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ABSTRACT 

Gene expression models greatly accelerate the engineering of synthetic metabolic pathways 

and genetic circuits by predicting sequence-function relationships and reducing trial-and-error 

experimentation. However, developing models with more accurate predictions is a significant 

challenge, even though they are essential to engineering complex genetic systems. Here we 

present a model test system that combines advanced statistics, machine learning, and a 

database of 9862 characterized genetic systems to automatically quantify model accuracies, 

accept or reject mechanistic hypotheses, and identify areas for model improvement. We also 

introduce Model Capacity, a new information theoretic metric that enables correct model 

comparisons across datasets. We demonstrate the model test system by comparing six models 

of translation initiation rate, evaluating 100 mechanistic hypotheses, and uncovering new 

sequence determinants that control protein expression levels. We applied these results to 

develop a biophysical model of translation initiation rate with significant improvements in 

accuracy. Automated model test systems will dramatically accelerate the development of gene 

expression models, and thereby transition synthetic biology into a mature engineering discipline. 
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INTRODUCTION 

It has been a grand challenge to transition synthetic biology into a mature engineering 

discipline, where genetic systems (e.g. biosensors1,2, genetic circuits3,4, and metabolic 

pathways5-7) are reliably designed, built, and tested to reprogram cellular behavior with desired 

outcomes. Quantitative models play a central role in synthetic biology’s design-build-test cycle 

by predicting the function of a candidate genetic system, before it’s constructed, and therefore 

reduce trial-and-error experimentation. Gene expression models have been developed to 

predict the sequence-function relationships for several gene regulatory parts2,8-11, enabling the 

automated design of genetic systems with desired protein expression levels. Gene expression 

predictions have also been combined with system-level models of genetic circuits and metabolic 

pathways to predict how changes in system architecture, component expression levels, and 

host genome control organismal sensing, decision-making and the biosynthesis of desired 

chemicals4,7,12-15. Overall, more accurate gene expression models are becoming essential to 

correctly build genetic systems with many interacting components.  

In mature engineering disciplines, automated test systems are routinely used to verify 

that models, design algorithms, and software systems generate predictions and outcomes within 

specified performance requirements16. Model test systems are run whenever an existing model 

is modified or when new models are proposed to ensure consistent improvements in accuracy 

across the widest possible range of inputs and to verify identical predictions across different 

software implementations. Model test systems also accelerate the discovery of new interactions 

by identifying the factors that contribute to model error. Within the life sciences, the CASP17, 

DREAM18, and IMPROVER19 contests and competitions have served a somewhat analogous 

purpose, where researchers are challenged to apply computational modeling to solve complex 

problems, for example, predicting protein structure from sequence, identifying disease genetic 

traits, and reverse-engineering gene regulatory networks. A key theme of these contests is that 
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truly novel mechanisms are far more discoverable once state-of-the-art models are challenged 

to predict the outcome of a large and diverse experimental dataset.  

Here, we present the first automated test system for gene expression models and apply 

it on a compiled database of 9862 characterized genetic systems with highly diverse DNA 

sequences and measured functions in diverse host organisms. Beyond statistical analysis, we 

use information theory to critically assess the amount of information added by a model’s 

predictions, automated model testing to accept or reject a large set of mechanistic hypotheses, 

and machine learning to identify new sequence determinants and mechanisms. We 

demonstrate these capabilities on six sequence-to-function models of bacterial translation 

initiation20-25, providing the first systematic test of their accuracies, and explaining the 

mechanistic origins of the models’ error. Ultimately, we identified several mechanisms missing 

from the state-of-the-art model, which led to the development of a novel model of bacterial 

translation initiation with significant improvements in accuracy. Overall, we show that the model 

test system accelerates the systematic development of improved gene expression models.  
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RESULTS 

 

Figure 1 | The inputs and outputs of the model test system. The database contains 

characterized genetic systems and relevant metadata, including their genetic part sequences, 

host organism specifications, experimental conditions, and publication source in machine- and 

human-readable formats. The model test system systematically evaluates the predictions of 

proposed models and returns each model’s accuracy statistics, error distributions, and 

information theory metrics. These calculations are then automatically utilized to evaluate 

hypotheses, categorize sequences, and identify sources of model error.  

 

An automated model test system for gene expression models 

We first compiled a database of 9862 characterized genetic systems, collected from 15 

publications2,21,23-35, whereby 7 unique heterologous reporter proteins (mRFP1, super folder 

GFP, CFP, YFP, LacZ, Luciferase, and NanoLuc) were expressed using engineered promoters 

and ribosome binding sites in 6 different bacterial hosts (E. coli, B. subtilis 168, C. glutamicum, 

S. typhimurium LT2, B. thetaiotaomicron, and P. fluorescens). The genetic systems’ reporter 

expression levels were individually characterized using flow cytometry or spectrophotometry, or 

using FlowSeq, a technique that uses binned cell sorting, bar-coding, and next-generation 

sequencing to measure the transcription and translation rates of a library of genetic systems29. 

For FlowSeq measurements, we applied automatic filters to remove measurements with 
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insufficient or skewed read counts (Methods). We then grouped together genetic systems first 

by their characterization method and second by their commonalities (same promoter, same 

reporter protein, and same host) to create two high-quality databases: 1014 individually 

characterized genetic systems (1014IC) with 22 sub-groups and 8848 FlowSeq characterized 

genetic systems (8848FS) from a single experiment (Supplementary Table 1).  

We then developed an automated model test system that reads each genetic system 

database and uses its sequence information to predict the genetic systems’ protein expression 

levels, using one of many selectable drop-in quantitative gene expression models (Figure 1). 

These gene expression models were developed with the expectation of a linear relationship 

between the predicted and measured expression levels, though the relationship’s proportionality 

constant will vary by sub-group, for example, due to the utilization of different reporter proteins 

in different host organisms. We therefore developed an approach to automatically identify the 

correct proportionality constant for each sub-group, utilizing median absolute deviation (MAD) 

criteria to reject outliers and five common statistical metrics (Table 1) to quantify each model’s 

overall accuracy and precision (Methods). Motivated by our observations below, we then 

augmented the model test system to perform a more advanced information theoretic analysis 

that additionally accounts for the diversity of the genetic systems’ sequences and the precision 

of the experimental measurement techniques. By calculating both commonly used and newly 

proposed metrics for model accuracy, the model test system enables researchers to view each 

metric with the necessary context to make appropriate comparisons. 
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Table 1 | The model test system accuracy and precision metrics for seven models of bacterial 

translation initiation rate, evaluated on the 1014IC and 8848FS datasets. The range for R2 and 

the normalized Kullback-Leibler divergence (DKL) is (0,1). The range for AUROC is (0.5,1). The 

root mean square error (RMSE) is always positive. The model’s one-sided error cumulative 

distribution function is provided at selected thresholds. NP is the number of genetic systems 

where the model is not capable of calculating a prediction.  

1014 Individually characterized (1014IC) 
% within X-fold 

error  
 

Model R2 RMSE DKL AUROC MC 
(bits) 2 5 10 NP 

RBS Calculator v1.0 0.51 1.75 0.41 0.85 3707 35 66 79 66 

RBS Calculator v1.1 0.66 1.51 0.46 0.89 5911 44 77 88 23 

RBS Calculator v2.0 0.71 1.39 0.48 0.93 7313 50 81 90 23 

RBS Calculator v2.1 0.74 1.31 0.49 0.93 7857 49 82 91 0 

UTR Designer 0.50 1.77 0.43 0.85 4490 38 69 80 66 

RBS Designer 0.42 1.90 0.35 0.85 2385 33 57 69 101 

EMOPEC 0.31 2.14 0.40 0.76 3053 31 64 77 1 

8848 FlowSeq characterized (8848FS) % within X-fold 
error 

 

Model R2 RMSE DKL AUROC MC 
(bits) 2 5 10 NP 

RBS Calculator v1.0 0.25 1.03 0.21 0.80 1851 39 74 88 18 

RBS Calculator v1.1 0.26 1.03 0.22 0.80 1822 40 75 88 0 

RBS Calculator v2.0 0.26 1.02 0.22 0.78 1421 36 71 86 0 

RBS Calculator v2.1 0.28 1.01 0.22 0.78 1982 40 78 92 0 

UTR Designer 0.23 1.04 0.21 0.80 2082 42 79 91 19 

RBS Designer 0.23 1.05 0.27 0.73 511 23 52 70 0 

EMOPEC 0.09 1.14 0.21 0.64 2782 47 86 95 1 
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Figure 2 | Systematic assessment of six sequence-to-function models of bacterial translation 

initiation rate evaluated on the (a) 1014IC and (b) 8848FS datasets. Test metrics are listed in 

Table 1. 

 

A systematic comparison of translation initiation rate models 

Several known ribosome-mRNA interactions work together to control an mRNA’s 

translation initiation rate, including preliminary binding of the 30S ribosomal subunit to upstream 

standby sites in the mRNA (interaction #1)24,36, unfolding of inhibitory mRNA structures 

(interaction #2)37, hybridization between the ribosome’s 16S rRNA and the mRNA at the Shine-

Dalgarno sequence (interaction #3)38, hybridization between the tRNAfMet and start codon 

(interaction #4)39, and entropic stretching or compression of the ribosome caused by non-

optimal distances between the Shine-Dalgarno and start codon (interaction #5)40. However, 

there is considerable debate over the importance of these interactions, the best way to calculate 

their strengths, and whether there are additional interactions that control translation rate. Thus, 

several models of translation initiation have been proposed with both conceptual and 

implementation differences. 
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Using the automated model test system, we evaluated the accuracies and sources of 

error for six different models of bacterial translation initiation rate20-25 on both the 1014IC and the 

8848FS datasets. The RBS Designer22 uses dynamical systems theory to model ribosome 

binding, calculating the ribosome binding site’s exposure probability (interaction #2) and the free 

energy of mRNA-rRNA hybridization (interaction #3) to predict an mRNA’s translation initiation 

rate. The RBS Calculator (v1.0) uses statistical thermodynamics and a free energy model to 

calculate the ribosome’s total binding free energy to an mRNA sequence, and predict the 

mRNA’s translation initiation rate, accounting for interactions #1 to #5. The RBS Calculator 

v1.123 uses a modified free energy model implementation that includes the unfolding of 

inhibitory mRNA structures within the protein’s coding sequence (interaction #2) and a new 

approach for calculating hybridization free energies that becomes important when mRNAs have 

non-canonical Shine-Dalgarno sequences (interaction #3). The RBS Calculator v2.024 

incorporates new biophysical rules governing the ribosome’s interactions at mRNA standby 

sites, determined through characterization of rationally designed mRNAs (interaction #1). The 

UTR Designer20 is a modified version of the RBS Calculator v1.0 that introduces a direct and 

indirect pathway to unfolding inhibitory mRNA structures (interaction #2). EMOPEC25 is an 

empirical model that uses a look-up sequence table of measured hybridization free energies 

(interaction #3) and the model of non-optimal spacing from RBS Calculator v1.0 (interaction #5) 

to predict an mRNA’s translation initiation rate. Detailed model descriptions can be found in 

Supplementary Discussion 1. 

The model test system revealed clear differences in model accuracies and highlighted 

the utility of applying multiple test metrics to evaluate model performance (Table 1). When 

evaluated on the 1014IC dataset, the successive modifications to the RBS Calculator model 

resulted in accuracy improvements that were reflected across all test metrics. To compare, the 

test metrics largely agreed that the UTR Designer, RBS Designer, and EMOPEC models have 

lower accuracies (Figure 2a). Overall, the RBS Calculator v2.0 model could predict 50% of the 
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1014IC mRNAs’ translation initiation rates within 2-fold and 90% within 10-fold with extremely 

high classification accuracy, an AUROC of 0.93 (Supplementary Figure 1). Notably, the RBS 

Calculator v2.0 had variable accuracies on data sub-groups utilizing different reporters, 

measurement techniques, and host organisms, motivating the further development of 

automated testing strategies to learn why these discrepancies exist (Supplementary Figure 2). 

However, when evaluated on the 8848FS dataset, there was an overall disagreement 

among the test metrics over the accuracies of each model (Figure 2b, Table 1). The Pearson 

R2, DKL, and AUROC metrics show that all six models had similarly sharp reductions in accuracy 

with only slight differences between them, compared to lower RMSEs indicative of higher 

accuracy. Notably, these metrics also had a poor correspondence to the models’ error 

distributions. In particular, while EMOPEC’s test metrics showed the lowest model accuracy, its 

model error distribution had the highest percentage of well-predicted sequences, clearly 

contradicted by a comparative graphical analysis (Figure 2b). Overall, these results show that 

once experimental datasets grow beyond a certain size, current approaches to quantifying a 

model’s accuracy strongly depend on the chosen test metric, creating a subjective choice in 

what should be an objective process. All dataset sequences, measurements, and model 

calculations are listed in Supplementary Data 1 and Supplementary Data 2. 
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Figure 3 | Information theory to quantify dataset uncertainty and a model’s capacity (MC) to 

predict outcomes. (a) A schematic showing the flow of information from a list of genetic systems 

(the source) to the model test system (the comparator), using digital systems to predict 

outcomes (the decoder) and the physical systems to measure outcomes (the observer). N is the 

number of distinguishable measurement outcomes. MC is the reduction in uncertainty from 

information source to model error comparator. The sequence logos41, functional diversities, 

error distributions, and model capacities for (b) the 1014IC and (c) the 8848FS dataset.  
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Information theory to determine model capacity 

Using smaller scale examples, we first investigated how the same model evaluated on 

different data sub-groups had substantially different apparent accuracies. For example, the 

EMOPEC model could accurately predict the gene expression levels of a 10-sequence E. coli-

LacZ sub-group (R2 = 0.85) where mutation of only 3 nucleotide positions resulted in a 2400-fold 

change in translation rate. Similarly, the RBS Calculator v2.0 model was extremely accurate 

when evaluated on a 14-sequence P. fluorescens-mRFP1 sub-group (R2 = 0.90) where 

mutation of 4 nucleotide positions resulted in a 10900-fold change in translation rate 

(Supplementary Figure 3).  However, even though these models tested well on datasets with a 

small number of nucleotide mutations, they did not achieve similar accuracies on larger, more 

diverse datasets (Table I). These results inspired us to measure the difficulty of correctly 

predicting the expression levels of a genetic system dataset. From an information theoretic 

perspective, a model’s accuracy is determined by its ability to maximally reduce uncertainty in 

the predicted outcomes. It is therefore equally important to consider both the starting amount of 

uncertainty in the dataset and the ending amount of uncertainty in the gene expression level 

predictions.  

We therefore derived a new test metric, called Model Capacity (MC), which quantifies a 

model’s ability to accurately predict gene expression levels by tracking the flow of information 

from source to comparator and measuring the model’s ability to reduce uncertainty in the 

predicted outcomes, taking into account the genetic system dataset’s sequence diversity, the 

experimental measurements’ functional diversity, and the model’s error distribution (Figure 3a). 

To calculate MC, we quantify a dataset’s sequence diversity (Hseq) utilizing Shannon’s entropy, 

we determine a dataset’s number of distinguishable outcomes (N) by dividing the 

measurements’ dynamic range by its average precision, and we compute the Shannon entropy 

of the model’s error distribution, compared to a random model, both using N outcomes (see 

Supplementary Discussion 2 for a detailed explanation). Overall, our newly proposed MC 
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metric provides an objective way to assess both the model and the dataset together, facilitating 

correct cross-data model comparisons. 

For example, in agreement with currently used test metrics, the successive 

improvements to the RBS Calculator model led to higher MCs of 3707, 5911, and 7313 bits 

when evaluated on 1014IC. The MCs for the UTR Designer, EMOPEC, and RBS Designer 

models also closely tracked the other test metrics (4490,3053, and 2385 bits, respectively) on 

this dataset (Figure 3b). However, only the MC metric can assess whether a dataset has 

sufficient sequence and functional diversity to truly test a model’s accuracy. For example, both 

the RBS Calculator v2.0 and EMOPEC models have very low MCs when evaluated on the 14-

sequence P. fluorescens-mRFP1 data sub-group (33 vs. 31 bits, respectively). Similarly, the 

RBS Calculator v2.0 and EMOPEC models have even lower MCs when evaluated on the 10-

sequence E. coli-LacZ data sub-group (14 vs. 9 bits, respectively). The MC metric correctly 

assessed that these small datasets are too homogenous to provide a distinguishable 

comparison in model accuracy; the relative differences in MC are too small, compared to the 

absolute MC values possible when evaluated on the more diverse 1014IC dataset.  

Notably, a dataset with more sequences does not always lead to higher sequence 

diversity. For example, the smaller 1014IC dataset has a larger sequence diversity (Hseq = 2243 

bits), compared to 8848FS (Hseq = 1448 bits), because it contains longer 5’ UTRs with mutations 

at more distributed positions (Figure 3bc). Moreover, different characterization techniques can 

also have substantially different dynamic ranges and measurement precisions. For example, 

while the FlowSeq technique simultaneously measures gene expression levels from thousands 

of sequences, the current approach sorts fluorescent cells into a relatively small number of 

defined bins, resulting in a smaller number of distinguishable outcomes, compared to measuring 

reporter expression levels within isogenic cultures (N = 11 for FS8848 vs. N = 21 for 1014IC). 

Together, HSEQ and N measure the maximum possible uncertainty in a dataset, and therefore 

control the maximum possible MC for a perfect model evaluated on that dataset (MCmax of 
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47100 bits for 1014IC, and 14476 bits for 8848FS). As a result, even the most accurate model 

(MC), when evaluated on 8848FS (EMOPEC) has a lower MC, compared to its evaluation on 

1014IC (2782 vs 3053 bits respectively), a symptom of its limited sequence and functional 

diversity. Future efforts to test model predictions should therefore seek to design and 

characterize datasets with higher MCmax. 

 

Automated hypothesis testing to evaluate mechanisms and model implementations 

Beyond assessments of model accuracies, we next expanded our model test system to 

automatically apply statistical analysis to accept or reject proposed mechanistic hypotheses. 

Here, we demonstrate that capability by evaluating 100 mechanistic hypotheses covering the 

wide-ranging debate over the sequence determinants that control translation initiation rate. Each 

hypothesis was first automatically converted into a distinct model implementation, followed by 

evaluating its predictions on the 1014IC dataset.  Hypotheses were accepted only when an F-

test identified that the model implementation’s error distribution had a statistically significant 

reduction in variance (F-test p < 0.01) and when its accuracy test metrics were improved (higher 

R2 and MC), compared a RBS Calculator v2.0 baseline model. The conclusions for all 100 

hypotheses are listed in Supplementary Data 3.  

Surprisingly, when proposed as hypotheses, several commonly accepted anecdotes 

were rejected. It has been generally accepted that the ribosome binding site, and specifically, 

the Shine-Dalgarno sequence, is 6 nucleotides long, suggesting that only these nucleotides 

hybridize with the 3’ end of the 16S ribosomal RNA (SD: 5’-AGGAGG-3’, interaction #3). 

However, by constructing model implementations with 55 different possible 16S rRNA 

sequences, covering all possible Shine-Dalgarno sequences from 4 to 13 nucleotides long, our 

analysis revealed that the E. coli Shine-Dalgarno sequence is 9 nucleotides long (SD: 5’-

UAAGGAGGU-3’, R2 = 0.70, F = 0.85, p = 0.013, Supplementary Figure 4). Several studies 

have also claimed that only the Shine-Dalgarno interaction or only the presence of mRNA 
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structures are responsible for controlling a mRNA’s translation rate. Instead, a recursive feature 

reduction method showed that both interactions must be considered to accurately predict 

translation rates (Supplementary Table 2). A model that only incorporates Shine-Dalgarno 

interactions does not accurately predict translation rates (R2 = 0.54, F = 3.3, p = 3.6 x 10-75). 

Likewise, a model that only quantifies the energy needed to unfold mRNA structures is not 

accurate either (R2 = 0.44, F = 6.2, p = 4.6 x 10-159). Here, the model test system demonstrated 

its ability to strongly reject false claims with extremely high statistical significance.  

Separately, translation rate model predictions have relied on the accurate calculation of 

RNA folding free energies and structures, though it is not known how these calculations affect 

the translation model’s accuracy. Several options are available; translation rate models may use 

different RNA free energy parameters, they may calculate either a minimum-free-energy (mfe) 

or ensemble centroid RNA structure, and they may incorporate additional energetic 

contributions, such as dangling nucleotide interactions.  We therefore formulated and evaluated 

all combinations of these options as hypotheses. We found that utilizing the ensemble centroid 

RNA structure (R2 = 0.58, F = 4.7, p < 1.8 x 10-119) or incorporating the dangling nucleotide 

interaction (R2 = 0.69, F = 1.2, p = 0.002) resulted in less accurate predictions. We also found 

that the most recently developed RNA free energy parameter set42 provided a statistically 

significant improvement in model accuracy (R2 = 0.72, F = 1.2, p = 0.008). 

 Importantly, the model test system also determines when a proposed hypothesis is not 

testable on a given dataset. If a proposed mechanism or interaction is predicted to have the 

same, or similar, effect on all predicted outcomes within a data sub-group, then accepting or 

rejecting the hypothesis is not possible. We found two interesting examples of such hypotheses 

that could motivate future efforts. First proposed in 1990, the downstream-box (DB) hypothesis 

suggests that a portion of an mRNA’s CDS can hybridize to the 16S rRNA1469:1483 in E. coli to 

accelerate its translation initiation rate43. This hypothesis was untestable was because all data 

sub-groups share similar CDS regions, and therefore no matter how the interaction is proposed 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2017. ; https://doi.org/10.1101/193367doi: bioRxiv preprint 

https://doi.org/10.1101/193367
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

to take place, the predicted translation initiation rates within each data sub-group are similarly 

scaled. Second, it has been proposed that some organisms, including Bacteroides 

thetaiotaomicron, do not utilize a Shine-Dalgarno sequence to initiate translation28,44. We 

therefore evaluated the importance of the Shine-Dalgarno (interaction #3) when evaluated on 

the 143 mRNAs characterized in B. thetaiotaomicron and found that model accuracies were 

nearly identical with and without this interaction (R2 = 0.51 vs. 0.49, F = 1.05, p = 0.39). Here, 

the 143 mRNAs do not have sufficient sequence and functional diversity to test this hypothesis; 

specifically, the maximum change in interaction #3’s energy was relatively small, compared to 

the overall 1014IC dataset (4.2 vs. 18.6 kcal/mol). Overall, this capability of the model test 

system can accelerate mechanistic discoveries by directing the design and characterization of 

datasets to test previously untestable hypotheses. 
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Figure 4 | Identifying the sources of model error. (a) Violin plots comparing the error 

distributions from RBS Calculator v2.0 model predictions across five selected categories of 

mRNA sequences as shown. (b) Histograms illustrating the thresholds and counts of sequences 

for each of the categories as shown in (a).  

 

Sequence-function-error associations to identify new gene expression determinants 

Once a gene expression model encompasses all well-characterized interactions controlling 

gene expression, it can become a significant challenge to discover and describe novel gene 

regulatory mechanisms that control gene expression levels. By combining the model test 

system with machine learning techniques, we next demonstrated how to systematically discover 

poorly characterized interactions controlling gene expression levels within the 1014IC dataset. 

We first enumerated a long list of candidate biophysical, biochemical, and geometric properties 

that can all be evaluated from sequence information and have the potential to influence gene 

expression. Our list included the characteristics of calculated structures of portions of mRNA, 
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including the lengths, nucleotide compositions, and folding free energies of key structural 

features (hairpin loops, bulges, mismatches, single-stranded regions); the kinetic folding rates of 

these RNA structures as determined by the algorithm KFOLD45, and calculated characteristics 

of the ribosome-mRNA interaction, such as the structures of upstream standby sites24 and the 

compositions of the spacer region34 (Supplementary Table 3). The model test system then 

uses a feature selection method to automatically iterate over all candidate properties to identify 

ones where changes in the sequence-function relationship are associated with a statistically 

significant increase in the gene expression model’s error, here using the RBS Calculator v2.0 as 

the baseline. Overall, we identified five properties associated with increased model error that 

have sufficient statistical significance to warrant further investigation (p < 0.05) (Figure 4, 

Supplementary Table 4).  

First, we found that long mRNA structures (>29 nucleotides long) that overlapped with 

the Shine-Dalgarno sequence greatly reduced the model’s ability to correctly predict the 

mRNA’s translation rate (F = 43.0, p = 2.8 x 10-210). These structures are inhibitory because they 

must be unfolded before the ribosome can initiate translation, and therefore any miscalculation 

in their unfolding free energies will have a large effect on the translation rate prediction. 

Relatedly, we found that whenever inhibitory mRNA structures required a large amount of time 

to fold (>322 KFOLD time units), or when the ribosome’s binding rate was faster than the RNA 

structure’s refolding rate, the model’s predictions were significantly less accurate (F = 12.3, p = 

5.5 x 10-97; and F = 40.1, p = 3.2 x 10-115 respectively). We also found that when standby site 

structures were predicted to refold to a lower energetic state following ribosome binding, then 

the model’s predictive accuracy was significantly reduced (F = 126.6, p = 8.4 x 10-79). During the 

cycling of translation initiation, it is possible that these structures do not have sufficient time to 

refold to the minimum free energy structure, or are kinetically trapped.  

Finally, we found that highly structured 5' untranslated regions with fewer than 2 

consecutive single-stranded RNA nucleotides had less accurately predicted translation rates (F 
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= 22.5, p = 5.0 x 10-181). Single-stranded RNA regions are potential binding sites for RNase E, 

and therefore the absence of such sites could increase mRNA stability and affect gene 

expression levels46. Similarly, we found that whenever mRNAs had low predicted translation 

initiation rates, then the model also had higher error (F = 450, p < 10-100), in agreement with 

evidence that poorly translated mRNAs become unprotected by ribosomes and therefore are 

more likely to be degraded by RNase E47. Altogether, the model test system identified 671  

mRNAs (66% of the 1014IC dataset) where the changes in mRNA degradation and stability 

have confounded the translation rate model’s predictions, explaining a key source of error. 

 

The Model Test System Enables Systematic Development of Improved Models 

We then leveraged the compiled genetic system database, confirmed mechanistic 

hypotheses, and identified sources of model error to develop and validate a new version of the 

RBS Calculator free energy model (v2.1) with a significant improvement in accuracy. The model 

test system enabled us to rapidly propose and evaluate new formulas for quantifying interaction 

energies that control ribosome binding and translation initiation rate, particularly new 

interactions that only became apparent when evaluated on a large genetic system database. 

Specifically, we added a new free energy term (ΔGstack) to quantify stacking interactions 

between adjacent RNA nucleotides, which had a large effect on ribosome binding sites with 

homopolymer sequences34 (Supplementary Figure 5); we improved the formulas that quantify 

how ribosomes in gram-positive organisms bind to structured standby sites and 

stretch/compress with varying ribosome binding site spacer lengths (Supplementary Figure 

6)48; we improved the calculation of apparent tRNAfMet binding free energies at non-canonical 

start codons, using 35 recently characterized mRNAs35 (Supplementary Figure 7) and we 

updated the translation rate model’s RNA free energy parameters to the Andronescu2007 set42. 

Importantly, while these improvements relied on characterization of mRNA translation rates 

using different plasmid or genomic copy numbers, promoters, reporters, and measurement 
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techniques, the model test system could correctly extract the maximum amount of information 

from the measurements to parameterize and validate model predictions. The resulting RBS 

Calculator v2.1 model predictions were more accurate than v2.0 across the entire 1014IC 

dataset (R2 = 0.74 vs. 0.71, MC = 7857 vs. 7312 bits), including a statistically significant 

reduction in the model error distribution’s variance (F = 0.74, p = 9.8 x 10-7), with predictions for 

all sequences compared to 23 not predicted with v2.0 (Supplementary Figure 8). 

Beyond these improvements, the model test system identified additional confounding 

factors, such as changes in mRNA folding kinetics and mRNA degradation rates, that are not 

considered in an equilibrium thermodynamic model of translation initiation rate, but nonetheless 

increase its model error. To avoid these sources of error, we then utilized the model test 

system’s categorization of sequence-error associations (Figure 4) to propose a safe operating 

zone where RBS sequences could be more accurately designed using the model. Using the 

mRNA sequence alone, a model prediction is considered outside the safe operating zone when 

the mRNA contains a long or slow-folding RNA structure (>29 nucleotides long or >320 KFOLD 

time units), when standby site structures are predicted to refold (ΔΔGfold,standby site > 0), when 

mRNAs contain long single-stranded RNA regions (>5 nucleotides), and when the predicted 

translation initiation rate is low, resulting in greater deprotection of mRNAs (ΔGtotal > 0). 

Altogether, the RBS Calculator v2.1 model’s accuracy was significantly improved when 

restricting its predictions to sequences within the safe operating zone. The model predicted the 

translation rates of 64%, 91% and 95% mRNAs to within 2-fold, 5-fold, and 10-fold of 

measurements, respectively, and with a statistically significant reduction in the model error 

distribution’s variance (F = 0.47, p = 9.9 x 10-12). 
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DISCUSSION 

The field of Synthetic Biology has considerably matured since its origins, though several 

cycles of designing, building, and testing organisms are still required to engineer complex 

genetic systems14. Gene expression models have greatly reduced the number of engineering 

cycles by designing sequences to control protein expression levels, and thereby rationally direct 

genetic system optimization23. However, more accurate gene expression models are needed to 

engineer complex genetic systems with many interacting components. For several reasons, it 

has been a significant challenge to systematically develop more accurate gene expression 

models. First, genetic systems are often characterized using different promoters, reporters, host 

organisms, and techniques, resulting in disparate datasets that require careful analysis to 

extract information. Second, several interactions collectively control sequence-expression 

relationships; correctly quantifying their strengths is a multi-variable, high dimensional problem. 

Finally, a model’s apparent accuracy depends on the dataset used to evaluate it, and statistical 

test metrics often disagree on accuracy improvements.  

To overcome these challenges, we created an automated model test system that 

extracts the maximum amount of information from large genetic system databases, 

systematically assesses gene expression model accuracies, evaluates the validity of 

mechanistic hypotheses testing the importance of specific interactions, and identifies sequence-

dependent physical properties that control a model’s error (Figure 1). We applied the model test 

system to carry out the first systematic assessment of six gene expression models that predict 

the translation initiation rates of mRNAs, showing that models have clear differences in 

accuracy across five common test metrics and two large datasets (Figure 2, Table 1). To 

explain these differences, we utilized information theory to quantify the uncertainty in both the 

dataset and the model predictions together, resulting in the first test metric, called Model 

Capacity (MC), that is capable of correct cross-dataset comparisons (Figure 3). Using 

advanced statistics and machine learning techniques, we then evaluated the validity of 100 
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mechanistic hypotheses and identified five sources of model error to distinguish model 

implementations and identify areas for model improvements (Figure 4). Using this analysis, we 

then rapidly developed a new version of RBS Calculator (v2.1) that incorporates several newly 

quantified interactions to yield statistically significant improvements in accuracy. These 

improvements in model accuracy considerably reduce trial-and-error experimentation, 

particularly when engineering complex genetic systems. For example, when using RBS 

Calculator v2.1 to engineer a 30-protein system with a 5-fold targeted expression operating 

space, only 2 design trials per protein are needed to yield a 78% chance of first-cycle success, 

compared to 5% when using RBS Calculator v2.0. Similarly, the success rate is increased to 

98% when using 3 design trials per protein, compared to 41% (Supplementary Discussion 4). 

Overall, the model test system enables the accelerated analysis of model predictions on large 

datasets to focus model development on poorly characterized interactions that contribute most 

to model error.  

The model test system is open-source software 

(https://github.com/reisalex/SynBioMTS), developed with the explicit goal of making it easy to 

expand the genetic system database, calculate additional test metrics, assess new gene 

expression models, evaluate additional hypotheses, and identify new sequence-dependent 

properties that correlate with model error. We also created an Excel template (Supplementary 

Data 4) to enable researchers to add characterized genetic systems to the growing database. 

Expanded genetic system databases will be made available periodically, which we envision will 

be used to develop and improve predictive sequence-to-function models for many additional 

gene regulatory mechanisms, including transcriptional regulation, termination, mRNA decay, 

gene expression coupling, and post-transcriptional regulation by small RNAs, riboswitches, and 

ribozymes. 
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METHODS 

Compiling the genetic system database 

To create the database, we compiled sequences and expression measurements from the 

supplemental data of several publications. We included detailed information for all sequences 

including the position of the start codon, bacteria host, experimental conditions, and 

characterization method and data. For the 1014IC dataset, mean fluorescence (or 

luminescence) levels, standard deviation across at least three replicates, and RT-qPCR 

measurements (when available) were included. For the 8848FS dataset, raw data includes 

binned read counts, RNA read counts, and DNA read counts for two replicates. The 

reconstructed relative fluorescence values (protein levels) and the mRNA levels were 

recalculated as described in the original paper29. Apparent translation rates for the FlowSeq 

datasets are calculated as the protein level divided by the mRNA level. 

 

DNA sequences for the genetic systems were either provided in the supplementary information 

of the publications, acquired directly from the original authors, or recreated manually from 

information found in the publication25. 5’-untranslated regions (UTRs) of the mRNAs were 

determined by identifying the most common transcription start site (TSS) of the promoter of the 

genetic system. Each TSS was either estimated by selected the first nucleotide following the 

annotated promoter, or in the case of any promoters characterized by the 8848FS dataset, the 

TSS is defined as the most frequent upstream position of transcription initiation as identified by 

RNA read counts. Start codons specified by the original publications are saved in the database.  

 

Data was first stored in a pandas dataframe (http://pandas.pydata.org/) with null values for 

entries where information or characterization data was not provided. The supporting model test 

system code includes functions to allow easy manipulation of the dataframe, such as extracting 

and analyzing genetic systems that share common properties (see SynBioMTS/dbms.py). 
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Filtering the FlowSeq datasets 

We applied a combination of filters on the FlowSeq dataset to remove characterized sequences 

with low read counts or skewed binned read counts. Following the rules filters in Kosuri et al.29, 

we removed sequences with insufficient protein data, or if the reconstructed fluorescence level 

was above or below the estimated measurement range. The thresholds were defined as two-

fold the minimum protein level (1357 reconstructed RFU) and 99% of the maximum protein level 

(204,060 reconstructed RFU). Characterized sequences that had fewer than 10 DNA read 

counts (both replicates), fewer than 50 DNA read counts (either replicate), or fewer than 20 

RNA read counts (either replicate) were excluded. Lastly, promoters that had transcription start 

sites that started after the barcode sequence were excluded. These filters removed 3319 

sequences (26.2%), resulting in the 8848FS dataset. 

 

Calculating total sequence entropy 

We calculated the sequence diversity of a dataset (Hseq) by determining the sum of the Shannon 

entropy across all nucleotide positions from the transcriptional start site to 35 nucleotides after 

the start codon (Equation 1). Considering that sequences have different length 5’ UTRs, we 

padded the 5’ ends of all sequences with “X” characters until all sequences have the same 

length. We then calculated Shannon entropies using a 5-letter alphabet with a maximum 

entropy, log2(5) = 2.32 bits, at each position.  

���� �  � ∑ ∑ ��� log� ����
��	�          (1) 

 

Calculating Kullback-Leibler divergence 

We calculated the model’s Kullback-Leibler (KL) divergence, which is the information gain 

achieved if the model of interest (P) is used instead of a random model (Q). We defined a 

random model (Q) as having a uniform error distribution across the observed range. We then 

calculate the relative probability of model error (P) across 100 log-spaced bins from 10-3 to 103. 
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The DKL value is computed using Equation (2), removing bins where P(i) is zero. The normalized 

DKL value is divided by the maximum possible DKL for a perfect model, which is 4.61 here. 



���||�� � ∑ ����� log ����
���

�         (2) 

 

Calculating area under the ROC curve (AUROC) 

Measured protein expression levels are partitioned into HIGH and LOW binary outcomes 

according to a selected cutoff value. The test metric is the predicted translation initiation rate, 

using the same cutoff to determine LOW and HIGH predicted outcomes. To generate a 

Receiver Operating Characteristic curve, the cutoff is then systematically varied between the 

minimum and maximum of the measured protein expression levels, and the True Positive Rates 

(TPR) and False Positive Rates (FPR) are calculated for each cutoff value. The area under the 

ROC curve (AUROC) is then calculated using the trapezoidal rule (see calc_AUROC method). 

 

Using the gene expression models 

All models were used with settings to maximize the predictive accuracy of each model, to best 

assess the proposed determinants. For all versions of RBS Calculator, the nine, 3’-most 

nucleotides of the 16S rRNA of each species was used as the aSD sequence, the temperature 

was set at the experimental temperature, a fixed mRNA post-cutoff of 35 nt was used, and all 

other parameters were left as default. To our knowledge, no source code is available for UTR 

Designer, so we recreated the model by modifying RBS Calculator v1.0 with the described 

changes20 (Supplementary Discussion 1) and ran the model with all the same parameters as 

RBS Calculator v1.0. For all versions of RBS Calculator and UTR Designer, we selected the 

most highly translated, in-frame start codon as the start site to predict the translation rate. RBS 

Designer was released as a Windows installer package. We wrote a Python wrapper to run the 

batch version of the program on the full database (see RBSBatch.py in the repository). All 
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default settings were used and the correct rRNA sequences were used for RBS Designer. 

Noncanonical start codons (e.g. “CUG”) were skipped because RBS Designer only supports 

prediction for genes with an AUG start. For EMOPEC, we used the predicted Expression value 

for comparisons, rather than the Expressionpercent value as described in Bonde et al.25. All default 

settings were used for EMOPEC. All model output was saved to the database for future study. 
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