










 677 
Extended Data Figure 2: Unsupervised ADMIXTURE plot from k=4 to 12, on a dataset 678 

consisting of 1099 present-day individuals and 476 ancient individuals. We show newly 679 

reported ancient individuals and some previously published individuals for comparison.  680 

  681 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/135616doi: bioRxiv preprint first posted online May. 9, 2017; 



 682 
Extended Data Figure 3: Spatial structure in hunter-gatherers. Estimated effective migration 683 

surface (EEMS).62 This fits a model of genetic relatedness where individuals move (in a 684 

random direction) from generation to generation on an underlying grid so that genetic 685 

relatedness is determined by distance. The migration parameter m defines the local rate of 686 

migration, varies on the grid and is inferred. This plot shows log10 m, scaled relative to the 687 

average migration rate (which is arbitrary). Thus log10(m)=2, for example, implies that the 688 

rate of migration at this point on the grid is 100 times higher than average. To restrict as much 689 

as possible to hunter-gatherer structure, the migration surface is inferred using data from 116 690 

individuals from populations that date earlier than ~5000 BCE and have no NW Anatolian-691 

related ancestry. Though the migration surface is sensitive to sampling, and fine-scale 692 

features may not be interpretable, the migration “barrier” (region of low migration) running 693 

north-south and separating populations with primarily WHG from primarily EHG ancestry 694 

seems to be robust, and consistent with inferred admixture proportions. This analysis suggests 695 

that Mesolithic hunter-gatherer population structure was clustered and not smoothly clinal, in 696 

the sense that genetic differentiation did not vary consistently with distance.  Superimposed 697 

on this background, pies show the WHG, EHG and CHG ancestry proportions inferred for 698 

populations used to construct the migration surface (another way of visualizing the data in 699 

show in Figure 2, Supplementary Table 3.1.3 – we use two population models if they fit with 700 

p>0.1, and three population models otherwise).  Pies with only a single color have been fixed 701 

to be the source populations.  702 
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 703 
Extended Data Figure 4: log-likelihood surfaces for the proportion of female (x-axis) and 704 

male (y-axis) ancestors that are hunter-gatherer-related for the combined populations 705 

analyzed in Figure 3C, and the two populations with the strongest evidence for sex-bias. Log-706 

likelihood scale ranges from 0 to -10, where 0 is the feasible point with the highest likelihood.  707 
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Supplementary	Tables	710 

Supplementary Table 1: Details of ancient individuals analyzed in this study. 711 

Supplementary Table 2: Key D-statistics to support statements about population history. 712 

Supplementary Table 3: qpAdm models with 7-population outgroup set. 713 

Supplementary Table 4: qpAdm models with extended 14-population outgroup set.  714 

Supplementary Table 5: qpAdm models for Neolithic populations for chromosome X. 715 
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