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Abstract: Spatial organisation of the genome is essential for regulating gene activity, yet the              
mechanisms that shape this three-dimensional organisation in eukaryotes are far from           
understood. Here, we combine bioinformatic determination of chromatin states during normal           
growth and heat shock, and computational polymer modelling of genome structure, with            
quantitative microscopy and Hi-C to demonstrate that differential mobility of yeast chromosome            
segments leads to spatial self-organisation of the genome. We observe that more than forty              
percent of chromatin-associated proteins display a poised and heterogeneous distribution along           
the chromosome, creating a heteropolymer. This distribution changes upon heat shock in a             
concerted, state-specific manner. Simulating yeast chromosomes as heteropolymers, in which the           
mobility of each segment depends on its cumulative protein occupancy, results in functionally             
relevant structures, which match our experimental data. This thermodynamically driven          
self-organisation achieves spatial clustering of poised genes and mechanistically contributes to           
the directed  relocalisation of  active genes to the nuclear  periphery upon heat shock.  
 

One Sentence Summary:  

Unequal protein occupancy and chromosome segment mobility drive 3D organisation of the            
genome. 

 

Main Text: Eukaryotic genomes are highly organised in three dimensions ( 1, 2) and this spatial               
organisation has to be maintained in order to achieve the correct gene expression profiles ( 3–6) .               
The 3D organisation of the genome is thus central to many aspects of cell biology and has been                  
intensely investigated during normal growth ( 7–9) , differentiation ( 10–12) , cell division ( 13) ,           
senescence ( 14) , and disease ( 5, 6, 15) , and has been shown to arise independently of               
transcription ( 16) . In the budding yeast Saccharomyces cerevisiae , target genes of most            
transcription factors are enriched in specific regions along the chromosome in one dimension             
( 17) , or in the genome in three dimensions ( 18) . A central question in the field is by which                  
mechanisms this 3D  organisation  is achieved. 

Any mechanism that organises genome structure has to do so in a highly dynamic and crowded                
nucleoplasm ( 19, 20) . The prevalent view is that 3D genome organisation comes about despite              
the known intrinsic fluctuations of the chromatin fibre. Most studies focus on stable interactions              
between DNA-bound proteins that connect two chromatin loci ( 9, 21–27) . Here, we propose and              
validate a fundamentally different mechanism: The mobility of the chromatin fibre is not             
uniform, but heterogeneous, along its length, as a result of the unequal distribution of protein               
binding along the genome. This leads to thermodynamically driven self-organisation, which we            
observe experimentally,  and which we  show  to have important  functional implications. 

Determination and characterisation of chromatin states. In order to analyse the global effects             
of protein binding on spatial organisation of yeast chromosomes, and incorporate these data into              
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a computational model, we determined chromatin states in yeast. Chromatin states (also named             
‘chromatin colours’) are an important conceptual advance in the field of chromatin biology.             
Here, chromatin modifications ( 28) , chromatin-associated proteins ( 29) , or a combination thereof           
( 30, 31) are functionally categorised into groups or states, giving a chromatin-centric annotation             
of the genome. The resulting chromatin states were shown to correspond to differences in              
transcriptional activity, including the developmental regulation of genes ( 29–31) and 3D genome            
organisation ( 21, 22, 32–34) . 

To determine chromatin states for the budding yeast Saccharomyces cerevisiae , we           
modified the method of ( 29) to employ yeast chromatin immunoprecipitation (ChIP) data as             
input ( 35) . This method determines chromatin states from quantitative protein binding data            
alone. We used the reported genome-wide binding profile of 201 chromatin-associated proteins,            
measured in cells grown at 25°C, and 15 minutes after shifting the culture to 37°C (heat-shock)                
( 36) (Fig. 1, Fig. S1). Five states effectively differentiated the protein binding profiles between              
the states (see SI for more details). The same procedure was performed independently for the               
25˚C and 37˚C data. The genes in each state were counted and the states were numbered S1-S5                 
according to their decreasing  coverage at 25˚C (Fig. S1D,  Fig. S2A).  

Functional analysis of chromatin states. At 25°C, S3 contains more highly expressed            
genes and significantly higher median expression than all other states (Fig. 1B). At 37°C,              
expression is reduced by 53% in S3, while expression of genes in S4 is increased by 62%.                 
Expression of  genes in S1,  S2  and S5  remains largely  unchanged (Fig. 1C; Table  S2,  column 5).  

S1 harbours categories typical of housekeeping genes ( 37) (Fig. 1D). Genes in S2 show              
very limited GO enrichment, indicating that these genes are distributed over many functional             
categories. Genes assigned to S3 cover diverse processes and functions necessary for            
maintaining high levels of translation during rapid growth. Genes in S4 include functions such as               
unfolded protein binding, response to heat, and protein chaperones; all typical for heat-shock             
response genes. S5 is enriched for protein phosphorylation, amino acid metabolism and the             
nucleolus; it also harbours genes that code for proteins located at telomeres, such as the               
telomere-binding protein Cdc13p ( 38) . These ontologies match the change in expression profile            
observed upon heat-shock, as genes required for translation (S3) are known to be highly              
expressed under favourable conditions and to be repressed when cells are stressed ( 39, 40) , while               
heat-shock genes (S4)  are expected  to be upregulated  at 37°C (Fig. 1A-C).  
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[Fig1] 
Fig. 1. Chromatin states in S. cerevisiae and their characteristics. (A) Overview: We defined              
chromatin states using statistical methods, from the combination of 201 bound chromatin-associated            
proteins (coloured ellipses) (see Fig. S1). The states were ordered by genome coverage (highest: S1 to                
lowest:S5), and assigned a colour (red, yellow, green, blue, grey). At 25°C, the genes in S4 have a greater                   
amount of proteins bound, while genes in S3 have higher expression (kinked arrow). At 37°C, this is                 
reversed, with genes in S3 showing higher protein occupancy, and S4 genes higher expression. A               
high-level gene ontology analysis per state is shown. (B) Expression analysis of chromatin states from               
yeast grown at 25˚C. Thick horizontal lines: mean; dashed line: total average. At 25°C, S3 (green) has a                  
significantly higher number of highly expressed genes (p<2.2e-16); expression array data from (41). (C)              
After shift to 37°C, the ratio of expression (37°C/25°C) shows that genes in S3 are repressed, while those                  
in S4 are upregulated; expression array data from (42). (D) Gene Ontology enrichment analysis of genes                
in each state, using Ontologizer (43 ).  
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Protein occupancy and poising. We investigated the distribution of proteins across chromatin            
states. For each protein, we applied a binary hidden Markov Model (HMM) to the raw ChIP data                 
to identify occupied sites and classified them by state (see ( 35) ). We calculated the ‘fraction               
occupied’ for  all states and all proteins, at both temperatures  (Fig. S3).  

The three RNA polymerase II subunits present in the ChIP dataset, Rpb2p, Rpb3p and              
Rpb7p (Fig. 2A), display different binding patterns across chromatin states. Their fraction            
occupied values per state are shown in Fig. 2B. Interpretation is made easier when assessing the                
rank protein occupancy (Rank occupancy, Fig. 2C). At 25°C, Rpb2p and Rpb3p have the highest               
binding rank to S4 genes, and the lowest binding rank to S3 genes. The rank order for both these                   
RNA polymerase subunits is identical, reflecting the close contacts they make within the RNA              
Pol II enzyme (Fig. 2A). After the shift to 37°C, both Rpb2p and Rpb3p relocate, and the ranking                  
of S3 and S4 is reversed: now S3 is bound most (highest rank), and S4 the least (lowest rank)                   
(Fig. 2C). The rank order of both Rpb2p and Rpb3p is again identical. This is in stark contrast to                   
the rank occupancy for Rpb7p: At 25°C, the highest occupancy is in S3, and at 37°C in S4 (Fig.                   
2C). At both temperatures, the preferred location of Rpb7p coincides with the chromatin state              
which shows the highest level of expression (Fig. 1B). The Rpb2p and Rpb3p subunits, however,               
show a distribution that is termed ‘poised’: ready for immediate activation ( 44) . This means that               
the highest levels of binding occurs at the state that becomes active under different temperature               
conditions. Note that here poised genes are defined by protein occupancy and not by histone               
modification ( 45) . 

The difference between subunit distributions (Fig. 2A) can be explained by the structural             
composition of the 12-subunit RNA Pol II enzyme. Rpb2p and Rpb3p make extensive contacts              
to each other and are part of the core enzyme complex, while Rpb7p binds only minimally to the                  
core complex. Rpb7 (together with Rpb4) is in a diffusible subunit, known to be present in                
substoichiometric concentrations ( 46) , and to participate in the stress response ( 47, 48) . RNA Pol              
II has been reported to be poised during stationary phase ( 44) . Our analysis demonstrates that a                
large fraction of the main RNA Pol II complex is poised, both in exponential phase at favourable                 
temperatures (25°C), and during heat stress (37°C), and that the location of the poised              
polymerase changes. Our results also confirm that the presence of Rpb7p is linked to actively               
transcribed  genes ( 49 ) . 

We investigated whether other proteins also showed a poised distribution. At 25°C, 85             
proteins (42%) have their highest levels of occupancy in S4. At 37°C, 38 of these poised                
proteins binding with the highest rank to S3 and 30 proteins to S2 (Fig. 2D). This indicates that                  
significantly more proteins than previously described are poised, and that much of the previously              
described widespread movement of proteins upon heat-shock ( 36) involves a concerted           
migration from S4  to S3  and, to a lesser extent,  to S2  (Fig. 1A,   2G). 

Grouping the proteins according to molecular function shows that not all are poised to the               
same degree (Fig. 2E). We here define a protein as being poised if its highest rank is S4 at 25˚C                    
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and S3 at 37˚C. ATP-dependent chromatin remodellers show the highest level of poising (66.7%,              
Fig. 2E), followed by the protein components responsible for transcription initiation from an             
RNA Pol II promoter (54.5% at 25°C, 51.2% at 37°C). Transcription factors show the lowest               
levels of poising (19.4%). Hence, we conclude that chromatin remodellers hold the gene in an               
activation-ready state, with transcriptions factors acting to trigger gene expression and only            
binding at the time  when  the gene product is required. 

Of the 201 proteins analysed, the rank occupancy of only five proteins that differ by more                
than 20% between any two states, correlated positively with transcriptional activity at both             
temperatures: Htz1p, Not3p, Arp6p, Irr1p and Rpb7p (Fig. 2C,F). All these proteins have well              
established roles at sites of  active  transcription ( 50–56) .  

[Fig2] 
Fig. 2. Wide-spread, consistent poising in the yeast genome. (A) Structure of RNA polymerase II in                
complex with DNA and RNA transcript. Crystal structure from PDB 3HOU (57). RNA Pol II is a                 
complex of 12 proteins, Rpb1p to Rpb12p. The three proteins included in the analysed dataset (36) are                 
coloured: Rpb2p (teal), Rpb3p (purple) and Rpb7p (red). Note that Rpb7p is part of a small subcomplex                 
sitting on top of the main complex. (B) Stacked barplots of the fraction occupied values for the three RNA                   
Pol II subunits, for 25°C and 37°C (from Fig. S3). (C) Rank occupancy plot. At 25°C, both Rpb2p and                   
Rpb3p bind most to genes in S4, indicated by the blue square to the right, while the Rpb7 subunit is                    
bound most to S3. At 37˚C, this pattern is reversed. Rpb2p and Rpb3p are described as ‘poised’. The                  
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binding location of Rpb7p coincides with actively transcribed genes (‘active’). (D) Top-ranked binding             
state of all 201 proteins at 25°C and 37°C. (E) Poising across functional protein types. The pie charts                  
show the distribution of proteins in each family across the chromatin states, taking into account only the                 
highest rank for each protein. (F) Proteins that are most bound to active genes at both temperature                 
conditions (from those with ≥20% difference in occupancy, Fig. S3). (G) Schematic showing how gene               
expression (kinked arrow) and poising changes  under different growth conditions.  
 

Polymer model of mobile chromosome organisation. The significant differences in protein           
occupancy between segments of chromatin, as determined by chromatin states, justify modelling            
chromatin as a heteropolymer. We postulated that the heteropolymeric nature of chromatin            
would affect the local mobility of each segment. In this context, the term mobility describes the                
average linear displacement of a genome segment at each time step, i.e. the instantaneous              
velocity of its Brownian motion. We further postulate that this heterogeneity of segment             
mobilities affects the structure of  the whole genome. 

 In order to investigate this new concept, we carried out polymer simulations, in which we               
assigned different mobilities to segments according to their chromatin state. To this end, we              
modified a previously developed and validated three-dimensional computational polymer model          
of the interphase yeast genome ( 58) . In this model, each chromosome is a polymer of cylindrical                
segments, connected by ball joints, attached to the spindle pole body at the centromere, and               
constrained by the nuclear membrane (see further details in ( 58) and in the SI). We reduced the                 
length of each segment to 2 kb, which is the approximate average length of a gene and its                  
flanking sequences in S. cerevisiae (59), and assigned the corresponding chromatin state to each              
segment of  the computational  model (Fig. S4A,  Fig. 3, Movie S1).  

Proteins can affect chromatin mobility through a number of different physical properties            
by e.g. changing the diameter, charge, viscosity, and transient interactions of the chromatin fiber.              
For a measure that encompasses all these influences, we chose to directly modify the force that                
drives segment mobility. In this model, as in most others, the mobility of genome segments in                
three dimensions is governed by Langevin dynamics, which is composed of the random force              
(Brownian dynamics), and the viscous drag ( 58, 60) . We call this the compound Langevin force,               
F LC. The FLC is calculated independently for each segment at every time step. To implement               
differential mobility of chromatin states, we multiplied the thus calculated force by a             
state-specific factor (Fig. 3B).  

We investigated the relationship between protein binding and the compound Langevin           
force in short test simulations (Fig. S5): Increasing the mass and radius (i.e. the protein               
occupancy) of a segment has the same qualitative effect on a segment’s displacement per time               
step as decreasing the FLC, and vice versa (compare matching columns in Fig. S5B with C).                
Thus, changing the FLC has the desired effect of changing the mobility of genome segments in                
line with protein occupancy.  
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As shown by our state analysis of protein binding data, the largest change in protein               
occupancy occurred from S4 at 25˚C to S3 at 37˚C (Fig. 2D, summarised in Fig. 2G). We                 
therefore limited our analysis to reciprocally changing the forces applied to segments of these              
two states (Fig. 3B). The uniform (homopolymer) model, in which no factor is applied to any                
calculated FLC, served as control. For analysis, we let the simulations reach steady state and then                
collected data from non-correlated  time steps (Fig. S6).  

[Fig3] 
Fig. 3. Computational whole genome model. (A) Snapshot of the stochastic model, with 2 kb cylindrical                
segments and state mapping. Centromeres are attached to short microtubules (straight grey tubes) at the               

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/106344doi: bioRxiv preprint 

https://doi.org/10.1101/106344


 9 

spindle pole body. The segments shown as thin beige lines represent the rDNA repeats and form the                 
nucleolus (thickness not drawn to scale). For state assignment and measurements of all segments, see Fig.                
S4A and Table S3. Following the convention of the literature on S. cerevisiae genome structures, this plot                 
and subsequent figures are rotated such that the centromeres are shown on the left. (B) Each genome                 
segment is assigned the appropriate chromatin state. To simulate different protein occupancies, the             
compound Langevin force (F LC) that is applied to each segment is varied according to chromatin state.                
Representing the 25°C situation, FLC is reduced for all S4 segments (small arrow) and increased for all S3                  
segments (large arrow). For clarity, all arrows are pointing upwards; in the simulation, FLC vectors are                
calculated stochastically and independently for each segment and each dimension at every time step. 
 

Experimental validation of the model: Microscopy. To experimentally validate our          
computational model, we first used live cell fluorescence imaging. We created a series of yeast               
strains in which two sites at genomic distances varying between 27 kb and 495 kb of the left arm                   
of chromosome XIV are tagged by the lac and tet fluorescent operator systems (Fig. 4A(a,b),               
Table S4). Fluorescent signals are generated by GFP- and mRFP- fluorescently labelled lac and              
tet repressor proteins bound to their respective operator repeat sequences. Images were acquired             
in 3D (stacks of 21 images at z = 200 nm) and distances between the tagged sites determined                  
using an automated ImageJ-based algorithm ( 61) (Fig. S7). Measured median distances ranged            
from 422 nm to 765 nm for loci separated by up to 220 kb. At greater genomic distances, the                   
measured median did not increase further (Fig. 4A(d)). We compared these distance distributions             
with distributions obtained from simulations (Fig. 4A(e-g)). The uniform model predicted           
median distances between loci separated by 27 to 495 kb ranging from 125 nm to 720 nm (Fig.                  
4A(e)). For small genomic distances (27-79 kb), the simulated values were significantly smaller             
than the measured physical 3D distances due to experimental noise (Fig. 4A(c), ( 62) ). In contrast               
to the in vivo results, however, a uniform polymer model produces distances which increase              
monotonically with genomic separation without reaching a clear plateau (Fig. 4A(e)). Hence, we             
simulated distance distributions using a series of heteropolymeric models, with different sets of             
state-specific factors to change the FLC exerted on segments. The [25˚C] models in which the               
forces applied to the S3 and S4 segments are reciprocally changed 5-fold (Fig. 4A(f,g)) generate               
distance distributions that are statistically the closest to the experimental data (non-nested Vuong             
closeness test ( 63) , see details in SI, Table S7). Strikingly, the models with 5-fold changes are                
also the only ones that do not show a strict monotonic rise, with the 220 kb and 319 kb positions                    
showing near identical 3D distances. Simulations based on 2-fold or 10-fold change in FLC on               
any of the segments (Fig. S8A) show a statistically lower agreement with the in vivo data (Table                 
S7). This analysis shows that the heteropolymeric model simulating the [25°C] conditions is a              
better fit to the experimental data than both the homopolymeric model and the model simulating               
[37˚C]  conditions. 

We next assessed whether our model could predict specific features of nuclear            
organisation. As it has been shown that budding yeast telomeres are preferentially, but not              
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systematically, located near the nuclear membrane ( 19, 64–66) , we recorded the frequency of             
peripheral localisation of two different telomeres. Applying the uniform model, positions of the             
right telomere of Chr III (Tel3R) and the left telomere of Chr XIV (Tel14L) were located in the                  
most peripheral zone in 94.0% and 85.3% of the sampled time-steps, respectively (Fig. 4B(c),              
Table S8). These numbers are significantly different from our previously reported measurements            
of live cells ( 20) , where only 68.8% and 60.8% of these telomeres were found in the periphery                 
(Fig. 4B(b), Table S8). In contrast, in simulations based on heteropolymeric models with 5x              
reciprocal changes in FLC, the position of the telomeres were not significantly different from the               
experimental data, with 75.2% and 62.3% of analysed time points at 25°C, and 69.1% and 68.7%                
at 37°C in the periphery, for Tel3R and Tel14L, respectively (Fig. 4B(d,e), see Fig. S8B and                
Table S8 for other force changes). Hence, the heteropolymer model was able to simulate the               
experimentally determined telomeric positions with much greater accuracy than the uniform           
model. 

In both types of analyses, heteropolymers with FLC changes of ≥5x resulted in an overall               
compaction of the genome. This is visible from the median 3D distances, which are reduced in                
comparison to the uniform simulation (Fig. 4A(f,g) vs. Fig. 4A(e)), and from the more central               
location of the telomeres (Fig. 4B(d,e) vs. Fig. 4B(c)). In both analyses, a reciprocal factor of 5                 
resulted in the best match to experimental data (Fig. 4A,B, Fig. S8A,B, Table S7,S8). Thus, all                
subsequently shown simulations used the combinations of 5x / 0.2x to represent 25˚C, or 0.2x /                
5x to represent 37˚C, as  F LC scaling factors for  S3  and S4  segments, respectively. 

These results demonstrate that the fit between model and experimental data is markedly             
improved when simulating the chromatin fibre as a heteropolymer with differential FLC.            
Heterogeneous mobility of chromatin segments is thus a plausible mechanism shaping           
chromosome conformation  in yeast nuclei. 
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[Fig4] 
Fig. 4. Validation of the model by microscopy. Position of labelled gene loci in confocal microscopy                
and in simulations. (A) Genomic loci at different distances from each other, and at different distances                
from the chromosome end, were labeled with the fluorescent repressor operator system (FROS) on the left                
arm of Chromosome XIV. a) Positions of the insertions in kb, recognised by mRFP- and GFP-labelled                
fusion proteins. The distances between the genomic positions of the operator array insertions (27 kb to                
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495 kb) are shown above the lines connecting the red and green labels (see also Table S4). b)                  
Representative wide-field image, maximum projection of strain YCG54 (“220 kb”). Scale bar: 2 µm. c)               
Distribution of measured 3D distances in strain YPT237 (62), in which a single array is recognised by                 
both mRFP- and GFP-fusion proteins: Control for experimental noise. d) Distribution of distances per              
yeast strain (n=498 to n=1233). e) Distribution of distances between mapped loci in uniform              
(homopolymer) simulations. f,g) Distribution of distances in heteropolymer simulations. Models were           
compared using Vuong tests, see Table S7. (B) Telomere positions. a) The nuclei were divided into a                 
central and peripheral zone of equal area. b) Position of labelled telomeres in live cells; n=80 (Tel3R);                 
n=74 (Tel14L) (modified from (20)). c-e) Telomere positions in the simulated nuclei; n=30,000. The in               
vivo data is significantly different from the uniform simulation data (binomial test: p=3.9e-12 (Tel3R) and               
p=2.2e-7 (Tel14L)). It is not significantly different from the heterogeneous simulation data (p>0.15), and              
the heterogeneous  simulation data only is  within the confidence interval of the in  vivo  data (Table S8). 
 

DNA-DNA contacts captured by Hi-C and simulation. To gain detailed genome-wide insights            
into chromosome conformation, we performed Hi-C ( 7, 67–71) in duplicate on yeast cultures (1)              
grown at 25°C, and (2) grown at 25°C and then shifted to 37°C for 15 min. This allowed us to                    
experimentally determine the genome-wide chromatin contacts at the same growth conditions for            
which the chromatin states had been determined (Fig. S9). To ensure high quality of the data, we                 
carefully optimised the Hi-C protocol for correct ligation junctions (Fig. S9A,B) and analysed             
the resulting data for the lack of bias between temperature conditions (Fig. S9C) and for               
reproducibility (Fig. S9D). We digested the DNA with HindIII, which in S. cerevisiae produces              
fragments of  an average  length of  2.7 kb.  

We mapped the Hi-C sequencing reads to the yeast genome, and filtered out experimental              
artefacts, PCR duplicates and physically linked segment pairs using the HiCUP pipeline ( 72) .             
Across the four experiments, this resulted in 12 million valid, unique read pairs (Documents              
S4-S7). We then plotted and analysed the data at the resolution of individual restriction              
fragments, i.e. without binning (Fig. 5A). The full contact maps bear the hallmarks of those               
previously published for S. cerevisiae: Strong clustering of the centromeres, weaker clustering of             
telomeres, and only moderate  enrichment of  intra- versus  inter-chromosomal  contacts ( 7, 73–75) .  

We analysed the simulations in an analogous manner, recording the incidence and            
position of contacts between segments throughout the simulation (see SI for details). Each of the               
three simulations gave rise to distinct patterns of contacts (Fig. 5B). The uniform model (Fig.               
5B(a)) gave rise to markedly fewer contacts in the same number of time steps, confirming our                
observation that heterogeneous  mobility achieves greater compaction of  chromosomes (Fig. 4).  

To understand the influence of protein occupancy on genome organisation, we asked            
whether chromatin contacts are equally distributed across all chromatin states. After developing            
a method to map chromatin states to HindIII fragments (Fig. S4B and SI text), we calculated                
state-wise contact maps for each growth and simulation condition (Fig. 5C,D and SI). The              
state-wise contact maps of the experimental and simulation data are remarkably similar in a              
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number of important aspects. Of all state-wise contacts, the highest contact frequencies at 25˚C              
are between HindIII fragments (Fig. 5C(a)) or model segments (Fig. 5D(a)) of the S4 state. At                
37˚C, the highest contact frequencies in each case are between fragments or segments in the S3                
state (Fig. 5C(b), Fig. 5D(b)). At both temperatures and in both simulations, the highest number               
of contacts are intra-state in the state with the highest protein occupancy (as determined              
experimentally) and the lowest mobility (implemented as the lowest FLC in the model). At the               
same time, the segments with low protein occupancy and high mobility (S3 at 25°C, S4 at 37˚C)                 
have a moderate intra-state contact frequency but show clearly reduced contacts to all other              
chromatin states.  

Interestingly, it is not the fast-moving segments that interact most frequently (Fig. 5D).             
Instead, it is the slow moving segments that have the highest number of contact, and our                
simulations indicate that this is a result of close spatial proximity (Fig. 6). In addition, the                
state-wise contact maps demonstrate that there is a clear spatial separation of the states with high                
protein occupancy and low mobility from those with low protein occupancy and high mobility,              
indicated by the ‘black cross’ of low contact frequencies, most clearly seen in Fig. 5C(b) and                
5D(a,b).  

We found that the patterns of the state-wise contact maps are very robust with regards to                
simulation setup. Different arrangements of the chromosomes around the spindle pole body,            
sizes of the rDNA, sampling and stochastic repeats produce a different total number of contacts,               
but the patterns of the normalised state-wise contact maps are virtually indistinguishable, as long              
as  the same statewise F LC factors are applied  (Fig. S6C-D  and not shown).  

To determine how well the simulated contacts matched the experimental results, we            
calculated Pearson correlation coefficients between the state-wise contact maps (Table 1): Hi-C            
data derived from different temperature conditions show no significant correlation, indicative of            
the significant genome rearrangements that occur after heat shock. Similarly, the [25˚C] and             
[37˚C] simulations show no correlation. However, there is high correlation between the Hi-C             
data and the simulation data at equivalent conditions, indicating that variations in chromatin             
mobility we implemented in the model shape genome organisation. The heat shock response is              
likely to induce changes in mobility due to the observed concerted redistribution of protein              
binding. By this measure, the overall protein occupancy of a chromatin segment alters its              
mobility and thereby is a significant  determinant of  3D  genome organisation  in yeast. 
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[Fig5] 
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Fig. 5. DNA-DNA contact maps of S. cerevisiae by Hi-C and simulation. (A) Full contact maps of                 
Hi-C at 25˚C (below diagonal) and simulations representing [25˚C], sampled every 100 time steps (above               
diagonal). Both are drawn with single-fragment resolution. (B) Full contact maps of simulations             
representing different setups. nc, number of all contacts recorded in 30,000 time points. (C) State-wise               
contact maps of the Hi-C data, from both growth temperatures (25°C and 37°C), normalised by the                
number of expected contacts as calculated from the proportion of segments in each state. (D) State-wise,                
normalised contact maps  of the simulation data.  
 
 

 
State-wise  contact maps  

Correlation 
coefficient 

 
p-value 

 
Significance 

Hi-C  25˚C  Simulation  [25˚C]  0.8662  2.9712e-5  **** 
Hi-C  37˚C  Simulation  [37˚C]  0.7409  0.0016  ** 
Simulation  [25˚C]  Simulation  [37˚C]  -0.0614  0.8280  ns 
Hi-C  25˚C  Hi-C  37˚C  -0.0078  0.9781  ns 
Hi-C  25˚C  Simulation  [37˚C]  -0.1734  0.5367  ns 
Hi-C  37˚C  Simulation  [25˚C]  -0.1057  0.7078  ns 

 

Table 1. Correlation of state-wise contact maps. Pearson correlation coefficients calculated in            
MATLAB between two vectors of size 15 (the numerical values of the upper-right triangular parts of                
matrices  depicted in Fig. 5C,D). The rows  are sorted by correlation coefficient; ns, not significant. 
 

Poised genes cluster in 3D. To determine where in the nucleus the simulated contacts occurred,               
we visualised the position of the intra-state-contacts in 2D projections (Fig. 6, Fig. S10). In all                
cases, the majority of the contacts are restricted to one half of the nucleus, due to the tethering of                   
the centromeres to the spindle pole body, with the nucleolus occupying the opposite side ( 58) .               
We quantified the level of clustering for all intra-state contacts (see Table S9, Table S10 and SI                 
for details). In the uniform simulations, contacts are the most disperse, confirming the lack of               
compaction in the homopolymer (as in Fig. 4, Fig. 5B). In addition to this compaction, which                
affects the chromosomes in their entirety, we observe state-specific clustering of genes in 3D,              
where genes of one state, dispersed between all 16 chromosomes, preferentially co-localise.            
Between [25˚C] and [37˚C], antagonistic clustering occurs: Intra-S3 contacts cluster strongly at            
[37˚C], and intra-S4 contacts cluster strongly at [25˚C] (Fig. 6C,E,G), with a 63- and 43-fold               
change respectively (Table S10, columns 5&6). For comparison, contacts in the entire genome             
change by only ~1.5-fold (Table S10, last three rows). Preferential clustering is visualised in Fig.               
6H,I: In both simulated temperature conditions, the slow-moving, poised segments come           
together in transient clusters, located at a distance from the nuclear envelope, towards the centre               
of  the nucleus.  
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[Fig6] 
Fig. 6. Positions of intra-state contacts in the simulations. (A-F) 2D projection density plots of               
spherical yeast nuclei show the positions of simulated contacts between segments of the same state, in 3 x                  
1 million time steps (not sampled). Nuclei are oriented as in Fig. 3A. The distributions along the projected                  
axes are given outside the box. The plots are normalised to the highest density in each panel. (A-C) S3                   
intra-state contacts; (D-F) S4 intra-state contacts. (A,D) uniform model; (B,E) with [25°C] conditions;             
(C,F) with [37°C] conditions. (G) Quantitative histograms of the contacts along the z dimension, in 500                
bins of 4 nm width. Profiles at [25˚C] (cyan) and [37˚C] (orange) are overlaid. They demonstrate the                 
strong clustering of S3:S3 contacts at 37˚C (a) and of S4:S4 contacts at 25˚C (b). (H,I) Schematic of how                   
differences in mobility caused by increased binding of poised proteins at S4 segments at 25˚C (H), or S3                  
segments at 37˚C (I), leads to clustering in space. Grey spheres represent poised protein complexes; the                
number and length of the flanking black lines  symbolise the degree of segment mobility.  
 

Relocalisation of  activated genes towards the nuclear periphery. In yeast, several genes have          
been described to relocate to the nuclear periphery upon activation and to interact with nuclear               
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pore complexes, aiding the export of mRNA into the cytoplasm ( 76–81) . An example is the gene                
coding for the stress-induced disaggregase HSP104 ( 82, 83) , which moves to the nuclear             
periphery upon induction ( 84) . Several molecular mechanisms have been proposed ( 53, 76, 80,             
84–86) , but the phenomenon is not yet fully understood ( 87) . Seeing that our models resulted in                
changes in location of S3 and S4 genes, we set out to test whether the changes in physical                  
properties of  the heteropolymer  would suffice to deliver  individual genes to the periphery.  

We determined the simulated positions of the segment corresponding to the HSP104 gene             
at both temperatures and plotted the distribution of positions in radial density plots (Fig. 7A).               
These density plots show that, at 25°C, the gene is located within a small area and at distance                  
from the nuclear periphery (Fig. 7A, [25°C]). At 37°C, the position of the gene has changed,                
showing a broader distribution, closer to the periphery (Fig. 7A, [37°C]). The number of times               
the gene was found within the peripheral area (outside of the dashed circle) more than doubled                
(Fig. 7C,F) (p<2.2e-16, Wilcoxon rank sum test). Confocal microscopy imaging had shown a             
very similar  increase in peripheral  location of  the HSP104  gene upon induction  ( 84)  (Fig. 7E).  

This difference in location between the two temperature conditions can be seen in the              
collective shift of distribution of all S4 genes (Fig. 7B,D,G). The difference in peripheral              
location is highly significant (Fig. 7D,G; p<2.2e-16). Simulating chromosomes as          
heteropolymers with differential and changing mobility thus allows us to propose this as a              
general mechanism facilitating the relocation of activated genes to the periphery without the             
requirement for  additional energy sources  or  specific  factors. 
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[Fig7] 

Fig. 7. Peripherality of heat-shock gene HSP104 and all genes in S4 before and after induction. (A,                 
B) Plots of the radial density (probability map) around the z-axis of the simulated positions of the segment                  
representing the HSP104 gene, which belongs to S4, at 25°C (top) and at 37°C (bottom). The SPB is                  
located at the center to the left. The peripheral zone, defined as covering the outermost 33% of the nuclear                   
area, is indicated (dashed red circle). (B) The location of all S4 gene segments, plotted as in (A).(C,D)                  
Distribution of the linear 3D distances of HSP104 or all S4 segments from the nuclear centre. (E)                 
Corresponding experimental values of HSP104 (modified from (84)) of non-induced and induced cells.             
(F,G) Simulation data, quantified from (A,B).  
 

Discussion  

A growing body of evidence has shown that genome architecture is closely linked to gene               
expression and, in higher organisms, cellular differentiation ( 11, 88–90) . We now propose a             
novel mechanism which leads to chromatin states showing distinct spatial organisation. Here, the             
organisation results from the heterogeneous dynamic behaviour of the chromatin fibre, which is             
based on the heterogeneous protein occupancy. Of note, it is not the activity of a small number of                  
specific proteins that shape genome organisation, but the cumulative effect of all            
chromatin-associated proteins that affect  the mobility  of  each genome segment.  
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The definition of chromatin states allowed us to determine that a large proportion of              
chromatin-associated proteins, not just RNA polymerase subunits, are poised. This poising is            
visible at both growth temperatures, and involves rapid and coordinated movement of 42% of              
chromatin-associated proteins during the transition. At each temperature, the poised proteins are            
bound to the genes which are currently less active, but which will need to be transcribed quickly                 
if conditions change. It is easy to envision that this widespread poising greatly increases the               
cell’s ability to quickly activate gene expression, something that is especially of benefit to a               
free-living, single celled organism encountering unbuffered and rapidly changing external          
conditions. 

The heterogeneous mobility that we infer has several important consequences. Firstly, it            
leads to an overall compaction of the genome, as seen by the position of the telomeres and 3D                  
distances of chromosomal loci (Fig. 4) and the clustering of contacts (Table S9-S10: in the ‘all                
contacts’ rows, the uniform conformation is always less compact than the two heteropolymeric             
ones). This is in addition to the compaction of the chromatin fibre achieved by nucleosomes. The                
general compaction we observe keeps most of the genome at a distance from the nuclear               
envelope, leaving more of  the peripheral  region free for  induced genes.  

Secondly, our simulations reveal that changes in the distribution of segment mobilities lead             
to re-organisation of the genome. Specifically, they show that at 37°C, the S4 genes are located                
closer to the periphery. This represents an astonishingly simple mechanism to re-locate active             
genes to the nuclear periphery. We are aware that other specific interactions are also involved               
(e.g. between transcription factors or mRNA binding proteins and the nuclear pore complex             
(NPC) ( 85, 91) ). Interestingly, there are exceptions: the relocation of osmotic shock response             
genes to the nuclear periphery has been shown to occur even in the absence of nuclear pore                 
complex proteins ( 78) . This supports the contention that our mobility-based mechanism can act             
independently of known specific mechanisms. We envisage that induced genes are primarily            
delivered to the periphery by our mechanism, and retained there through interactions with the              
NPC. This could explain the quantitative differences between the in vivo data and our simulation               
outcomes (Fig. 7 E,F). 

Finally, the spatial clustering of the poised state segments is relevant in the context of the                
observed clustering of genes and proteins that lead to the formation of transcription factories              
( 78) . While still speculative, this clustering offers the opportunity to help all proteins that are               
constituents of  transcription factories to find each other prior to activation  of  transcription.  

Our results demonstrate that, given the known architectural constraints of the S.            
cerevisiae genome, the differential mobility of chromatin segments is a significant determinant            
of overall 3D genome organisation. This requires a highly dynamic system, in which             
chromosomes are in constant motion. The self-organisation we observe does not rely on             
protein-protein interactions, such as those mediated by cohesin ( 92) or CTCF in higher             
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eukaryotes ( 93) . Intriguingly, it has recently been shown that the major structural compartments             
in the genomes of mouse embryonic stem cells remain intact even when CTCF is depleted ( 94) ,                
(95), indicating that other, CTCF-independent, mechanisms are involved ( 96) . These          
mechanisms remain to be elucidated  and could include  self-organisation by differential mobility.  

The mechanism we propose is akin to granular convection, also known as the Brazil nut               
effect, in which objects of different size and similar density separate spatially when shaken ( 97,               
98) . In addition to phase separation caused by size, shape and mass, particles that have different                
diffusion properties can also separate, as has recently been demonstrated theoretically and using             
simulations for  monomers ( 99 ) ,  polymers ( 100 –102) .  

As mentioned when introducing the model, we chose the compound Langevin Force as an              
intentionally non-specific means of changing the mobility. The precise components that           
influence chromatin mobility are the subject of active ongoing studies. Several aspects of protein              
physics, chemistry and biology are of importance, and it is the joint effect of all these influences                 
that determines the heterogeneity of chromatin segment diffusion. High protein occupancy, as in             
the poised segments we identified, directly increases the mass and diameter of the chromatin              
segment. It furthermore increases the opportunities for transient interactions of the chromatin            
segment with neighbouring structures, thus reducing their effective  diffusion speed ( 103 –105) .  

Effective diffusion can be affected by the charge, the secondary and tertiary structure of              
bound proteins. Extended, highly unstructured protein domains could result in particles with a             
higher viscosity ( 106, 107) , and thus reduce mobility. We calculated the internal disorder score              
of all chromatin associated proteins and compared how these scores varied across the chromatin              
states, and found a significant enrichment of disordered domains in the poised state at both               
temperatures, corroborating our model that poised segments move more slowly (Sewitz and            
Lipkow, unpublished). Recently, intrinsically disordered domains of the S. cerevisiae          
transcription factor Mig1p have been reported to stabilise proteins clusters by entropic depletion             
( 108, 109) , forming transient bridges between DNA strands, and reducing diffusion of the             
protein-DNA complexes ( 108, 109) . Interestingly, Mig1p is repressive, thus its binding           
simultaneously reduces gene expression and mobility. This provides experimental support for           
our postulate that poised genes, which are currently not highly expressed, have a reduced              
mobility.  

Even enzyme activity can affect the undirected, stochastic mobility of chromatin segments:            
It has recently been proposed that the heat produced by ATP hydrolysis as a side effect of                 
transcription and chromatin remodelling can lead to increased stochastic fluctuations. In           
simulations of 1 Mb resolution, this achieves the separation of gene-dense (active) from             
gene-poor (inactive) chromosomes ( 100, 110, 111) , albeit at unphysiogically high temperature           
differences (20-fold). Interestingly, in finer models of long homopolymers, this temperature           
difference can be reduced to more realistic values ( 100, 101) . The recent report that Drosophila               
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topological domains separate by transcriptional state ( 96) lends further support to this idea. All              
this supports  the concept  that numerous factors are involved in modifying  chromatin mobility.  

Lastly, several recent reports highlight how the physical process of phase-separation           
contributes to chromatin organisation ( 112, 113) . Looking forward, integrating this with the role             
played by noncoding eRNAs and the mechanism describing how multivalency regulates RNA            
granule size ( 114, 115) , promises to expose the complexity of biophysical mechanisms that             
together work  to carefully control genome organisation.  
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