetal embryonic kidney cell line (293T), which is 
triploid at the FLCN gene and harbors a single copy of a loss of expression eQTL (rs1708629) located in 
the 5’ UTR of the gene 14,26. This variant is among the most significant variants for the FLCN eQTL signal, 
overlaps promoter marks across multiple tissues, and alters motifs of multiple transcription factors 27, thus 
being a strong candidate for the causal regulatory variant of the FLCN eQTL. We recovered monoclonal 
cell lines, genotyped them by targeted DNA-seq and performed targeted RNA-seq of the edited SNP 
(Fig. 4a). Allelic expression analysis showed that the haplotypes in the cell line are indeed expressed at 
different levels, likely driven by rs1708629 or another causal variant tagged by it, and the allelic 
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expression patterns allowed phasing of the coding variant with the eQTL (Figs. 4c, S5a). In this way, we 
obtained four clones with a single copy of the Mendelian variant on the lower expressed haplotype 
(snpLOW, Fig. 4c), three clones with a single copy on the higher expressed haplotype (snpHIGH, Fig. 
4c), two monoallelic clones with three copies of the alternative allele, and four with only the reference 
allele (WT) of rs199643834. As a phenotypic readout, we performed RNA-seq on all monoclonal lines. 
 
Using the transcriptomes of these clones, we carried out differential expression analysis.  Introduction of 
the Mendelian SNP had a genome-wide effect on gene expression, with 664 of 20,507 tested genes 
being significantly (FDR < 10%) differentially expressed in clones monoallelic for the SNP versus wildtype 
controls (Fig. S5b, Table S3). Gene set enrichment analysis 28 of differential expression test results 
revealed significant (FDR < 10%) enrichment of pathways related to cell cycle control, DNA replication, 
and metabolism, consistent with the annotation of FLCN as a tumor suppressor, and the occurrence of 
tumors in patients with the mutation (Table S4). To study the joint effect of the eQTL and Mendelian 
variant, we quantified the differential expression of these 664 genes in low and high edited SNP 
expression clones separately (Fig. 4b). As we predicted, clones with higher expression of the SNP 
showed a significantly stronger differential expression of both downregulated (p = 8.60e-14, Fig. 4d) and 
upregulated (4.40e-11, Fig. 4e) genes compared to lower SNP expression clones. These results provide 
experimental evidence that an eQTL can modify the penetrance of a disease-causing coding variant, and 
suggests a genetic regulatory modifier mechanism as a potential explanation of variable penetrance of 
rs199643834 in Birt-Hogg-Dubé Syndrome. 
 
In conclusion, we have studied the hypothesis that regulatory variants in cis can affect the penetrance of 
pathogenic coding variants. We used diverse data types, population and disease cohorts, and 
experimental approaches that together provide strong evidence for our model of modified penetrance 
due to joint functional effects of regulatory and coding variants. A key component of our analysis was 
integrated analysis of rare coding variants and common regulatory variants, which are too often 
considered as separate domains in human genetics. This work provides one of the few concrete and 
generalizable models of modified penetrance of genetic variants in humans, with a clear biological 
mechanism based on the net effect of variants on the dosage of functional gene product, supported by 
solid empirical analysis of genome-wide genetic data. 
 
Our work opens important areas for future research. Larger data sets are needed to enable computational 
analysis at the level of individual genes to characterize how joint effects of regulatory and coding variants 
vary as a function of their effect size and type, as well as gene function. Analysis of regulatory modifier 
effects in diverse diseases will be of interest, as well as the study of modified penetrance of somatic 
variants in cancer. Furthermore, the dynamics of natural selection on haplotype combinations will be an 
interesting area of population genetic analysis. We note that while other mechanisms are also likely to 
contribute to variable penetrance of coding variants, analysis of cis-regulatory modifiers is particularly 
tractable, with multiple practically feasible approaches introduced in this work. Recently, analysis of loss-
of-function variant interactions in humans has suggested that they act synergistically to impact fitness, 
supporting a role for epistatic interactions between coding variants contributing to human traits as well 29. 
Altogether, our findings highlight the importance of considering coding variation in the context of 
regulatory haplotypes in future studies of modified penetrance of genetic variants affecting disease risk.  
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Figure 1. Regulatory variants as modifiers of coding variant penetrance. The hypothesis of this 
study is illustrated with an example where an individual is heterozygous for both a regulatory variant and 
a pathogenic coding variant. The two possible haplotype configurations would result in either decreased 
penetrance of the coding variant if it was on the lower expressed haplotype, or increased penetrance of 
the coding variant if it was on the higher expressed haplotype. 
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Figure 2. Functional genomic data reveals that pathogenic variants are enriched on lower 
expressed, and exon-skipped haplotypes. A) Allelic expression (AE) data can be used to measure the 
expression of a derived coding variant relative to the ancestral variant in heterozygous individuals. 
Reduced expression of the derived variant, observed as a decrease of AE suggests reduced penetrance 
by either splice or expression regulatory variation in that individual. B) Median GTEx v6p cross-tissue 
derived missense variant AE (red) as a function of predicted pathogenicity measured by CADD score, 
with derived allele frequency (DAF) matched benign synonymous variants (blue) as a control, and 95% 
confidence intervals. C) Comparison of median AE between missense and DAF matched benign 
synonymous variants with 95% confidence intervals. D) Percent spliced in (PSI) measures inclusion of a 
given exon in each individual. Reduced inclusion of the exon a derived variant is found in suggests 
reduced penetrance by splice regulatory variation in that individual. E) Median cross-tissue PSI in GTEx 
v6p for the exon where an individual carries a derived missense variant (red) as a function of predicted 
pathogenicity measured by CADD score, with derived allele frequency (DAF) matched benign 
synonymous variants (blue) as a control, and 95% confidence intervals. F) Comparison of median exon 
PSI between missense and DAF matched benign synonymous variants with 95% confidence intervals. 
All 95% confidence intervals generated with 1000 bootstrap samples, and p-values calculated using 
paired Wilcoxon signed rank test. 
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Figure 3. Regulatory haplotype configurations that reduce pathogenic variant penetrance are 
enriched in the general population, and depleted in individuals with disease. A) Test using phased 
genetic data (see Fig. S3, Materials and Methods) for haplotype configuration patterns indicating modified 
penetrance of rare (MAF < 1%) coding variants due to common (MAF > 5%) regulatory variation (GTEx 
v6p eQTLs). B) In GTEx individuals, representative of the general population, natural selection has 
favored haplotype configurations that reduce potentially pathogenic coding variant penetrance at relevant 
genes. C) Conversely, individuals from TCGA who developed cancer show increased predicted 
penetrance of potentially pathogenic germline variants in tumor suppressor genes 23. GTEx haplotypes 
were generated from 620 population and read-back phased whole genomes. TCGA haplotypes were 
generated from 925 population and read-back phased whole genomes. Control genes were selected to 
have within ± 5% the number of coding variants, coding variant frequency, and number of eQTL coding 
variant haplotypes as tumor suppressor genes, and had a matched number of haplotypes sampled from 
them. 95% confidence intervals and empirical p-values were generated using 100,000 bootstraps. * p < 
0.05, ** p < 0.01. 
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Figure 4. Distinct haplotypes of regulatory and coding variants in FLCN created by CRISPR-Cas9 
differ in penetrance based on a cellular phenotypic readout. A) Illustration of the experimental study 
design, where CRISPR-Cas9 was used to edit a Mendelian missense SNP in FLCN (rs199643834) that 
causes Birt-Hogg-Dubé Syndrome into 293T cells that harbor a single copy loss of expression eQTL for 
the gene (rs1708629). Monoclonal cell lines were produced, genotyped using targeted DNA-seq of the 
edit site, and classified as monoallelic for the edit SNP (snpMONO), or as having a single copy. Targeted 
RNA-seq and AE analysis of the edit SNP was performed for single copy clones, allowing the phase of 
the SNP with respect to the eQTL to be determined. B) Using the transcriptome as a phenotype, changes 
in gene expression compared to wild-type should be stronger in snpHIGH clones versus snpLOW clones 
if SNP penetrance is modified by the eQTL. C) Copy number normalized expression of the edited SNP 
as measured by targeted RNA-seq (allelic expression, log2(ALT/REF)) in snpLOW (allelic expression < 
0, p-value < 0.01, derived from binomial distribution without imbalance) and snpHIGH (allelic expression 
> 0, p-value < 0.01) clones. D-E) Change in expression of genes that were significantly downregulated 
(D, 277 genes) or upregulated (E, 387 genes) in clones monoallelic for the edited SNP versus wild-type 
controls. Single copy edit SNP clones are stratified by haplotype configuration. P-values were calculated 
using a paired Wilcoxon signed rank test. 
  
  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 18, 2017. ; https://doi.org/10.1101/190397doi: bioRxiv preprint 

https://doi.org/10.1101/190397


Supplementary Materials 
 
Materials and Methods 
 
Variant Annotation 
 
Variant annotations for SNPs were retrieved from CADD v1.3 12. As per guidelines by the CADD authors, 
missense variants with a CADD PHRED score of > 15 were defined as potentially pathogenic. This 
corresponded to approximately the top 60% of missense variants by CADD score in the GTEx haplotype 
dataset. To define benign synonymous controls, a threshold that included the same proportion of the 
bottom synonymous variants by CADD score was used. This corresponded to < 10 for the GTEx and 
TCGA datasets. To be considered rare, variants had to have a MAF < 1% across GTEx v7, 1000 
Genomes Phase 3 30, and gnomAD r2.0.1 31. 
 
GTEx Allelic Expression Analysis 
 
GTEx v6p allelic expression data generated from whole exome sequencing genotypes were used 14. 
Variants that were in low mapability regions (UCSC mapability track < 1), showed mapping bias in 
simulations 32, had strong allelic expression (>= 99% of reads from one allele), or had less than 8 reads 
were excluded 15. To minimize the probability that the observed allelic imbalance was due to effects of 
the AE variants themselves on splicing, only variants farther than 10 bp from an annotated splice site 12 
were used. To collapse AE data for a given variant across individuals and tissues, first, cross-tissue AE 
was calculated for each individual by summing reference and alternative allele reads across tissues, and 
then the median reference ratio was calculated across individuals. For each variant, the derived ratio was 
reported by defining the evolutionary derived allele using the CADD annotation 12. For each rare (DAF < 
1%) potentially pathogenic missense variant a matched rare benign synonymous variant was randomly 
selected with replacement controlling for DAF within 25%. 
 
GTEx Exon Inclusion Quantification Analysis 
 
Individual level quantifications of exon inclusion were generated for all GTEx v6p samples with the VAST-
TOOLS pipeline, which measures the percent spliced in (PSI) of each exon in each individual 16. For each 
exon in each tissue for all exons with at least 10 PSI measurements, the cross-sample PSI median 
absolute deviation was calculated, and the deviation from the median of each sample was calculated to 
produce a normalized PSI value (Figure S2c). Within a tissue, only exons where the median absolute 
deviation was greater than 0 were used, corresponding to approximately 30% of exons with PSI data 
(Figure S2d-e). For each coding variant, the median cross-tissue normalized PSI of the exon was 
calculated per individual, and then the median cross-tissue value was calculated across individuals to 
produce a single PSI measure for each coding variant. To minimize the probability that any observed PSI 
changes were due to effects of the coding variants themselves on splicing, only variants farther than 10 
bp from an exon start or stop site were used. For each rare (DAF < 1%) potentially pathogenic missense 
variant a matched rare benign synonymous variant was randomly selected with replacement controlling 
for DAF within 25%. 
  
GTEx Expression Quantitative Trait Loci (eQTL) 
 
The official set of GTEx v6p top significant (FDR < 5%) eQTLs by permutation p-value were used for all 
analyses such that each gene by tissue had at most a single eQTL 14. Those eQTLs where the 95% 
confidence interval of eQTL effect size overlapped 0, representing weak eQTLs, were discarded 33. To 
produce a single set of cross-tissue top eQTLs, the top eQTL by FDR across tissues was selected for 
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each eGene, with ties broken by choosing the eQTL with the larger effect size. This resulted in a set of 
26,942 eGenes each with a single eSNP (Table S1). 
 
Genetic Data and Haplotype Phasing 
 
GTEx – GTEx v7 genotypes from whole genome sequencing of the 620 individuals who had at least one 
RNA sample were used. These genomes were population and read-back phased using DNA-seq reads 
with SHAPEIT2 17. Following this, phASER v1.0.0 was used to perform read-backed phasing using RNA-
seq reads 18 from all samples for each individual, which was a median of 17 tissues, and ranged from 1 
to 38. For RNA-seq based read-backed phasing, only uniquely mapping reads (STAR MAPQ 255) with 
a base quality of ≥ 10 overlapping heterozygous sites were used, and all other phASER settings were 
left as default.   
 
TCGA – Paired tumor and normal WGS reads from 925 individuals were used to call germline and 
somatic variants with Bambino v1.06 34. The resulting germline genotypes were population phased with 
EAGLE2 v2.3 35 using the 1000 Genomes Phase 3 panel 30 and read-back phased with phASER v1.0.0 
18. For read-backed phasing, only reads with MAPQ ≥ 30 and with a base quality of ≥ 10 overlapping 
heterozygous sites were used, and all other phASER settings were left as default. For eQTL genotypes 
only, the resulting phased genotypes were imputed into 1000 Genomes Phase 3 30 with Minimac3 v2.0.1 
36. 
 
Test for Regulatory Modifiers of Penetrance Using Phased Genetic Data 
 
Here we test the hypothesis that in loss-of-function coding variant heterozygotes, increased expression 
of the major, or “wild type” coding allele mediated by an eQTL can reduce the penetrance of the mutant 
allele by increasing the dosage of functional gene transcript, and vice-versa (Fig. S1). The null hypothesis 
is that eQTL mediated changes of major allele expression have no effect on the penetrance of mutant 
alleles. Since penetrance cannot be easily measured, we instead measure the frequency that the major 
allele is observed on the higher expressed eQTL haplotype (Fig. S3a). Under the null hypothesis, a 
coding mutation would occur in random individuals in the population, and on random haplotypes in those 
individuals, irrespective of their eQTL genotype. Thus, under the null, the frequency of observed major 
alleles on higher expressed haplotypes would simply be equal to the frequency of the higher expressed 
eQTL allele in the population. Alternatively, an increased frequency indicates an enrichment of haplotype 
configurations that decrease coding variant penetrance in the population studied, and vice-versa (Fig. 
S3b). Importantly, the test is calibrated to the eQTL frequency in the specific population studied, so it is 
internally controlled for differences in, for example, eQTL allele frequencies between cases and controls.  
 
To perform the test, for each observation of a heterozygous coding variant of interest the phased 
genotypes of the coding variant and the top GTEx cross-tissue eQTL for that gene are used to produce 
a binary measure of whether the major coding allele is on the higher expressed haplotype (Fig. S3a). 
Alongside this binary measure the frequency of the higher expressed eQTL allele is recorded. 
 
For each observation of a heterozygous coding variant in a single individual, with genotype g let A and 
a denote the higher and lower expressed eQTL alleles, respectively, and B and b denote the major and 
minor coding variant alleles, respectively. We assume that the minor allele is the non-functional allele. 
For a given haplotype g, we define the indicator function b such that it is 1 if the functional allele is on a 
higher expressed eQTL haplotype, and 0 otherwise: 
 

 
𝛽 𝑔 = 	 1	if	𝑔 ∈ 𝐴𝐵 𝐴𝑏 , 𝐴𝐵 𝑎𝑏 	

0	if	𝑔 ∈ 𝑎𝐵 𝐴𝑏 , 𝑎𝐵 𝑎𝑏 	 	
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For a given haplotype the expectation for b under the null model, where the haplotype configurations 
are random (H0), is: 
	

	

E 𝛽 𝑔 = 	
0.5	if	𝑔 ∈ 𝐴 𝑎 , 𝑎 𝐴 	

𝑓(𝐴)9/(𝑓 𝐴 9 + (1 − 𝑓 𝐴 )9)	if	𝑔 ∈ 𝐴 𝐴 , 𝑎 𝑎 		

	
 
Where f(A) is the population frequency of the higher expressed eQTL allele included in the tested 
haplotype g. 
 
The indicator function b and its expectation under the null model is calculated across all individuals, 
genes, and variants. The average relative deviation of observed mean of b from its expectation was 
calculated: 
 
	

𝜀 =
1
𝑁

𝛽 𝑔? − E 𝛽 𝑔?
E 𝛽 𝑔?

@

?AB

 

 
 
Where N is the total number of observed haplotype configurations consisting of an eQTL and coding 
variant, pooled over all individual, variants, and genes. 
 
Confidence intervals for e	are generated by bootstrapping genotypes and the two-sided empirical p-value 
against H0 is calculated as: 
 

 

𝑝 𝐻F = 	2min
𝜀𝑏 < 0𝐵

𝑏=1
𝐵 ,

𝜀𝑏 > 0𝐵
𝑏=1

𝐵  

 
 
Where B is the total number of bootstraps. 
 
We ran the test on simulated haplotype data from 1000 individuals at 500 genes with 1000 replicates. 
The higher expressed haplotype frequency was set to 50% and the coding variant frequencies as 
observed in GTEx. This was done across a range of genes exhibiting a bias of major coding alleles being 
found on higher expressed haplotypes and strengths of this bias. For the test, 1000 bootstrap samples 
were used. We found that at 5% significance threshold, 5% of simulation replicates were significant, 
suggesting that the test is well calibrated under the null. For real world data, reported in the study, we 
used 100,000 bootstrap samples to calculate p-values and derive confidence intervals.  
 
This is a similar problem to that addressed by the Poisson-Binomial distribution, which describes the sum 
of successes in a set of independent Bernoulli trials with different success rates. However, the bootstrap 
approach is more convenient for calculating confidence intervals and accounting for differences in sample 
size between control genes and genes of interest. We compared p-values derived from our test to those 
derived from a Poisson-Binomial distribution with parameters E 𝛽 𝑔B …E 𝛽 𝑔@ . In practice, our p-
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values are very similar to that generated using the Poisson-Binomial distribution (Pearson correlation = 
0.996, slope = 0.997, Fig. S3e). 
 
Gene Sets 
 
A list of phenotype associated genes was produced by downloading all gene to phenotype associations 
from DisGeNET 19 v5.0 on 06/08/17, and selecting genes with at least 2 phenotypes associated to them. 
Genes with strong eQTLs were selected as the top 50% of eGenes by absolute eQTL effect size 33. 
Extremely loss-of-function intolerant genes were selected as the top 500 by ExAC pLI 31.  A list of 983 
down-regulated tumor suppressor genes in tumor samples versus normal tissue in TCGA expression 
data was downloaded from the Tumor Suppressor Gene Database 23 website 
(https://bioinfo.uth.edu/TSGene/) on 08/24/17. 
 
CRISPR/Cas9 Guide Selection and Cloning 
 
Prior to RNA design and editing we verified the genotype at the regions of interest, namely the Mendelian 
variant rs199643834 and eQTL variant rs1708629. Crude extracts prepared from 293T cells were used 
to amplify the above regions using forward and reverse genotyping primers FLCN_genot and 
FLCNeQTL_genot, respectively (Table S5). Amplicons were sequenced by both Sanger sequencing and 
on the Illumina MiSeq. The 293T cell genotype was Ref/Ref at rs199643834 and Ref/Alt at rs1708629. 
There were no single nucleotide changes close to rs199643834 that may affect sgRNA activity or require 
modified homologous template. 
 
Using computational algorithms with prioritization for on-target efficiency and reduced off-target effects 
(available online: CRISPR Design tool (crispr.mit.edu) and E-CRISPR 37 we identified Streptococcus 
pyogenes Cas9 (SpCas9) guide RNAs that bind near variant rs199643834 (A > G). We selected three 
sgRNA sequences within 50 bp of the target SNP (rs199643834), which were predicted to result in 
maximum cleavage efficiency without off-target effects (Table S5). Annealed oligomers inclusive of guide 
RNA sequences were sub-cloned into the lentiCRISPRv2 plasmid (Addgene plasmid #52961), which 
contains expression cassettes for the guide RNA, a human codon-optimized Cas9, and a puromycin 
resistance gene 38. Plasmids were transformed into chemically competent E. coli (One Shot Stbl3 
Chemically Competent E. coli, ThermoFisher Scientific, cat#: C737303), and grown at 30°C; plasmid 
DNA was extracted and purified. A 150 bp single-stranded DNA template (ssODN) for precise editing by 
homologous recombination (HDR) carrying the rs199643834 A allele was designed and obtained from 
IDT DNA in the form of lyophilized ultramer (Table S5). 
 
Transfections and T7 Endonuclease I(T7E1) Assays 
  
Human 293T cell line (ATCC, cat. # CRL-3216) was adapted to and subsequently routinely grown in Opti-
MEM/5% CCS (newborn calf serum), 1% GlutaMAX, 1% Penicillin/Streptomycin and sodium pyruvate. 
For transfection with Cas9- and sgRNA-expressing plasmids as well as ssODN template, cells were 
harvested for seeding at a log growth phase (approximately 70% confluency). In a 6-well format, 300,000 
293T cells were seeded a day prior to transfection. The next day 2 μg of each lentiCRISPR v2 plasmid 
and 0.5 μg of ssODN HDR template were delivered into the cells using Lipofectamine 3000 reagent 
(ThermoFisher Scientific, cat. # L3000008). At 24-hours post-transfection selective pressure in the form 
of 5 μg/ml puromycin was applied for 8 hours to enrich for transfected cells. The short time- frame reduces 
the chances of selecting monoclonal lines with stable plasmid integration. Following two days of cell 
growth cells were harvested and crude extracts prepared from a small fraction for genotyping. The 
remainder of the cells were frozen for subsequent isolation of cell lines containing desired edits. 
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For T7E1 assays, a 362 base pair region flanking rs199643834 was PCR-amplified from the crude 
extracts using FLCN_genot primers and purified using Ampure XP beads (Beckman-Coulter, part #: 
A63880). Purified products were heteroduplexed, digested with T7 endonuclease 1 (NEB, cat # M0302L), 
and run on a 2% agarose gel. Cleavage patterns from editing experiments conducted with each sgRNA 
were qualitatively analyzed to determine each Cas9/sgRNA cutting efficiency to guide further 
experiments. Subsequently, the crude cell lysates were used to prepare amplicon libraries containing 
ScriptSeq adapters, which were sequenced on the Illumina MiSeq instrument with paired-end 150 bp 
reads. Rates of indel mutations by non-homologous end joining (NHEJ) and precise SNP editing by 
homology-directed repair (HDR) were determined by an in-house analysis pipeline.  
 
Generation and Identification of Monoclonal Cell Lines Containing Desired Precise Edits 
 
The initial screening showed that editing of 293T polyclonal cell population at rs199643834 with sgRNA 
1 resulted in the highest rate of HDR. This population was were selected for single-cell sorting in 96-well 
format on SONY SH800 to obtain monoclonal edited cell lines. Following 10 days of cell growth, individual 
wells were scored for the presence of healthy colonies, and altogether approximately 1920 healthy 
colonies were screened. At first passage a third of the cells from each well were collected for crude cell 
extracts and genotyping.  
 
High throughput genotyping was performed by preparing an amplicon library from each crude extract with 
Nextera adapters enabling differential custom dual-indexing. Screening for desired mutations was 
performed using in-house software. In total, 4 wild-type (Ref/Ref), 7 heterozygous (Ref/Alt) and 2 
homozygous mutant (Alt/Alt) clones with each desired mutation were expanded for downstream 
analyses.  
 
Targeted RNA-seq of Allelic Series and eQTL Phasing 
 
Expanded lines were grown to 70-80% confluency and RNA was isolated using the Qiagen RNAeasyMini 
kit. cDNA was synthesized from each RNA sample and the region spanning the Mendelian variant 
rs199643834 was amplified using primers FLCN_exon9-10-F and FLCN_exon11-R2, containing Nextera 
adapters (Table S5). Targeted amplicons were dual-indexed using custom Nextera indexes and 
sequenced on the Illumina MiSeq with 2x150 bp reads. 
 
For all the 13 lines the genotype determined by DNA-sequencing was confirmed by RNA-seq reads. For 
the 7 lines with a single copy of the edited SNP, we performed allelic expression analysis. Reads were 
aligned to hg19 using STAR 39. The number of reads mapping to the reference and alternative alleles 
was quantified using allelecounter requiring MAPQ = 255 and BASEQ ≥ 10 15. Across samples, there 
was a median of 34,870 reads passing filters overlapping the site. A binomial test using reads containing 
the edit SNP allele against a null of 1/3 (corresponding to a single copy of the edit SNP) was performed. 
Copy number normalized allelic expression of the edit SNP was calculated as 
log2((ALT_COUNT/REF_COUNT)/(1/3)). Samples with allelic expression < 0 and binomial p < 0.01 were 
categorized as snpLOW (edit SNP on lower expressed eQTL haplotype), and those with allelic 
expression > 0 and binomial p < 0.01 were categorized as snpHIGH (edit SNP on higher expressed eQTL 
haplotype). 
 
RNA-seq and Gene Expression Analysis of Edited 293T Cells 
 
RNA sequencing libraries were prepared using the TruSeq Stranded mRNA Library Sample Preparation 
Kit in accordance with manufacturer’s instructions. Briefly, 500ng of total RNA was used for purification 
and fragmentation of mRNA. Purified mRNA underwent first and second strand cDNA synthesis. cDNA 
was then adenylated, ligated to Illumina sequencing adapters, and amplified by PCR (using 10 cycles). 
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Final libraries were evaluated using fluorescent-based assays including PicoGreen (Life Technologies) 
and Fragment Analyzer (Advanced Analytics), and were sequenced on the Illumina NovaSeq Sequencing 
System using 2 x 100bp cycles to a median depth of 52.8 million reads. Trimmomatic 40 v0.36 was used 
to clip Illumina adaptors and quality trim, and reads were aligned to hg19 using STAR 39 in 2 pass mode. 
A median of 98% of reads mapped to the human genome, with a median of 95.2% reads mapping 
uniquely. featureCounts 41 v1.5.3 was used in read counting and strand specific mode (-s 2) with primary 
alignments only to generate gene level read counts with Gencode v19 annotations used in GTEx v6p 14. 
Differential expression analysis was performed using DESeq2 42 v1.16.1 and R v3.4.0 on genes with a 
mean of greater than 5 counts across samples. FDR correction of p-values was performed using 
Benjamini Hochberg. Gene set enrichment analysis on differential expression data was performed using 
the Web-based Gene Set Analysis Toolkit 28 with Wikipathway enrichment categories. 
 
Data Use, Availability, and Accessions 
 
GTEx v6p eQTLs are publically available through the GTEx Portal (https://gtexportal.org/). GTEx 
genotype data, AE data, and RNA-seq reads are available to authorized users through dbGaP (study 
accession phs000424.v6.p1, phs000424.v7.p2). TCGA data is available to authorized users through 
dbGap (study accession phs000178.v9.p8). HEK293T RNA-seq data generated in this study is available 
on the SRA under accession TBD. 
 
Supplementary Tables 
 
Table S1. Top cross tissue GTEx v6p eQTLs per gene. 
 
Table S2. TCGA individuals and respective cancer types used for analysis. 
 
Table S3. Differentially expressed genes in CRISPR-Cas9 edited rs199643834 monoallelic versus 
wildtype 293T cells. 
 
Table S4. Pathway based gene set enrichment analysis of rs199643834 differential expression data. 
 
Table S5. Oligonucleotides used in this study. 
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Supplementary Figures 
 

 
 

Figure S1. Illustration of the key features of our model of joint effects of regulatory and coding 
variants on functional gene dosage and selection. Under the model, regulatory variation altering 
functional gene dosage is particularly important in loss-of-function heterozygotes, where the dosage of 
functional protein is already reduced to half. Our general assumption is that common regulatory variants 
typically have such low effects on gene dosage that in the absence of coding variants, they do not cause 
severe disease or substantial reduction of fitness. Accordingly, in this example, under an additive model 
of gene expression, the higher expressed eQTL allele increases expression by 1.25x, and disease risk 
increases non-linearly with decreasing gene dosage, there are potentially large disease risk differences 
for loss-of-function heterozygotes depending on eQTL haplotype configuration. This results in purifying 
selection acting more strongly against haplotype configurations that decrease functional gene dosage, 
while acting more weakly on those that increase functional gene dosage. At the population level this 
differential strength of purifying selection would result in haplotype configurations that increase functional 
gene dosage being present at higher frequencies than those that decrease dosage. We note that while 
we believe that this general model is plausible for many genes with dosage-sensitivity, other scenarios 
are likely to exist, and for example, fully recessive genes or gain-of-function coding variants would not 
follow this model. Future work and larger data sets are needed to elucidate the full picture of relative 
importance of different types of joint effects of regulatory and coding variants. 
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Figure S2. Using GTEx allelic expression (AE) and percent spliced in (PSI) to estimate the 
penetrance of coding variants at the individual level. A) Difference in allelic expression between rare 
potentially pathogenic missense variant and DAF matched benign synonymous variants across GTEx 
tissues. A negative difference indicates reduced expression of missense variants compared to 
synonymous controls. Bars show the 95% confidence interval of the difference calculated using a paired 
Wilcoxon signed rank test, and tissues labeled in red have a significant difference (FDR < 10%). B) 
Comparison of median AE between missense and DAF matched benign synonymous variants in exons 
where inclusion in that individual was 100% (PSI = 100), with p-values generated using a paired Wilcoxon 
signed rank test and 95% confidence intervals of AE generated by 1000 bootstraps. This indicates that 
reduction in allelic expression of potentially pathogenic coding variants occurs through regulatory 
variation affecting expression level, likely in addition to variation affecting splicing. C) Workflow for 
generating quantifications of individual level exon inclusion (see Materials and Methods). D) CDF function 
of calculated cross-tissue exon PSI median absolute deviation, which illustrates that 30% of exons show 
robust variation in PSI across individuals. E) Histogram of cross-tissue exon PSI median absolute 
deviation for all exons with non zero median absolute deviation. 
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Figure S3. Test for regulatory modifiers of coding variant penetrance using phased genetic data. 
A) As input the test takes phased genotypes of coding variants and the eQTL for that gene. For each 
individual heterozygous for a coding variant a binary measure is produced to indicate if the major (wild-
type) allele is on the higher expressed eQTL haplotype. B) Across a population of individuals, the null 
expectation is that the observed haplotype configurations are a random sampling of all possible 
configurations, and thus the proportion of observed major alleles on the higher expressed haplotype is 
equal to the frequency of the higher expressed haplotype in the population. The diagram depicts a single 
gene example, but observations are aggregated across genes, and the difference between the observed 
frequency of major alleles on the higher expressed haplotype and the higher expressed haplotype 
frequency across those genes is calculated. C) Results of test performed on simulated haplotype data 
from 1000 individuals at 500 genes with 1000 replicates using a higher expressed haplotype frequency 
of 50% and coding variant frequencies observed in GTEx, across a range of genes exhibiting joint effects 
between regulatory and coding variants and effect size. The simulated effect size is described by the x-
axis in terms of the percentage of observed haplotype configurations that decrease penetrance. D) Power 
to detect significant (a = 0.05) regulatory modifiers of penetrance from simulation data in (C) is robust 
across a range of effect sizes. E) Comparison of p-values calculated using either the bootstrap approach 
or with the Poisson Binomial distribution from 1000 simulations of 1000 haplotypes generated under the 
null shows that they are extremely similar. The equality line is shown in red. See “Materials and Methods 
– Test for Regulatory Modifiers of Penetrance Using Phased Genetic Data” for more information. 
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Figure S4. Gene level metrics of common (MAF > 5%) regulatory and rare (MAF < 1%) coding 
variant haplotypes. Haplotypes generated using potentially pathogenic missense (red) or benign 
synonymous (blue) coding variants and the top cross-tissue GTEx v6p eQTLs to define higher and lower 
expressed haplotypes. Histograms of higher expressed haplotype frequencies, number of coding variants 
with haplotype data, mean coding variant frequency, and number of haplotypes observed at the gene 
level for haplotypes from 620 phased GTEx v7 whole genomes (A) and 925 phased TCGA germline 
whole genomes (B). 
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Figure S5. Expression haplotype aware editing of a Mendelian SNP in 293T cells using the 
transcriptome as a phenotypic readout. A) Visualization of eQTL SNP (rs170862) genotyping reads, 
edited SNP (rs199643834) genotyping reads from representative monoallelic and single copy clones, 
and targeted RNA-seq reads from representative low SNP expression (snpLOW) and high SNP 
expression (snpHIGH) clones. Ratios of the reference allele and alternative allele in targeted DNA and 
RNA sequencing are indicated. A full list of primers used for sequencing can be found in Table S5. B) 
Volcano plot of differential expression analysis comparing two clones monoallelic for the edit SNP versus 
four wildtype clones. 
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