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Abstract 

 

There is a severe limitation in the number of items that can be held in working memory. However, 

the neurophysiological limits remain unknown.  We asked whether the capacity limit might be 

explained by differences in neuronal coupling. We developed a theoretical model based on 

Predictive Coding and used it to analyze Cross Spectral Density  data from the prefrontal cortex 

(PFC), frontal eye fields (FEF) and lateral intraparietal area (LIP).  Monkeys performed a change 

detection task (Buschman et al., 2011). The number of objects that had to be remembered (memory 

load) was varied (1-3 objects in the same visual hemifield).  Changes in memory load changed the 

connectivity in the PFC-FEF-LIP network.  Feedback (top-down) coupling broke down when the 

number of objects exceeded cognitive capacity.  This provides new insights into the neuronal 

underpinnings of cognitive capacity and how coupling in a distributed working memory network is 

affected by memory load. 
 

 

Introduction 

 

The number of objects that can be held in working memory (cognitive capacity) is limited (Vogel 

and Machizawa, 2004).  Cognitive capacity is directly related to cognitive ability (Conway et al., 

2003; Alloway and Alloway, 2010; Fukuda et al., 2010; Unsworth et al., 2014) and is lowered in 

neurological diseases and psychiatric disorders (Luck and Vogel, 2013). Therefore, studying how 

working memory load affects neural processing can inform our understanding of why there is a 

capacity limit and how cognitive function breaks down in various neurological and psychiatric 

diseases and disorders.  

 

Studies of working memory load and its limits have focused on coordinated activity in 

frontoparietal networks known to play a major role in working memory (Klingberg et al., 2002; 

Todd and Marois, 2005; Palva et al., 2010; Dotson et al., 2014; Gray, 1994; Awh et al., 2006).  These 

studies predicted capacity limits using measures of network integration (how different parts of 

these networks are connected together) and synchrony (Roux et l., 2012; Stevens et al., 2012).  In 

light of recent observations that visual working memory is independent for the two visual 

hemifields (Buschman et al., 2011; Kornblith et al., 2016) and that changes in load have different 

effects on oscillatory dynamics of different frequencies (Kornblith et al., 2016), we aimed for a 
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further understanding of working memory load on network dynamics in the frontoparietal cortex. 

 

To that end, we re-examined LFP data from a change detection task in which working memory load 

was varied between one and three objects in each hemifield (Buschman et al, 2011; Kornblith et 

al.,2016).  We previously reported that load affected low (8-50 Hz) and high (50-100 Hz) power 

differently depending on time during the trial.  Notably, independence between the visual 

hemifields was apparent in high, but not low, frequencies.  Also, load effects on power were similar 

below and above the cognitive capacity. This cannot explain abrupt decrease in behavioral 

performance above capacity.  Further, earlier power and synchrony analyses did not describe the 

directionality of interactions between brain areas. 

 

Here, we aim to provide a mechanistic explanation of load effects by focusing on changes in the 

strength and directionality of neuronal coupling. We develop a large scale cortical network model 

comprising  the prefrontal cortex (PFC), frontal eye fields (FEF), and the lateral intraparietal area 

(LIP). This is  an extension of our earlier model (Pinotsis et al., 2014; Bastos et al., 2015a) based on 

Predictive Coding and uses Cross Spectral Density (CSD) responses to infer changes in neuronal 

coupling that underlie the changes in spectral power at different frequencies. Our model addresses 

how load-dependent dynamics effects directed functional connectivity. It also suggests abrupt 

changes in neuronal coupling above capacity. Finally, it shows that functional hierarchies in large 

cortical networks do not necessarily change when neuronal coupling changes.  

   

  

Results 

 

Our change detection task and behavioral results has been described in detail (Buschman et al., 

2011). Monkeys were presented with a sample array of 2 to 5 colored squares for 800 ms. This was 

followed by a delay period (800- to 1000-ms).  After that, a test array was presented. This differed 

from the sample array in that one of the squares had changed colour (target). Monkeys were trained 

to make a saccade to the target.  We analysed LFP data from the memory delay period. During this 

delay, there was no sensory stimulation or motor responses that might affect neuronal dynamics.  

We examined the relationship between dynamics and functional connectivity. 

 

In our earlier work (Buschman et al., 2011; Kornblith et al., 2016), we found separate, independent 
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capacities in the right vs left visual hemifields.  Early in the memory delay, lower frequency power 

decreased with both ipsilateral and contralateral load but high frequency power increased only 

with contralateral load.  By contrast, late in the memory delay, low frequency power continued to 

decrease with ipsilateral load but increased with contralateral load.  Thus, we analysed the effects of 

ipsilateral and contralateral load separately and asked if load changed the coupling in the PFC-FEF-

LIP network. 

 

Our analysis comprised three parts.  First, we found the coupling pattern in the PFC-FEF-LIP 

network during the memory delay in order to determine their basic functional connectivity.  

Second, we asked whether the strength of connections changed with changes in contralateral and 

ipsilateral load and between the early vs late memory delay.  Third, we examined how changes in 

load below vs above the animal’s behavioral capacity limit affected network connectivity.  

 

Functional hierarchy in the PFC-FEF-LIP network  

We first examined the functional hierarchy between the PFC, FEF, and LIP.  To find this hierarchy, we 

adapted our earlier canonical microcircuit (CMC) model (Pinotsis et al., 2014; Bastos et al., 2015a) 

to describe activity in the PFC-FEF-LIP network, see Figure 1.  
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Figure 1. The canonical microcircuit model (CMC). The model suggests a canonical cortical architecture for the primate 

cortex. There are four populations of neurons (spiny stellate cells, superficial and deep pyramidal cells and inhibitory 

interneurons). These are connected together with excitatory (red) and inhibitory (black) intrinsic connections (thin lines). 

This set of populations and connections is motivated by anatomical and theoretical considerations supporting a canonical 

cortical microcircuitry (Douglas and Martin, 2007; Bastos et al., 2012; Pinotsis et al., 2013).  Model parameters are chosen 

so that superficial and deep pyramidal cells oscillate at the gamma and alpha bands. Power spectra and LFPs produced by 

these cells are shown in the top right and bottom left plots respectively. Power spectra from each brain area are shown in 

the bottom right plot. These include spectral peaks in both gamma and alpha bands. 

 

 

The CMC model is based on the Predictive Coding Model (Bastos et al., 2012) and experimental 

(Buffalo et al., 2011) and theoretical observations (Bauer et al., 2014; Friston et al., 2015). It builds 

on experimental observations that superficial and deep pyramidal cells oscillate at the gamma and 

alpha band respectively (Bastos et al., 2015b; Michalareas et al., 2016) and that superficial and deep 
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pyramidal cells are the main origins of feedforward (FF) and feedback (FB) connections (Hilgetag et 

al., 1996; Vezoli et al., 2004).   These spectral asymmetries across cortical layers, (i.e. gamma power 

predominant in superficial and alpha power predominant in deep layers) follows from Predictive 

Coding where FB connections convey prediction signals at slower time scales (alpha) compared to 

bottom-up connections that convey prediction error signals at faster time scales (gamma).   

Following these observations, the parameters of the CMC model were chosen so that superficial and 

deep pyramidal cells oscillate at the gamma and alpha band, respectively (Figure 1).  

 

We extended the CMC model to construct a large scale model that could describe the activity in the 

PFC-FEF-LIP network (the “large scale CMC model” ;Figure 2). It is an extension of  the single area 

CMC model shown in Figure 1 and comprises FF and FB connections between PFC, FEF and LIP (red 

and black thick lines in Figure 2). These connections define an anatomical hierarchy (see also 

Experimental Procedures and Methods section).  Lower areas send signal to higher areas via FF 

connections and receive top down input from them via FB connections. FF (respectively FB) 

connections are assumed to be excitatory (respectively. inhibitory). FF (respectively FB) input from 

area A to area B results in an increase (respectively decrease) of activity in area B that is 

proportional to the activity in area A. The constant of proportionality is the FF (respectively FB) 

coupling strength. In Predictive Coding, FF and FB signals form the basis of how the brain 

understands the world: according to this theory, the brain’s goal is to predict sensory inputs. Brain 

areas interact recurrently so that predictions (FB signals) are compared to sensory inputs and 

updated according to how much they deviate from them (FF signals). The theory suggests that this 

iterative process is repeated until deviations are minimised. Thus, FF (sensory) input excites higher 

cortical areas. FB signals inhibit FF inputs and allow only FF signals that were not predicted to be 

passed forward. 

 

To sum so far, our large scale CMC model predicts oscillatory interactions and hierarchical relations 

in the PFC-FEF-LIP network based on FF and FB coupling between brain areas and local oscillatory 

dynamics within each area.  The anatomical hierarchy shown in Figure 2 follows recent studies that 

exploit differential laminar source and termination patterns and tract tracing experiments to obtain 

the hierarchical distribution of brain areas (Hilgetag et al., 2016; Markov et al., 2014; Medalla and 

Barbas, 2006). However, whether the functional hierarchy will follow the anatomical hierarchy is 

not clear. Functional hierarchies are not as robust as anatomical hierarchies and are often task-

dependent (Buschman and Miller, 2007; Bastos et al., 2015b). 
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To find the functional hierarchy in the PFC-FEF-LIP network, we fitted the Large Scale CMC model to 

CSD data from trials with the same memory load.  This data contained information about oscillatory 

interactions in different frequency bands (Kornblith et al., 2016).  For model fitting, we used 

Dynamic Causal Modeling (DCM; (David et al., 2006; Pinotsis and Friston, 2014; Moran et al., 2015; 

Pinotsis et al., 2016; Garrido et al., 2009; Kiebel et al., 2009). DCM is a standard approach for model 

fitting.  It has been widely used to determine the directionality of information flow and functional 

hierarchy in brain networks (Gluth et al., 2015; Hare et al., 2011; Hillebrandt et al., 2014; Li et al., 

2014; Smith et al., 2006). Specifically, DCM has been applied to the analysis of neuronal activity in 

frontal and parietal areas and during functions ranging from attention to memory, decision making 

and psychiatric diseases, similarly to the frontoparietal network and working memory task 

considered here, see (Mechelli et al., 2004; Garrido et al., 2009; Wang et al., 2010; Jacques et al., 

2011; Vossel et al., 2012; FitzGerald et al., 2015).   
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Figure 2. Large scale CMC model. The model describes the large scale structure of the primate cortex. Different brain 

areas are connected with extrinsic connections (thick lines). Intrinsic connections are as described in Figure 1. Extrinsic 

connections are as follows: Feedforward (FF) connections are assumed to originate in superficial layers and target input 

spiny stellate cells and deep pyramidal cells. Feedback (FB) connections are assumed to originate from deep layers and 

target superficial pyramidal cells and inhibitory interneurons. This pattern of extrinsic and intrinsic coupling has been 

shown to explain activity in parietal and frontal areas (Heinzle et al., 2007; Ma et al., 2012; Phillips et al., 2015; Ranlund et 

al., 2016; Dıéz et al., 2017). We have omitted extrinsic connections between PFC and LIP in the Figure and depicted one 

out of four possible connection patterns that corresponds to results from anatomical studies (Hilgetag et al., 2016). This is 

variant “FEF” of the large scale CMC model (see main text for details). 

 

To find the functional hierarchy, we used Bayesian model comparison (BMC, see  Friston et al., 

2007). BMC is a process comprising 1. model fitting and 2. computation of model evidence. Model 

evidence is a mathematical quantity that expresses how likely each a model is for a given dataset. 

Usually one considers a set of models (model space) and finds the model with highest evidence.  We 

first fitted different variants of the large scale CMC model (Figure 2) to our data. These model 

variants differed in the connections between PFC, FEF and LIP.  They are shown in Figure 3A and 

describe all possible functional hierarchies. They are called “ALL”, “FEF”, “LIP” and “PFC” 

respectively. Model “FEF” is the model where FEF is connected to PFC and LIP and there are no 

direct connections between PFC and LIP. This was the coupling of the model shown in Figure 2 and 

is what one would expect from anatomical studies (Hilgetag et al., 2016).  These alternatives are 

described by the other three models. These are similar to model ”FEF”, where FEF is replaced by 

PFC and LIP.  Model “ALL” assumed that all areas were connected together and information flows in 

FF and FB directions between all areas. When two areas are connected with both FF and FB 

connections, we say that they are connected with reciprocal (R) connections.  

 

To find the model evidence, BMC uses an approximation called Free Energy. Free Energy includes 

two terms: an accuracy term and a complexity term. For a model to have the highest evidence both 

terms should be maximized: the accuracy term is maximized when the model fits the data best (i.e. 

it has the smallest error). The complexity term is maximized when all model parameters are 

necessary for fitting the data. If a model has parameters that are not necessary, this term will not be 

maximum and therefore the evidence for that model will be lower.  The reason is that unnecessary 

parameters will have large posterior correlations between them. Each parameter does not explain 

the data in a unique way (similarly to coefficients of determination in classical statistics, posterior 

correlations quantify the explanatory power of model parameters in Bayesian statistics). These 

correlations will enter into the complexity term and make it smaller (for more details see Friston et 
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al., 2007).  Even if the model with the highest number of parameters fits the data best (has the 

maximum accuracy) this model will not have the highest evidence if some parameters are 

unnecessary (the complexity term will not be maximum). 

 

We performed BMC between variants of the large scale CMC model. This allowed us to find the 

model that best fit the data and whose parameters were necessary for fitting the data (i.e. the model 

that did not “over-fit” the data).   We fitted the four models of Figure 3A to four different datasets.  

The first two datasets included CSD data from trials with one contralateral object, from the early 

(500-900ms after sample onset) or late (1100-1500ms after sample onset) delay period. The last 

two datasets included CSD data from trials with one ipsilateral object (and the same delay periods). 

The winning model had the highest evidence among all models considered.  In general, the 

difference in model evidence between (winning) model A and its runner up B is useful because it 

immediately yields the probability that model A is more likely than model B (this is called 

exceedance probability of model A vs B) 1. It can be shown mathematically, that if this difference is 

bigger than 3, the exceedance probability is equal to 1, that is the winning model is 100% more 

likely than its runner up and any other model that was considered. A summary of the fitting process 

is included in Section “Dynamic Causal Modeling” of Supplementary Material. This process has also 

been described in detail in several earlier publications, see e.g. (Friston et al., 2012; Pinotsis et al., 

2014). 

 

We first fitted CSD data from trials with one contralateral object during the early delay period 

(different memory loads are presented below). The results of our analysis are shown in Figure 3. 

Model fits are shown in Figure 3D. Plots show alpha and gamma power model fits: in most cases 

model predictions (solid lines) fully overlapped with experimental data (dashed lines). This is not 

surprising as priors have been carefully chosen to accurately reproduce alpha and gamma activity 

(Bastos et al., 2012; Friston et al., 2015).  Small discrepancies between data and model fits occurred 

only when CSD power was weak (~ 0.05V2/Hz, top right panel in Figure 3D). Model fitting yielded 

posterior parameter estimates. Including these estimates in our model, we obtained simulated 

LFPs. These are shown with solid lines in Figure 3E. Observed LFPs are shown with dashed lines.  

 

Figure 3B shows the model evidence  for the four models tested (corresponding to possible 

                                                 
1 To obtain the exceedance probability from the difference in model evidence one has to apply a sigmoid function, 
see  (Kass and Raftery, 1995). 
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hierarchies shown in Figure 3A). The winning model was model “ALL”: all areas were connected 

with reciprocal connections (highlighted with a red frame in Figure 3B, shown in Figure 3C).  Model 

fits and simulated LFPs show a good fit to experimentally observed data (Figures 3D and 3E, 

respectively). 

 

Supplementary Figures 1-3 show the corresponding results for contralateral load and late delay and 

ipsilateral load and early and late delay respectively.  These are very similar to Figure 3. Although 

load effects on power were different between early and late delay and for contralateral and 

ipsilateral load (Kornblith et al., 2016), we found that the functional hierarchy did not change 

between the early and late delay periods and was also the same for contralateral and ipsilateral 

objects.  Model fits and LFPs are also shown in Supplementary Figures 1B-3B and 1C-3C and are 

very similar to Figures 3D and 3E. 

 

For a contralateral object, the difference in model evidence between model “ALL” and its runner up 

was 29F∆ =  for early delay and 111F∆ =  for late delay (Figure 3B and Supplementary Figure 1A). 

For ipsilateral object, the difference in model evidence of the winning model “ALL” with respect to 

the runner up was 60F∆ =  during early delay and 21F∆ =  during late delay (Supplementary 

Figures 2A and 3A). Because F∆ was bigger than three, model “ALL” had exceedance probability 

equal to 1 for all four datasets considered.  These results were robust to using trials with different 

memory loads (see Supplementary Figure 4).   In all cases, model “ALL” had the highest evidence. 

This means that the functional hierarchy in the PFC-FEF-LIP network did not change when changing 

memory load and for different parts of the delay period despite the different load effects on spectral 

power2. 

 

 

                                                 
2 A careful reader might question if finding model “ALL” (the model with most parameters) as the winning model 
might be the result of overfitting. In the main text, we laid out technical arguments about how the particular cost 
function used for model comparison (Free Energy) prevents this. We also noted that we obtained the same result 
using 12 different datasets (Figure 3B and Suppl. Figures 1A-3A and 4). On top of these arguments, we note that we 
found a different model as the winning model using the same datasets but changing the threshold of high pass 
filtering. During our preliminary investigations (not shown), we had found winning model “FEF” by using trials 
where ipsilateral load was varied and focusing on low frequency responses only (2-50Hz).   
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Figure 3. A. Possible functional hierarchies in the PFC-FEF-LIP network. B. Bayesian model comparison (BMC) results 

after fitting variants of the large scale CMC model to trials with one contralateral object during the early delay period. C.  

The model with highest evidence was model “ALL”. All brain areas occupy the same hierarchical level. D. Model fits to CSD 

data. E. Using posterior parameter estimates, we simulated LFPs. In all plots, dashed lines depict model predictions and 

solid lines depict observed data (CSD or LFPs). 
 

To sum so far, we found that all three brain areas in the PFC-FEF-LIP network had reciprocal 

functional connections. In other words, all three areas were on the same hierarchical level.  The 

pattern of FF and FB connections (functional hierarchy) did not change with memory load and for 

early vs late delay.  Next, we compared alternative variants of the winning model of the first part of 

our analysis (model “ALL”) where we allowed a different subset of FF and FB connections to change 

with load (and the rest of the connections were left unaffected).  This revealed changes in the 

strength of functional connections with changes in memory load3. 

                                                 
3 Note that in the analysis above we fitted the large scale CMC model to data from trials with the same memory 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 21, 2017. ; https://doi.org/10.1101/192336doi: bioRxiv preprint 

https://doi.org/10.1101/192336
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

 

 

Feedforward and feedback coupling strengths changed load and time 

Above, we saw that the model “ALL” best captured the functional hierarchy between PFC, FEF, and 

LIP (i.e., they were all had reciprocal, R, connections with each other).  Here, we test whether FF, FB, 

or R coupling in the early vs late memory delay was affected by working memory load.  We did so 

using BMC to compare variants of model “ALL”.  In these model variants, different FF, FB or R 

connections were allowed to change for different load conditions. These model variants are 

described by an acronym shown in the entries of Table 1. They corresponded to all possible 

connections that could change with increasing object load and included models where connections 

did not change. There were 64 such variants. The first 16 variants (first two lines of Table 1) are 

also depicted in Figure 4.  The same variant was fitted to CSD data for all contralateral and 

ipsilateral load conditions and from data from early or late in the memory delay. Coupling 

parameters were allowed to change progressively between the lowest and highest load conditions.  

Coupling changes between different load conditions were assumed to be linear increments 

(increases or decreases) to coupling corresponding to lowest load.  In other words, load changes 

were assumed to have modulatory effects on cortical coupling and are called trial specific effects in 

DCM. This is similar to trial specific effects in fMRI literature (Coderre and van Heuven, 2013; Den 

Ouden et al., 2008; Gordon et al., 2015). 

 

Table 1 

1:BBB 2: BBR 3: BBO 4: BBF 5:BRB 6: BRR 7: BRO 8: BRF 

9:BOB 10: BOR 11: BOO 12: BOF 13:BFB 14: BFR 15: BFO 16: BFF 

17:RBB 18: RBR 19: RBO 20: RBF 21:RRB 22: RRR 23: RRO 24: RRF 

25:ROB 26: ROR 27: ROO 28: ROF 29:RFB 30: RFR 31: RFO 32: RFF 

33:OBB 34: OBR 35: OBO 36: OBF 37:ORB 38: ORR 39: ORO 40: ORF 

41:OOB 42: OOR 43: OOO 44: OOF 45:OFB 46: OFR 47: OFO 48: OFF 

49:FBB 50: FBR 51: FBO 52: FBF 53:FRB 54: FRR 55: FRO 56: FRF 

57:FOB 58: FOR 59: FOO 60: FOF 61:FFB 62: FFR 63: FFO 64: FFF 

 

 
                                                                                                                                                             
load. Our goal was to test whether certain connections were present or not. In the analysis below, we fitted 
the model to data from trials with different memory load simultaneously. This allowed us to focus on changes 
of model parameters with increasing load. 
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Figure 4. Plots showing variants of model “ALL”. These correspond to the 16 variants included in first two lines of Table 1. 

Each variant had an acronym. The letters in the acronym correspond to connections that were allowed to change for 

different load conditions. These are also shown with dashed lines. Solid lines depict connections that were not allowed to 

change. 

 

 

Each variant had an acronym.  The first letter in this acronym corresponds to the connections that 

were allowed to change with load between LIP and FEF. The second letter corresponds to the 

connections that were allowed to change between FEF and PFC. The third letter corresponds to the 

connections that were allowed to change between PFC and LIP.  The letters F, B and R correspond to 

feedforward, feedback and reciprocal connections respectively. The letter O corresponds to 

connections that did not change. For example, in variant BBF, the feedback connections between LIP 

and FEF and FEF and PFC and the feedforward connections between LIP and PFC were allowed to 
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change with load. Connections that did not change with increasing memory load were depicted with 

solid lines. Connections that changed were depicted with dashed lines.  Using BMC, we identified 

the most likely model (that is, the set of connections affected by contralateral and ipsilateral load 

and in the early vs late delay) among the 64 alternatives (see Figure 5A for contralateral load and 

early delay and Supplementary Figures 5A-7A for contralateral load and late delay and ipsilateral 

load and early and late delay respectively).  These Figures include bar plots of model evidence. We 

call the space of all possible variants “model space”. This is shown in the horizontal axis and is the 

same as in Table 1.  Figures 5C and 5D and Supplementary Figures 5C-7C and 5D-7D show model 

fits to CSD data and simulated and observed LFPs respectively. These are similar to results in Figure 

3D and 3E and Supplementary Figures 1B-3B and 1C-3C above. 

 

 
 
Figure 5. Contralateral WM Load Effects on FF and FB coupling in the PFC-FEF-LIP network during early delay. Plots 
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follow the format of Figure 3. A. Bayesian model comparison (BMC) results after fitting the 64 variants of model “ALL” 

included in Table 1. B.  The model with highest evidence was model “RFR”. D. Model fits to CSD data. E. Simulated and 

observed LFPs. In all plots, dashed lines depict model predictions and solid lines depict observed data (CSD or LFPs). 
 
 

The winning model is shown in Figure 5B and Supplementary Figures 5B-7B: RFR and ROB were 

the winning models for contralateral load during early and late delay and BFB and RRR were the 

winning models for ipsilateral load during early and late delay. Model evidence of winning models is 

shown with red bars. The difference in model evidence between them and their runner ups was 

1F∆ = and 24F∆ =  for contralateral load during early and late delay and 0.7F∆ = and 4F∆ = for 

ipsilateral load respectively. The corresponding model exceedance probabilities were 74% and 

100% for variants RFR and ROB and 65% and 100% for variants BFB and RRR respectively.  

 

What these models showed was that changing contralateral load affected R coupling between LIP 

and FEF and FB coupling between PFC and LIP throughout the delay period (Figure 5B and 

Supplementary Figure 5B).  However, FF input to PFC from the other two brain areas was affected 

by contralateral load only during early delay (Figure 5B). Also, changing ipsilateral load affected FB 

coupling between LIP and the other two areas and FF coupling between FEF and PFC throughout 

the delay period (Supplementary Figures 6B and 7B).  During late delay, on the other hand, all 

connections in the network were affected by changing load: on top of the above connections, FF 

coupling between LIP and the other two areas and FB coupling between FEF and PFC changed with 

ipsilateral load (Supplementary Figure 7B). 

 

To sum this analysis, we identified different sets of connections that were affected by increasing 

memory contralateral and ipsilateral load during different parts of the delay period. Having 

established load-specific changes in connection strengths, we can now proceed to our last analysis.  

In this last set of analyses we examine in greater detail how coupling changed with changes in load 

below and above the animal’s working memory capacity.  

 

 

Increases and decreases in feedforward and feedback coupling strengths below and above capacity. 

Here, we explore the changes in coupling between areas as a result of changes in load.  To organize 

this discussion, we distinguish changes below (from load 1 to load 2) and above (from load 2 to load 

3) the animal’s behavioral capacity. There were as many coupling parameters in our model as thick 
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lines in Figure 2.  

 

The results below were obtained from the same model fits as in the previous section. We used 

model fits of the winning model only (winning models are shown in Figure 5B and Supplementary 

Figures 5B-7B). In the previous section, the winning model (and the other 63 alternatives of Table 

1) was fitted to CSD data for all load conditions simultaneously. Coupling strengths were allowed to 

change progressively between the lowest and highest contralateral and ipsilateral load. We also 

used CSD data obtained during early and late delay. The set of coupling strengths that changed with 

load determined the winning model in each case. Below, we discuss these strengths and their 

progressive changes, see Figure 6.  
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Figure 6. Changes in neuronal coupling strengths due to changes in (i) contralateral load during early delay; (ii) 

contralateral load during late delay; (iii) ipsilateral load during early delay; (iv) ipsilateral load during late delay. Coupling 

strengths corresponding to the lowest load are shown with blue bars. The cognitive capacity limit is shown with a vertical 

red dashed line. Strength changes below (resp. above) the capacity limit are shown with black (resp. red) lines. Bars 

showing strengths corresponding to the same load and connection have the same color and pattern.   

 

 

Coupling strengths corresponding to the lowest load (one contralateral or ipsilateral object) are 

shown with blue bars in all plots. These were rescaled so that they were equal to 100%. Colored 

bars next to blue bars show progressive changes in the same coupling strength as load increases. 

Strengths were normalized with respect to blue bars. Recall that FB connections were inhibitory 

while FF connections were excitatory (these are shown with black and red arrows connecting brain 

areas in Figure 3C).  In Figures 6(i) (resp. 6(ii)), we show changes in coupling strengths during the 

early (resp. late) delay period when contralateral load changes. In Figures 6(iii) (resp. 6(iv)), we 

show the corresponding changes when ipsilateral load changes.  The cognitive capacity limit is 

shown with a vertical red dashed line in all Figures. Strength changes below (resp. above) the 

capacity limit are shown with black (resp. red) lines connecting adjacent bars in all plots. Bars 

showing strengths corresponding to the same load and connection have the same color and pattern 

in Figure 6.  

 

We first focused on changes in coupling strength below the capacity limit. In general, we observed 

two sorts of changes when we increased load from 1 to 2 objects: below 25%, which for brevity, we 

will call weak and between 25% and 300% which we will call strong. These changes can be readily 

seen by focusing on the slope of black lines in Figures 6(i) and 6(ii): almost horizontal (resp. 

oblique) lines correspond to weak (resp. strong) changes. Changes in connections involving PFC 

followed a consistent spatiotemporal pattern regardless of whether load change was contralateral 

or ipsilateral: they were weak during early delay and strong during late delay signaling bigger PFC 

involvement closer to the decision time (i.e., during late delay). Conversely, changes in the other FF 

and FB connections (between LIP and FEF) followed the opposite pattern: they were strong during 

early delay and weak during late delay but for contralateral load only (for ipsilateral load they were 

strong throughout the delay period). 

 

Specifically, for contralateral load during early delay, we observed strong changes in the FF and FB 

connections between LIP and FEF but not PFC, compare black lines in Figures 6(i)a and 6(i)d with 
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black lines in Figures 6(i)b, 6(i)c and 6(i)e. Similarly, for ipsilateral load, compare black line in 

Figure 6(iii)b with black lines in Figures 6(iii)a and 6(iii)c. This also means that excitatory input to 

PFC did not increase due to higher load (black lines in Figures 6(i)b, 6(i)c and 6(iii)a). At the same 

time, FEF input from LIP decreased with increasing load (black line in Figure 6(i)a) and input from 

FEF to LIP increased (black lines in Figures 6(i)d and 6(iii)b).   

 

For contralateral load during late delay, the above pattern of connection changes was reversed: 

connections between LIP and FEF showed weak modulations with load (black lines in Figures 6(ii)a 

and 6(ii)b). At the same time, FB input from PFC to LIP showed a strong increase with increasing 

load (black line in Figure 6(ii)c). Similarly, for ipsilateral load FF and FB PFC connections also 

showed a strong increase with load (black lines in Figures 6(iv)b, 6(iv)e and 6(iv)f). However, in 

contrast to what we observed for contralateral load, connections between LIP and FEF continued to 

show strong modulations (as in the early delay period, see black lines in Figures 6(iv)c and 6(iv)d). 

 

Interestingly, above the cognitive capacity limit (when going from load two to load three), changes 

in connections in the PFC-FEF-LIP network were strong.  The only exception was the LIP-FEF 

connections during early delay for contralateral load and late delay for ipsilateral (red lines in 

Figures 6(i)d and 6(iv)c). We will see below that connections between LIP and FEF showed the 

opposite pattern of changes above capacity in comparison to their pattern below capacity.  Also, 

signals to and from PFC were affected by load during both early and late delay (below capacity they 

were affected by load only during late delay). Most importantly, FB signals from PFC and FEF were 

modulated differently for contralateral and ipsilateral load. 

 

During early delay, FF input to PFC from the other two brain areas was strongly reduced above the 

capacity limit, see red lines in Figures 6(i)b, 6(i)c and 6(iii)a. Similarly, FB input from PFC to LIP 

increased above capacity during early delay (red lines in Figures 6(i)e and 6(iii)c). This was also the 

case for contralateral load during late delay (red line in Figure 6(ii) c). However, for ipsilateral 

objects and late delay FB signals from PFC broke down: they showed a strong reduction (as opposed 

to increase in all other cases) when exceeding the capacity limit (red lines in Figures 6(iv)e and 

6(iv)f). This was accompanied by a strong reduction (break down) in FF input from LIP to PFC (red 

line in Figure 6(iv)b). FF input from FEF on the other hand showed an increase (red line in Figure 

6(iv)a). FF input from LIP to FEF also increased above capacity regardless of object hemifield and 

delay period (red lines in Figures 6(i)a, 6(ii)a and 6(iv)c). FB input from FEF reduced for early (red 
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lines in Figures 6(i)d, 6(iii)b) and increased for late delay above capacity for both contralateral and 

ipsilateral objects(red lines in Figures 6(ii)b, 6(iv)d). 

 

Above we described coupling changes with increasing load. To quantify how likely these changes 

were we used posterior probabilities (coupling estimates were found using DCM which is a 

Bayesian approach for model fitting). These are shown in Supplementary Figures 8 and 9. They are 

the probabilities of a significant non-zero change with respect to the coupling strength for the 

lowest load. Because all parameters were normalized to the lowest load condition, only relative 

strength increases and decreases are shown in these Figures (in matrix form). Columns correspond 

to the brain areas from which connections originated and rows to areas where they terminated. The 

number of these matrices is one less than the number of possible loads (there are no probabilities 

for the lowest load). The posterior probability of changes in coupling strengths for contralateral 

load ranged between 53-100% (resp. 62-100%) for early (resp. late) delay, see Supplementary 

Figure 8. The posterior probabilities for coupling parameters for ipsilateral load ranged between 

71-100% (resp. 54-100%) for early (resp. late) delay, see Supplementary Figure 9. 

 

 

Discussion 

 

We studied the effects of changing working memory load on neuronal dynamics during a change 

detection task. We analysed CSD data obtained using LFPs from frontal and parietal areas, namely 

PFC, FEF and LIP. Activity in this frontoparietal network has been found to consistently change with 

training (Goldman-Rakic, 1995; Li et al., 1999) and has been associated with cognitive capacity 

(Rottschy et al., 2012).  

 

We followed up on earlier work (Buschman et al., 2011; Kornblith et al., 2016), where we had found 

that neuronal activity in high, but not low, frequencies reflects independent processing of ipsilateral 

and contralateral objects and changes substantially between early and late delay period. 

Independent processing of objects in different hemifields has also been confirmed by (Matsushima 

and Tanaka, 2014) and is supported by early anatomical studies (Goldman-Rakic and Schwartz, 

1982). In (Kornblith et al., 2016), neuronal activity changes with load were captured as spectral 

power effects. However, these effects were similar below and above the cognitive capacity, which 

appears at odd with a reduction in behavioral performance observed when capacity is exceeded. 
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Further, earlier power and synchrony analyses did not describe the directionality of neuronal 

interactions. Here, we aimed at a mechanistic explanation of load effects by focusing on changes in 

the strength and directionality of neuronal coupling. We extended our earlier model based on 

Predictive Coding (CMC model; Pinotsis et al., 2014; Bastos et al., 2015a) and used it to analyze 

Cross Spectral Density data. The CMC model can predict oscillatory interactions and hierarchical 

relations in the PFC-FEF-LIP network based on FF and FB coupling between brain areas and local 

oscillatory dynamics within each area. It has been validated pharmacologically 

(Muthukumaraswamy et al., 2015), using data from single-gene mutation channelopathy (Gilbert et 

al., 2016) and aging studies (Cooray et al., 2014a; Moran et al., 2014).  The model has also explained 

the manipulation of sensory expectation and attention engaging frontoparietal networks in healthy 

subjects and patients  (Auksztulewicz and Friston, 2015; Cooray et al., 2014b; Dıéz et al., 2017; 

Phillips et al., 2015; Ranlund et al., 2016). A very similar model was recently used to explain context 

–dependent dynamics in hierarchical brain networks (Mejias et al., 2016). 

 

We first studied the basic functional hierarchy in the PFC-FEF-LIP network. We determined its form 

and asked whether this changed with memory load and time during the delay period. Anatomical 

connections provide the substrate for functional connections but functional hierarchies can be 

different than anatomical hierarchies. They can be task-dependent and even change during a task 

(Buschman and Miller, 2007; Bastos et al., 2015b) as a result of goal-directed behaviour (Miller, 

1999; Miller and Cohen, 2001) and of processing abstract information (Koechlin et al., 2003). Also, 

there are reciprocal anatomical connections between frontal areas are other frontal and parietal 

areas (Medalla and Barbas, 2006; Hilgetag et al., 2016). Some studies have placed PFC at the top and 

parietal areas at the bottom of functional hierarchies in visual perception tasks (Bastos et al., 

2015b; Michalareas et al., 2016). However, the functional hierarchy in the change detection task we 

studied here was unknown.  

 

To find the functional hierarchy, we compared variants of our model corresponding to different 

hierarchical relations between PFC,FEF and LIP using Bayesian model comparison (BMC, Friston et 

al., 2007). We found that PFC,FEF and LIP had reciprocal functional connections (they were at the 

same hierarchical level). This result was the same regardless of memory load and time during the 

delay period. However, load effects on power were different of low for contralateral and ipsilateral 

objects and early vs. late delay (Kornblith et al., 2016). Therefore, it might well be that although the 

functional hierarchy remained the same across trials with different load and throughout the delay 
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period, the amount of signal transmitted through FF and FB connections, that is, the strength of FF 

and FB connections, changed with load and time.  

 

Thus, we then identified different subsets of FF and FB connections whose strength changed with 

load during different parts of the delay period. We used BMC to compare different models 

corresponding to all possible combinations of connections that might be affected by load. After 

finding the most likely model, we focused on the corresponding changes in coupling strengths. 

These explain the weak load effects on power (1-2% power change per added object) found in 

(Kornblith et al., 2016) without changing the functional hierarchy.  

 

We found that below the capacity limit connections involving PFC were affected later than 

connections involving other frontal and parietal areas for contralateral and ipsilateral load. During 

early delay, connections between LIP and FEF were strongly affected by load while connections 

involving PFC did not change much. FF input from LIP decreased with increasing load while FB 

input to LIP increased.  This could be related to the fact that receptive fields observed in LIP are 

unilateral and have a narrow spatial tuning (Platt and Glimcher, 1998). During late delay, 

connections involving PFC were strongly modulated for contralateral and ipsilateral load but 

connections between LIP and FEF were not affected for contralateral load. However, when 

ipsilateral load changed, changes in connections between LIP and FEF remained strong during late 

delay (similarly to early delay). This could be related to the widespread and more dense patterns of 

ipsilateral as opposed to contralateral connections to frontal areas (Barbas et al., 2005). Based on 

the above results, our model predicts that, below the capacity limit, PFC engages strongly in 

network activity only close to the decision time (above capacity, PFC engages throughout the delay 

period, see below). Further, as load increased, we observed increases in both FF input to PFC and FB 

signals from PFC to other frontal and parietal areas.  These reflected increased FF drive due to 

higher load and increasing FB stabilizing signals from PFC to counteract increased in cognitive 

demands (load) due to increased FF drive in earlier areas. They are similar to earlier modeling 

results (Macoveanu et al., 2006; Edin et al., 2009; Wei et al., 2012).  

 

Above the cognitive capacity limit, connections that we had previously identified to be affected by 

load changes showed strong modulations. Connections involving PFC were affected by load 

throughout the delay period. Importantly, FB connections were modulated differently by 

contralateral and ipsilateral load. FB stabilizing signals from PFC increased above capacity for 
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contralateral load but were significantly reduced (broke down) for ipsilateral load. This could 

explain reduced behavioral performance when the total number of objects in the same (but not the 

opposite) hemifield as the target object exceeded the capacity limit found by (Buschman et al., 

2011). This difference in coupling changes while changing contralateral vs ipsilateral load  supports 

earlier findings about independent capacities of the two hemifields (Buffalo et al., 2011; 

Matsushima and Tanaka, 2014). Stabilizing signals from FEF to LIP also broke down above capacity 

for ipsilateral, but not contralateral load. This  supports an important role of FB from frontal areas 

in successful performance. Interestingly, FB signals from FEF broke down earlier than PFC FB 

signals (these broke down closer to decision time). This might be related to the fact that loss of 

information about object identity in PFC occurs later than other frontal areas, see (Buschman et al., 

2011).  

 

To sum up, we found that neuronal coupling changes as a result of changing the number of objects 

maintained in working memory. These changes are dynamic and evolve as the time for behavioral 

response (decision) approaches. We also found that FB coupling breaks down when the number of 

ipsilateral objects is above the cognitive capacity limit and that this occurs first in parietal and then 

frontal areas. These results shed new light in coupling changes that might underlie reduced 

cognitive capacity and behavioral performance. They also suggest network-specific pathological  

changes in neuronal coupling that might occur in various neurological and psychiatric diseases and 

disorders (Luck and Vogel, 2013).  
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