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Abstract 

Chromosome mechanical properties determine DNA folding and dynamics, and underlie all 

major nuclear functions. Here we combine modeling and real-time motion tracking 

experiments to infer the physical parameters describing chromatin fibers. In vitro, motion of 

nucleosome arrays can be accurately modeled by assuming a Kuhn length of 35-55 nm. In 

vivo, the amplitude of chromosome fluctuations is drastically reduced, and depends on 

transcription. Transcription activation increases chromatin dynamics only if it involves gene 

relocalization, while global transcriptional inhibition augments the fluctuations, yet without 

relocalization. Chromatin fiber motion is accounted for by a model of equilibrium fluctuations 

of a polymer chain, in which random contacts along the chromosome contour induce an 

excess of internal friction. Simulations that reproduce chromosome conformation capture and 

imaging data corroborate this hypothesis. This model unravels the transient nature of 

chromosome contacts, characterized by a life time of ~2 seconds and a free energy of 

formation of ~1 kBT.   
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Physics of chromosome folding drives and responds to all genomic transactions. In 

cycling budding yeast cells, large-scale organization of chromosomes in a Rabl-like 

conformation has been established by imaging and molecular biology approaches (1–4). Yet, 

the structure of the chromatin fiber at smaller length scales remains more controversial (5). 

For instance, the recurrent detection of irregular 10-nm fibers by cryo-TEM of thin nuclear 

sections is questioning the relevance of solenoid or helicoid models of nucleosome arrays (6–

8). This problem has not been clarified by probing the motion of chromosomes in vivo, 

although dynamic measurements offer a unique opportunity to infer structural properties of 

genome organization (9). Indeed, we and others have shown that chromosome dynamics in 

yeast is characterized by sub-diffusive behavior detected by a non-linear temporal variation of 

the mean square displacement (MSD) of chromosome loci (10–16): 

     𝑀𝑆𝐷(𝑡) = Γ𝑡𝛼     (1) 

with , , and t the anomaly exponent, amplitude, and time interval, respectively. A sub-

diffusive response was detected over a broad temporal time scale covering four time decades 

with an anomaly exponent in the range 0.4-0.6. This response appeared to be consistent with 

the Rouse model, a generic polymer model that describes chromosomes as a series of beads 

connected by elastic springs. The length of the springs is related to the mechanical properties 

of chromatin fiber, namely equal to twice its persistence length (hereafter denoted as the Kuhn 

length b). The link between the flexibility and the amplitude of the MSD (17) suggested that 

chromosomes are highly flexible in yeast with b of 1-5 nm (10). Inconsistent with structural 

and mechanical models of chromatin (18), this estimate however raised concerns on whether 

chromosome spatial fluctuations were at equilibrium (12, 19–21). Consequently we wished to 

clarify if active events associated to e.g. ATP hydrolysis or other effects associated to e.g. 

chromosome conformation contributed to chromosome fluctuations. We addressed this 

question by setting up an in vitro system to validate the consistency of the Rouse model for 

chromatin fluctuations in bulk, and then by interrogating the interplay between chromosome 

dynamics and transcription activity in vivo. Our results indicate that chromosome fluctuations 

are at equilibrium, and they are dominated by internal friction associated to the formation of 

random and transient contacts along the chromosome contour. 

 

Measuring DNA flexibility from its fluctuations in vitro 

We first designed a biomimetic system to recapitulate chromosome loci fluctuations in a 

test tube. Deproteinized DNA molecules of several Mbp containing randomly-distributed 

short fluorescent tracks of ~50 kbp were obtained by extraction of chromosome fragments 

from human osteosarcoma cells treated during DNA replication with dUTP-Cy3 (22). These 

molecules were diluted in a “crowded” solution containing 2% (m:v) of poly-vinylpyrrolidone 

(PVP, 360 kDa) in order to screen out hydrodynamic interactions and to set experimental 

conditions consistent with the Rouse model. We recorded the motion of DNA loci using wide 

field fluorescence microscopy, and extracted two statistical functions from the trajectories, 

namely the MSD in 2D and the step distribution function (SDF) for a given time step (left and 

middle panel in Fig. 1A, respectively (see Methods)). We compared this data to the 

predictions of the Rouse model using the expressions for a “phantom polymer chain”, i.e. 

without effects of volume exclusion between monomers (23): 

𝑀𝑆𝐷(𝑡) = √
16𝑏2𝑘𝐵𝑇

3𝜋𝜁
𝑡0.5     (2) 

with 𝜁 and kBT the monomer friction coefficient and the Boltzmann thermal energy, 

respectively. Note that the anomaly exponent increases to =0.54 in the presence of volume 

exclusion (23). 
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The MSD of DNA fluorescent tracks was as expected consistent with the Rouse model 

using anomalous diffusion parameters (,) of (0.24 µm
2
/s

0.5
, 0.5) (gray line in the left panel 

of Fig. 1A). DNA Kuhn length is b~100 nm (24), and each Kuhn monomer adopts a rod-like 

shape characterized by a translational viscous drag coefficient 𝜁 of 3𝜋𝜂𝑏/ln⁡(𝑏/𝑑)⁡ with  the 

solvent viscosity and d the diameter of DNA. Given the solvent viscosity of 6 mPa.s and 

setting the DNA diameter to 3 nm, we deduce from equation (2) that =0.2 µm
2
/s

0.5
, in good 

agreement with our experiment. Further the same sets of parameters allowed us to fit the SDF 

with the Rouse model for three different time intervals, 0.12, 0.23 and 0.35 s (solid lines in 

Fig. 1B). The precision of our estimate of the Kuhn length could finally be assessed based on 

the sum of the squared residuals between the fit and the MSD curve (right panel of Fig. 1A), 

which reached a marked minimum for b=110 nm.  

 

Figure 1 : Dynamics of DNA and nucleosome arrays in vitro. (A) The gray dataset in the left panel corresponds to the 

temporal evolution of the MSD for fluorescent DNA loci dispersed in a crowded solution. The average response (red squares) 

is fitted with the Rouse model (gray line, Eq. (2)), but not with the Zimm model (green line, see Methods). The graph in the 

middle panel represents three SDF and the corresponding fits with the Rouse model for a Kuhn length of 100 nm. The graph 

at the right shows the residuals of the fit with the Rouse model as a function of the Kuhn length. (B) The gray dataset 

corresponds to the temporal evolution of the MSD for fluorescent tracks in reconstituted nucleosome arrays dispersed in a 

crowded solution. The average response (red squares) is fitted with the Rouse model (gray line, Eq. (2)). (C) Models of an 

array of 30 nucleosomes with a linker length of 22 bp. The left picture corresponds to nucleosomes in the close negative state 

with two-turns of wrapping, the middle panel contains open nucleosomes with extended entry-exit DNAs, and the image in 

the right consists of a random distribution of the two former states. 

Notably, we carried out the same experiment using a solution of low molecular weight 

PVP (40 kDa) at the same concentration of 2% (w:v). In this regime, polymer chains are not 

overlapping (25), so hydrodynamic interactions are no longer screened out and the Zimm 

model for polymer fluctuations becomes relevant. In agreement with fluorescence correlation 

spectroscopy studies performed with fully-labeled molecules of 50 kbp (26, 27), we indeed 

obtained a good fit of our data with the Zimm model (Supplementary Fig. S1). Therefore, 

DNA mechanical parameters can be inferred from real-time microscopy studies.  

  

Measuring chromatin flexibility from its fluctuations in vitro 
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We then assembled nucleosome arrays on the same chromosome fragments with 

fluorescent tracks of 50 kbp using human core histones and yeast chromatin assembly factors 

with a histones:DNA molar ratio of ~2, following the recommendations of the supplier (see 

Methods). Chromatin fibers were then diluted in a “crowded” buffer containing 3% PVP 360 

kDa at a viscosity of 15 mPa.s with low salt concentration. The fluctuations of single loci 

were recorded in order to extract the MSD and the SDF (left and middle panels in Fig. 1B), 

which could be fitted with the Rouse model using anomalous diffusion parameters (,) of 

(0.030 +/-0.005 µm
2
/s

0.5
, 0.5). Note that we carried out the experiment with the same sample 

2 days after its preparation, and detected enhanced fluctuations characterized by a Kuhn 

length of 100 nm, as for DNA. This result indicated that diluted nucleosome arrays were 

destabilized at room temperature. 

We then wished to clarify the molecular parameters governing chromatin fluctuations by 

performing molecular simulations. Chromatin fibers have been mostly modeled with “closed” 

nucleosomes as seen in the crystal structure, i.e. with 2-turn wrapping of DNA around the 

histone core (left panel of Fig. 1C). Molecular biology assays (28) and single molecule 

techniques (29) have also shown that nucleosomes can adopt an “open” conformation, in 

which the most distal histone–DNA binding sites are broken. We thus set out to investigate 

the configurational space of chromatin fibers more thoroughly by performing Monte-Carlo 

simulations with arrays of “closed” or “open” nucleosomes as well as with both nucleosome 

states in equilibrium (Fig. 1C). We also tuned the linker length in the range 19 to 22 bp, i.e. 

for nucleosome repeat lengths of ~165-167 bp. We extracted ~2000 configurations, and 

extracted the Kuhn length as well as the nucleosome density based on the end-to-end fiber 

length (Table 1, Supplementary Fig. S2). We concluded that the Kuhn length spanned 35 to 

80 nm, and that it tended to decrease for increasing linker lengths. 

We then focused on the monomer friction coefficient 𝜁, equivalently the hydrodynamic 

diameter of the Kuhn segment using Stokes law (Table 1, see Methods), for a set of 

nucleosome array configurations extracted from the structural simulations. 𝜁 was determined 

using stochastic rotation dynamics simulations, which are based on an explicit description of 

solvent particles flowing around nucleosome arrays (30). Using Equation (2), we eventually 

computed the MSD amplitude for every nucleosome array configuration (right column in 

Table 1). This parameter appeared to be consistent with our data for several array 

configurations for a linker size of 21 and 22 bp. This data corresponded to a Kuhn length in 

the range of 35-55 nm and a nucleosome density of 2-3 nucleosomes/10 nm, in qualitative 

agreement with the results of chromosome conformation capture (3C) studies performed on 

yeast chromosomes (31) or EM studies (8). Consequently, our results show that the Rouse 

model is also relevant for analyzing the motion of reconstituted chromatin fibers. 
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Nucleosome 

configuration 

Linker size 

(bp) 

Kuhn length 

(nm) 

Nucleosome 

per 10 nm 

Hydrodynamic 

diameter (nm) 

MSD amplitude 

(µm
2
/s

-0.5
) 

Closed negative 19 64 +/- 2 2.6 139 +/- 9  0.038 +/- 0.001 

Open 19 78 +/- 2 1.3 51 +/- 5 0.077 +/- 0.004 

Mixture 19 82 +/- 2 1.7 79 +/- 7 0.065 +/- 0.003 

Closed negative 20 63 +/- 2 2.7 150 +/- 9 0.036 +/- 0.001 

Open 20 59 +/- 2 1.5 47 +/- 4 0.061 +/- 0.003 

Mixture 20 61 +/- 2 2.0 78 +/- 6 0.049 +/- 0.002 

Closed negative 21 55 +/- 2 2.9 155 +/- 8 0.031 +/- 0.001 

Open 21 44 +/- 1 1.8 46 +/- 4 0.046 +/- 0.002 

Mixture 21 44 +/- 1 2.5 88 +/- 6 0.033 +/- 0.001 

Closed negative 22 52 +/- 2 3.1 172 +/- 8 0.028 +/- 0.001 

Open 22 35 +/- 1 1.9 41 +/- 3 0.039 +/- 0.002 

Mixture 22 37 +/- 1 2.5 74 +/- 5 0.030 +/- 0.001 

Table 1: Mechanical, structural and hydrodynamic modeling of nucleosome arrays by Monte Carlo simulations using 

different nucleosome conformations and repeat lengths.  

Transcription activation and chromosome fluctuations 

In order to reconcile our in vitro results and the previously reported short Kuhn length of 

less than 5 nm of chromosomes in living yeast (Supplementary Fig. S3), we asked if 

transcription activity influenced chromatin dynamics. We assayed the motion and analyzed 

the localization of genes after transcription activation using single particle tracking and locus 

localization probability density maps (Genemaps, (32)), respectively. We monitored 

chromatin dynamics close to genes involved in the galactose metabolic pathway (the GAL1-

GAL7-GAL10 gene cluster hereafter denoted GAL1, and GAL2) or at a control locus distant 

from regulated genes (680 kb from left telomere of chromosome XII). The behavior of each 

chromosome locus was probed in transcriptionally active or inactive states using galactose or 

glucose as carbon sources, respectively. We first focused on GAL1, a gene locus reported to 

relocalize to the periphery when activated by galactose. GAL1 relocalization was readily 

observed in the genemap shown in Figure 2A. We also confirmed the augmentation of  by 

20% in galactose vs. glucose for loci with a central localization (red vs. blue datasets in Fig. 

2A). Notably the dynamics of peripheral loci in galactose was intermediate between the 

response in glucose and galactose for central localization (Supplementary Fig. S3). Because 

the entire chromosome bearing GAL1 genes is reorganized upon transcription activation (33), 

increased dynamics can be the consequence of local transcription activity as well as global 

genome reorganization.  

We next explored the behavior of the GAL2 locus, which is strongly transcribed in 

galactose. The genomic position of GAL2 is on chromosome XII between the diametrically 

opposed centromere (CEN) and ribosomal DNA (rDNA; Fig. 2B). This chromosome arm 

undergoes strong mechanical constraints (34) that likely prevent the peripheral recruitment of 

this locus. Indeed, GAL2 essentially remained positioned in the nuclear center independent of 

its transcriptional state (Fig. 2B). Furthermore the spatial fluctuations in glucose or galactose 

of GAL2 were similar, and these two responses matched that of the control locus (Fig. 2C). 

This result therefore suggested that global genome reorganization, constrained by global 

chromosome conformation, was accounting for the increase in spatial fluctuations of GAL1 

rather than transcriptional activation alone. To confirm this effect, we engineered a mutant in 

which the GAL1 gene cluster was swapped form its native position near the centromere of 

chromosome II to an ectopic position on chromosome XV (SUF5 locus) with minimal 

chromosomal constraints (34). In this new location (Fig. 2D), we observed massive 
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transcriptionally-induced relocalization as the center of the gene map shifted radially by ~1 

µm. The amplitude of the fluctuations increased by 40%, i.e. twice more than in its native 

environment. Notably, such a large augmentation in dynamics has been detected for the 

PHO5 locus on chromosome II (35), but whether or not PHO5 activation is associated to 

relocalization has not been documented. Altogether we conclude that the onset in dynamics 

after transcription activation is mainly dictated by chromosome large-scale reorganization 

likely associated to active processes involving nuclear pore complex association (11, 36) 

through cytoskeleton forces (16), as well as by mechanical constraints stemming from the 

Rabl-like architecture. 

  
Figure 2: Transcription activation and chromatin dynamics. For the GAL1, GAL2, control, and swaped GAL1 genes 

(A,B,C,D, respectively), we report the genomic position on the left, the MSD in glucose and in galactose (cyan and red 

datasets in the middle panels), and genemaps in glucose and galactose (upper and lower images in the right panels). N 

represents the number of nuclei used to generate the probability density map. Yellow circles and red ellipsoids depict the 

‘median’ nuclear envelope and nucleolus, respectively. 
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Transcription arrest and chromosome fluctuations 

In order to focus on the interplay between transcription and chromatin dynamics 

independently of relocalization, we then explored how transcription arrest modulates 

chromosome fluctuations. We performed a set of experiments in which transcription was 

arrested globally using the RNA polymerase II temperature-sensitive (TS) mutant rpb1-1. 

Upon setting the temperature to 37°C, mRNA synthesis is shut down in less than 5 minutes in 

rpb1-1 (37). Experiments were thus carried out between 8 and 15 minutes after temperature 

shift. Genemap analysis for wild type (WT) or TS strains at 25 and 37°C did not show large 

scale chromosome reorganization in this time window both for the GAL1 locus and the 

control locus on chromosome XII (lower panels Fig. 3A-B). Notably, high resolution 

nucleosome position mapping indicated moderate changes in chromatin organization after 20 

minutes at 37° in the TS mutant, but none in WT cells (38).  

We then recorded the trajectory of chromosome loci at 25°C and 37°C using glucose as 

carbon source. Temperature actuation induced a marginal increase in dynamics characterized 

by an augmentation of  of 13+/-1% and 5+/-1% for WT chromosome II and XII, 

respectively (left panels of Fig. 3A-B). Conversely chromosome fluctuations were enhanced 

in rbp1-1, as shown by the increase of  by 52+/-5% and 37+/-4% for chromosome II and 

XII, respectively (right panels of Fig. 3A-B). We also tested whether shutdown of polymerase 

2 activity reduced the viscosity of the nucleoplasm through e.g. the drop in RNA transcript 

concentration. After half-nucleus photobleaching of the probe TetR-GFP, we monitored 

fluorescence redistribution kinetics in WT and TS cells at 25°C or 37°C (supplementary Fig. 

S4). Similar kinetics detected in these four conditions imply that the variation of Tet-GFP 

diffusion coefficient, associated to transcription arrest, which is proportional to the 

nucleoplasmic viscosity (39), was marginal. Therefore, the onset in chromatin dynamics after 

transcription shut-down suggests that transcription arrest per se modulates the internal 

properties of chromatin. 
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Figure 3: Transcription arrest and chromatin dynamics. (A) The response of the GAL1 locus on chromosome II at the in 

WT or rbp1-1 mutant cells is reported in the right and left panels, respectively. The MSD curves are shown at 25°C and 37°C 

using green and black datasets, respectively, and the upper and lower half of the genemaps correspond to the gene 

localization at 25°C and 37°C, respectively. (B) The same study as in (A) is conducted on the control locus on chromosome 

XII. N represents the number of nuclei used to generate the probability density map. Yellow circles and red ellipsoids depict 

the ‘median’ nuclear envelope and nucleolus, respectively. (C) In the left panel, the black dataset represents the contact 

frequency vs. the genomic distance as obtained from a simulation with association and dissociation constants kb and ku of 0.2 

and 0.5 s-1, and the red one shows experimental 3C data (40). The blue dataset corresponds to simulations in absence of 

contacts. In the right, the two datasets present the MSD vs. time deduced from the simulation with or without contacts (black 

and blue datasets, respectively). The red solid or dashed lines correspond to trend lines with anomalous diffusion parameters 

(,) of (0.03 µm2/s0.5, 0.5) or (0.01 µm2/s0.5, 0.5), as in the in vitro assay or in living yeast, respectively. 
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Transient chromatin contacts play an essential role in chromosome dynamics 

Our results indicate that the low value of the Kuhn length derived from the analysis of 

chromosome fluctuations in the absence of large-scale reorganization cannot be attributed to 

active processes, but rather corresponds to an equilibrium. We propose that a Rouse model 

with internal friction (RIF), previously used to describe dynamics of human mitotic 

chromosomes (41) and proteins (42), adequately fits with reduced fluctuations of 

chromosomes. Internal friction is associated to an onset in the effective drag coefficient due to 

intramolecular conformational barriers (43). Intrachromosomal contacts associated to 

chromatin loops, such as those documented by 3C techniques (44) or by cryo-EM 

technologies (8, 45), could represent such internal barriers. The RIF model was tested in silico 

using our kinetic Monte Carlo simulations of coarse-grained homopolymer chains with 

internal association (46). Yeast chromosomes were modeled as polymers of 1000 segments of 

1 kbp each. The chain was confined in a box so as to adjust the density of monomers to 3.10
-3

 

bp/nm
3
, equivalently ~15% of the volume (47). The size of the Kuhn segment was set to 42 

nm, in agreement with our structural models (Table 1) as well as DNA in situ hybridization 

measurements of the mean physical vs. genomic distance ((48), Fig.S5A). Note that the 

corresponding nucleosome density of ~1.5 nucleosome/10 nm was in qualitative agreement 

with our models (Table 1). Finally we defined the probabilities kb and ku for monomer-

monomer association and dissociation, respectively. 

As a first step, we ran the simulations with no interaction in order to fit chromatin 

fluctuations in vitro and to define the simulation time step of ~3.0 10
-4

 s (blue dataset in the 

right panel of Fig. 3C). Then we focused on the kinetic parameters of the loop formation 

reaction using the average contact probability vs. genomic distance plot obtained by 3C (40) 

and the MSD data in living cells as inputs (left and right panels of Fig. 3C, respectively). The 

fitting of 3C data was first carried out by adjusting the kb/ku ratio of ~0.40 +/- 0.03 (left panel 

in Fig.3C). We could then fit the amplitude of chromosome fluctuations of Γ~0.01 μm
2
/s

1/2
 by 

setting the dissociation constant ku to ~0.5 +/- 0.15 s
-1

 (right panel in Fig.3C). Notably, the 

prediction of the model for contact probability vs. genomic distance was inconsistent if the 

contact formation reaction was neglected (blue dataset in the left panel of Fig. 3C). 

Consequently the RIF model allowed us to probe the dynamics of chromatin contacts in vivo, 

which appeared to be transient, as characterized by a lifetime of only ~2 s. Furthermore we 

could determine the Gibbs free energy of the contact formation reaction of ~1 kBT given the 

ratio ku/kb. This value, which is far less than the energy associated to ATP hydrolysis of ~20 

kBT, but comparable to nucleosome-nucleosome interaction energy of 0.3 kBT (49), is 

compatible with a scenario where populations of contacts of various lengths are formed 

dynamically, as speculated in 3C studies (44).  

 

Conclusion 

Our study, which combines imaging experiments and different modeling approaches, 

shows that the RIF model provides a consistent framework to probe chromosome structural 

properties in vivo and in vitro. In living yeast, static and dynamic data are dominated by 

transient chromatin contacts, as described by a reaction scheme with two kinetic parameters, 

which are not accessible to 3C techniques. These kinetic parameters are relevant to 

equilibrium fluctuations, but they do not account for large-scale chromosome reorganization 

events for instance associated to transcription activation that probably involve active 

relocalization through e.g. cytoskeleton forces (16). Nevertheless, the RIF model is likely to 

provide insights into chromosome structure-function properties. In particular, the onset in 

chromosome fluctuations after transcription arrest may be attributed to (i) an augmentation of 

the Kuhn length of the chromatin fiber, as recently argued for repair mechanisms (50), or (ii) 
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a nearly 20-fold decrease in the contact lifetime (Supplementary Fig. S5). We note that the 

modulation of chromatin contact formation reaction associated to gene regulation may be a 

key molecular factor driving the formation of chromatin domains via phase separation (51). 

By corroborating this hypothesis with molecular investigation of chromosome folding with 

3C and/or physical distance measurements, the mechanisms to regulate chromosome 

architecture and their consequences on the amplitude of spatial fluctuations can be clarified. 

 

 

Materials and Methods 

DNA and chromatin preparation for in vitro experiments 

U2OS cells synchronized in S phase were scraped from glass surfaces in order to force 

the stable incorporation of dUTP-Cy3 into their genomes (see (22) for detailed protocol). 

They were then placed in culture medium, placed in agarose laden the next day, and treated 

with 5% SDS and 100 μg/ml proteinase-K during two days to extract chromosome fragments. 

Nucleosome arrays were assembled with a reconstitution kit (Active Motif) using ~10 ng of 

purified chromosome fragments mixed with 1 µg of unlabeled -DNA.  

DNA or chromatin was subsequently diluted 1000-fold in a low salt buffer (1X TBE, 

pH=8.3) supplemented with 360 or 40 kDa PVP (Sigma-Aldrich). This polymer solution was 

chosen due to its purely viscoelastic response (52). For DNA tracking experiments, the 

dynamic viscosity was 6 or 2.3 mPas with 2% of 360 or 40 kDa PVP, respectively. The 

overlapping concentration of these two polymers was 0.7% and 6%, respectively (25). The 

PVP concentration was set to 3.2% and the viscosity to 15 mPa.s for chromatin loci tracking 

experiments. Note that these tracking experiments were carried out with a small proportion of 

100 nm polystyrene carboxylated fluorescent beads (Invitrogen) in order to measure the 

viscosity. 

 

Plasmids 
We generated pCNOD91 using PCR amplification of SUF5 upstream fragment and 

GAL7 5’-fragment from genomic DNA using the primer sets 1655/1652 and 1651/1658 

(Table S2) followed by cloning into HindIII/EcoRI digest pUC19 vector with the In-Fusion 

kit (TAKARA, Japan). The plasmid pCNOD92 was obtained by PCR amplification of GAL1 

3’ fragment and SUF5 downstream fragment from genomic DNA using the primer sets 

1660/1657 and 1654/1653 (Table S2) followed by cloning into HindIII/EcoRI digest pUC19 

vector using In-Fusion kit (TAKARA, Japan). 

 

Yeast strains & culture 

Genotypes of the strains used in this study are described in supplementary Table S1. 

Strains GAL1 (yCNOD212-1a) and GAL2 (yCNOD213-1a) were constructed as previously 

described (14) using primers 1642/1643 and 1646/1647, respectively (Table S2). Strain 

ChrXII (JEZ14-1a) and GAL1 (YGC242) was previously described in (14,33). Strain 

suf5Δ::GAL1 (yCNOD218-1a) is a derivative of yCNOD165-1a (34), in which of SUF5 

tDNA was deleted and the locus labeled with TET operators. In yCNOD165-1a, the entire 

GAL7-GAL10-GAL1 locus was deleted by insertion of a KAN-MX cassette amplified by 

PCR using primers 1671/1672 and plasmid p29802 to generate strain yCNOD217-1a. Then 
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the GAL locus was inserted at SUF5 locus by simultaneous transformation with 4 overlapping 

PCR fragments that reconstitute the entire GAL locus. The 4 PCR fragments were amplified 

using primers 1665/1668 and 1667/1670 from yeast genomic DNA, and using primers 

1659/1666 and 1669/1656 and plasmid pCNOD91 and pCNOD92 as matrix, respectively 

(Table S2 and S3). Haploid strains ChrII-TS (CMK8-1a) and CMK8-5b were obtained by 

mating of YGC242 with D439-5b carrying rpb1-1 and sporulation of diploids. Strain ChrXII-

Ts (CMK9-4d) was generated by mating of CMK8-5b with JEZ14-1a and sporulation. 

For microscopy experiments, cells were grown overnight at 30°C or 25°C for WT or TS 

strains, respectively, in YP media containing 2% carbon source. They were then diluted at 10
6
 

cells/mL in glucose, galactose, or raffinose containing media, and harvested when OD600 

reached 4×10
6
 cells/mL. They were finally rinsed twice with the corresponding media. Cells 

were spread on slides coated with corresponding patch containing 2% agar and 2% of 

corresponding carbon source. Cover slides were sealed with "VaLaP" (1/3 vaseline, 1/3 

lanoline, 1/3 paraffin). Microscopy was performed during the first 10 to 20 min after the 

encapsulation of the cells in the chamber. Microscopy experiments were performed in 

triplicates on independent days and they were pooled together to compile the MSD in each 

experimental condition. 

 

Microscopy and image processing 

Genemaps were acquired using an Andor Revolution Nipkow-disk confocal system 

installed on an Olympus IX-81, featuring a CSU22 confocal spinning disk unit (Yokogawa) 

and an EMCCD camera (DU 888, Andor). The system was controlled with Andor Revolution 

IQ2 software (Andor). Images were acquired with an Olympus 100 x objective (Plan APO, 

1.4 NA, oil immersion). The single laser lines used for excitation were diode-pumped solid-

state lasers (DPSSL), exciting GFP fluorescence at 488 nm (50 mW, Coherent) and mCherry 

fluorescence at 561 nm (50 mW, CoboltJive); a Semrock bi-bandpass emission filter (Em01-

R488/568-15) was used to collect green and red fluorescence. Pixel size was 65 nm. For 3D 

analysis, Z-stacks of 41 images with a 250-nm Z-step were used. An exposure time of 200 ms 

was applied. For the extraction of genemaps, confocal stacks were processed with the Matlab 

script Nucloc, available at http://www.nucloc.org/ (MathWorks). 

Chromosome loci tracking was performed with a Nikon TI-E/B inverted microscope 

equipped with an EM-CCD IxonULTRA DU897 (Andor) camera and a 488nm laser 

illumination (Sapphire 488, Coherent). The system was controlled by NIS Element software 

and equipped with SPT-PALM rapid acquisition unit drive by a dedicated plugging. 

Microscope Images were acquired with a Nikon CFI Plan fluor X100 SH (Iris), Oil, (NA=0.5-

1.3) objective and a Semrock filter set (Ex: 482BP35, DM: 506, Em: 536BP40). Pixel size 

was 106.7 nm. A heating system (PE94, Linkam) was used to monitor the temperature at 

37°C, whenever necessary. Acquisitions were performed with inter-frame intervals of 50 to 

200 ms for a total frame number of 300-1000 depending on the strains. The trajectories were 

subsequently extracted using the TrackMate Plugin (53). Note that we only considered “long” 

trajectories with more than ~100 consecutive tracked positions. Coordinates were then 

processed in Matlab to extract the MSD. We focused on time intervals lower than 30% of the 

total duration of the trajectory to keep a sufficiently high level of averaging (54). For each 

condition, we averaged the MSD over 30-40 cells. 

FRAP experiments were carried out on a LSM 710 NLO-Meta confocal laser-scanning 

microscope controlled by Zen software, equipped with a 40x/1.2 water immersion objective 

(Zeiss, Germany). The pixel size was 208 nm, and the typical size of ROI was 14x18 pixel
2
. 
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The 488 nm laser was set to 1% during acquisitions, and we checked that photobleaching was 

marginal with this dose of illumination in the time course of our experiments (not shown). 

The inter-frame time was ~50 ms. Typical experiments consisted of 5 scans before bleaching, 

followed by 10 scans with the 488 nm laser set to 100% for bleaching half of the nucleus 

(Supplementary Fig. S3). We then recorded the signal during 40 scans with the laser power 

restored to 1%. After background intensity subtraction, we monitored fluorescence intensity 

in the bleached region (white rectangle in Figure S3A) over time normalized to the intensity 

in the same region before FRAP, as shown in Figure S3B with the datasets collected in 16 

cells pooled together. In order to focus on the relaxation dynamics, we normalized the data in 

Figure S3B to the steady concentration level after 1.4 s (Supplementary Fig. S3C). 

The temporal evolution of the MSD for the Rouse model is given in equation (2). The 

Zimm model, which takes into account long-range hydrodynamic interactions, predicts (55): 

𝑀𝑆𝐷(𝜏) =
2Γ1/3

𝜋2
𝑁𝑏2 ∗ (

𝜏

𝜏𝑍
)
2/3

      (3) 

with the Zimm time scale 𝜏𝑍 =
𝜂𝑠𝑅𝐹

3

√3𝜋⁡𝑘𝐵𝑇
. Γ1/3 = 2.679. For a Gaussian chain with RF

2
~Nb

2
, 

equation 3 only depends on the solvent viscosity. The 2D step distribution function, i.e. in the 

focal plane of the objective (54), can be computed from the MSD according to: 

𝑃(𝑟. 𝜏) = ⁡
2𝑟

𝑀𝑆𝐷(𝜏)
𝑒−𝑟

2/𝑀𝑆𝐷(𝜏)       (4) 

 

Monte Carlo Simulations of nucleosome arrays 

The chromatin fiber was modelled as a string of coarse-grained DNA linkers and 

nucleosome core particles. The nucleosome consisted of 14 segments of ~10.5 bp, 

equivalently 3.57 nm. In order to model each DNA linker, we defined the elementary segment 

to the closest distance to 10.5 bp with the condition that the number of segment in the linker is 

an integer. For example, in a 20 bp linker, we modeled it as two segments of 20 bp. The 

articulation between DNA segments in the linkers is modelled as a ball-and-socket joint with 

an energy penalty corresponding to the bending and twisting restoring torques of the DNA 

double helix. The bending rigidity constant gb between two connected segments of length l is 

calculated according to ℒ (
𝑔𝑏

𝑘𝐵𝑇
) = (𝑏 − 𝑙) (𝑏 + 𝑙⁄ ) with b=100 nm being the Kuhn length of 

naked DNA and ℒ the Langevin function. 

The bending energy is E𝑏 = 𝑔𝑏(1 − 𝑐𝑜𝑠𝜃) where  is the bending angle of two 

consecutive segments. The twisting energy is given in the harmonic approximation by 

E𝑡 = 𝑔𝑡𝜙
2/2 where  is the twisting angle of two consecutive segments. The twisting rigidity 

constant 𝑔𝑡 between two connected segments of length l is given by 𝑔𝑡 =
𝑙
𝑙𝑡
⁄  with lt=95 nm 

the twist persistence length of naked DNA. 

We simulated a single chromatin fiber of 30 nucleosomes with linker lengths varying 

between 18 and 22 bp and no confining volume. At each step of the simulation, we chose one 

segment at random and rotated all the next segments around a random axis with a random 

angle (Pivot move). The resulting conformation was accepted following the Metropolis 

criterion. For each simulation run, we extracted 10
5
 independent conformations and measured 

their end-to-end distances. Note that we limited our computation to the central 10 

nucleosomes of the fiber in order to minimize end-effects. 
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In order to compute the chromatin fiber axis, we followed the method of ref. (56). The 

center of mass of each nucleosome of the fiber was defined by the coordinate rk. We then 

defined a smoothed curve based on the zig-zag conformation of the fiber using a sliding 

window average according to: 

𝑐(𝑠) =
1

𝑤
∑ 𝑟𝑘
𝑠+𝑤−1
𝑘=𝑠    (5) 

Using a window of w=2 nucleosomes, we finally computed the square end-to-end 

distance with 𝑅(|𝑖 − 𝑗|)2 = (𝑐(𝑖) − 𝑐(𝑗))2. In our study, we considered i=10 and j=19. At 

this stage, our simulations enabled us to overview the conformational space of chromatin 

segments containing 10 nucleosomes. 

We finally exploited the approach derived in ref. (57), which shows that the second and 

fourth order moments of a stiff polymer end-to-end distance distribution is determined by the 

Kuhn and contour length of the chain. We first validated this method by simulating one DNA 

Kuhn segment of 300 bp with different levels of coarse graining. This study showed that b 

and L were measured with precisions of 3% and 1.5%, respectively (Table S4). We next 

checked that the end-to-end distance of a fiber with 10 nucleosomes behaved as a Worm-

Like-Chain (not shown), and derived numerically the values of the Kuhn length and contour 

length (see examples in Supplementary Fig. S2).  

 

Stochastic Rotation Dynamics 

A hydrodynamic model of a Kuhn segment was designed as an ensemble of compact 

spherical nucleosomes embedded in a low Reynolds number fluid. Each nucleosome was 

modelled as a sphere of 5 nm in diameter. The positions of the nucleosomes were extracted 

from 3 simulated fibers with different nucleosome densities of 1.1, 1.9, and 2.9 nucleosomes / 

10 nm (Table S5).  

In order to evaluate the friction coefficient  (or equivalently the hydrodynamic radius) of 

a Kuhn segment, Stochastic Rotation Dynamics simulations were used. This method is an 

efficient alternative to Navier-Stokes solvers on a lattice. It includes the explicit description of 

solvent particles, but the only interactions between solvent particles are local collisions that 

enable momentum transfer inside the liquid. In practice, the simulation space is divided in 

smaller “collision cells” where solvent particles exchange momentum. The size of these 

collision cells introduces a level of resolution of hydrodynamics, which should be adapted to 

the studied problem (58). The parameters of the simulation can be chosen in order to be in the 

desired hydrodynamic regime (here, Re << 1). 

The calculation of the hydrodynamic friction was thus performed for 3 finite size systems 

with arrays of 10 nucleosomes, as well as for a system with an isolated nucleosome. Periodic 

boundary conditions were used, and the effect of periodicity on friction was evaluated through 

a linear correction (59). 3 alternative routes were used to determine the friction: (i) under a 

pressure driven flow, the friction was defined as the ratio of the force generated on the fixed 

nucleosomes and the average solvent velocity far from the particles (59); (ii) we used the 

Kubo formula at equilibrium (60); and (iii) we computed the diffusion coefficient of the 

particles at equilibrium (61). 

The hydrodynamic Stokes friction S is deduced from the total friction  using 1/S = 1/ 

+ 1/E, where E is the short time Enskog contribution to friction, which can be computed 

analytically (62). This Enskog contribution is artificially high in simulations and needs to be 

removed. The size of the “collision cells” that define the resolution of hydrodynamic 
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interactions has been varied from a/8 to a/2, with a the nucleosome radius. The results were 

then extrapolated to infinitely precise resolution. For a resolution of a/4 and higher, the 3 

methods give extremely close results. 

The ratio of the friction coefficient 10 of an ensemble of 10 nucleosomes and the friction 

coefficient 1 of a unique nucleosome are reported in table S5. Note that for an additive model 

of friction, 10/1 should be equal to 10. In order to obtain the value of the friction coefficient 

in every experimental situation, we interpolated our data as a function of the nucleosome 

density.  

 

Monte Carlo Simulations of Rouse chains with contact probabilities 

We set up a coarse-grained polymer model for chromosome fluctuations. We used a self‐
avoiding polymer with local moves on a FCC lattice, as described in (46). Two neighboring 

monomers have a probability to form a pair with an association constant kb and this complex 

can be disassembled with a probability ku. We allowed a monomer to be involved in one loop 

at maximum. Relaxation of this hypothesis leads to quantitatively similar results (Fig.S5 C, 

D). A monomer could move only if it remains connected (i.e. nearest neighbor on the lattice) 

to its bound partner. Starting from a random configuration, we let the system reach 

equilibrium before measuring the average contact probabilities, the mean squared distances, 

and the mean squared displacement by averaging over 1000 trajectories. Due to the weak 

locus-dependency of MSD data, all the fitted values for kb and ku should be viewed as orders 

of magnitude (typically +/- 2-fold).  
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List of Supplementary Materials  

Supplementary Figure S1: Zimm model for DNA fluctuations. The green dataset 

represents the average MSD over time for DNA loci dispersed in a weakly crowded solution 

composed of 2% PVP 40 kDa. The solution’s viscosity is 2.3 mPa.s. The green and black 

solid lines show the predictions of the Zimm and Rouse models, respectively (see analytical 

expression in supplementary material). 

 

Supplementary Figure S2: Determination of chromatin fiber structural properties based 

on the analysis of end-to-end distances extracted from the simulation. The left panel 

shows the optimization for a fiber with negative nucleosomes and a linker length of 19 bp, 

and the right panel corresponds to open nucleosomes and a linker length of 22 bp. 

 

Supplementary Figure S3: Analysis of chromosome fluctuations with the Rouse model. 
(A) The plot represents the temporal evolution of the MSD at 25°C for a locus on 

Chromosome XII using glucose or raffinose as carbon source (cyan or red dataset. 

respectively). The corresponding solid lines represent the fit of the data with the Rouse model, 

as indicated in the inset. (B) The SDF represented with data points is also reproduced with the 

Rouse model for three different time lags, as shown by the three solid lines fitted with one 

single adjustable parameter, namely the Kuhn length. (C) The plot of the residuals between 

the MSD data and the Rouse model indicates a Kuhn length of 1-2 nm. (D) The plot of the 

MSD represents the motion of GAL1 chromosome loci in galactose for a central vs. 

peripheral localization.  

 

Supplementary Figure S4: Relaxation dynamics of TetR-GFP in WT or TS strains 

monitored by half-nucleus FRAP. (A) The fluorescence time lapse shows the TetR-GFP 

signal in the nucleus of yeast cell in the course of FRAP experiments. The pixel size is 209 

nm. The white rectangle corresponds to the photobleached region. (B) Fluorescence intensity 

in the boxed region is plotted over time for 16 cells in each experimental condition. Data is 

normalized to the pre-bleach intensity. (C) The datasets shown in (B) are normalized to 1 after 

1.4 s to compare the redistribution kinetics directly. 

 

Figure S5: Determination of model parameters for the kinetic Monte-Carlo simulations. 

(A) The experimental evolution of the mean squared distance vs. genomic distance (red dots, 
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data from (48)) was used to adjust the length scale in our simulations (black squares). A 

typical polymer configuration is shown in the inset. (B) The three datasets present the MSD 

vs. time deduced from the simulation with (black: kb=0.2 s
-1

 ku=0.5 s
-1

; green: kb=4 s
-1

 ku=10 s
-

1
) or without (blue) contacts. The red solid, dashed or dotted lines correspond to trend lines 

with anomalous diffusion parameters (Γ,) of (0.03 μm
2
/s

0.5
, 0.5), (0.015 μm

2
/s

0.5
, 0.5) or 

(0.01 μm
2
/s

0.5
, 0.5), as in the in vitro assay or in living yeast, respectively. Note that assuming 

the kb/ku ratio to be constant after transcription arrest, the increase in MSD fluctuations 

(Γ~0.015 μm
2
/s

0.5
) was associated to an increase of ku by ~20-fold (green dataset Fig.S5B). 

(C,D) As the left and right panels of Fig. 3C but when we relaxed the hypothesis of one loop 

per monomer at maximum (kb/ku=0.11, ku=0.6 s
-1

). 

 

Supplementary Table S1: Genotypes of strains used in this study. 

 

Supplementary Table S2: Oligonucleotide used in this study. 

 

Supplementary Table S3: Plasmids used in this study. 

 

Supplementary Table S4: Fitting method validation for different of DNA coarse-grained 

models. 

 

Supplementary Table S5: SRD modeling of chromatin fiber friction coefficient. The factor 

10/1 represents the ratio of the friction factor of the nucleosome array divided by a single 

nucleosome. 
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Figure S1: Zimm model for DNA fluctuations. The green dataset represents the average MSD over time for DNA loci 

dispersed in a weakly crowded solution composed of 2% PVP 40 kDa. The solution’s viscosity is 2.3 mPa.s. The green and 

black solid lines show the predictions of the Zimm and Rouse models, respectively (see analytical expression in 

supplementary material). 
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Figure S2: Determination of chromatin fiber structural properties based on the analysis of end-to-end distances 

extracted from the simulation. The left panel shows the optimization for a fiber with negative nucleosomes and a linker 

length of 19 bp, and the right panel corresponds to open nucleosomes and a linker length of 22 bp. 
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Figure S3: Analysis of chromosome fluctuations with the Rouse model. (A) The plot represents the temporal evolution of 

the MSD at 25°C for a locus on Chromosome XII using glucose or raffinose as carbon source (cyan or red dataset. 

respectively). The corresponding solid lines represent the fit of the data with the Rouse model, as indicated in the inset. (B) 

The SDF represented with data points is also reproduced with the Rouse model for three different time lags, as shown by the 

three solid lines fitted with one single adjustable parameter, namely the Kuhn length. (C) The plot of the residuals between 

the MSD data and the Rouse model indicates a Kuhn length of 1-2 nm. (D) The plot of the MSD represents the motion of 

GAL1 chromosome loci in galactose for a central vs. peripheral localization. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 24, 2017. ; https://doi.org/10.1101/192765doi: bioRxiv preprint 

https://doi.org/10.1101/192765
http://creativecommons.org/licenses/by/4.0/


 

Figure S4: Relaxation dynamics of TetR-GFP in WT or TS strains monitored by half-nucleus FRAP. (A) The 

fluorescence time lapse shows the TetR-GFP signal in the nucleus of yeast cell in the course of FRAP experiments. The pixel 

size is 209 nm. The white rectangle corresponds to the photobleached region. (B) Fluorescence intensity in the boxed region 

is plotted over time for 16 cells in each experimental condition. Data is normalized to the pre-bleach intensity. (C) The 

datasets shown in (B) are normalized to 1 after 1.4 s to compare the redistribution kinetics directly. 
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Figure S5: Determination of model parameters for the kinetic Monte-Carlo simulations. (A) The experimental 

evolution of the mean squared distance vs. genomic distance (red dots, data from (66)) was used to adjust the length scale in 

our simulations (black squares). A typical polymer configuration is shown in the inset. (B) The three datasets present the 

MSD vs. time deduced from the simulation with (black: kb=0.2s-1  ku=0.5s-1; green: kb=4s-1  ku=10s-1) or without (blue) 

contacts. The red solid, dashed or dotted lines correspond to trend lines with anomalous diffusion parameters (,) of (0.03 

µm2/s0.5, 0.5), (0.015 µm2/s0.5, 0.5) or (0.01 µm2/s0.5, 0.5), as in the in vitro assay or in living yeast, respectively. Note that 

assuming the kb/ku ratio to be constant after transcription arrest, the increase in MSD fluctuations (Γ~0.015 μm2/s1/2) was 

associated to an increase of ku by ~20-fold (green dataset Fig.S5B).  (C,D) As the left and right panels of Fig.3C but when we 

relaxed the hypothesis of one loop per monomer at maximum (kb/ ku=0.11, ku=0.6s-1). 
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