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ABSTRACT 1 

Artificial neural networks are being widely implemented for a range of different biomedical 2 

imaging applications. Convolutional neural networks are by far the most popular type of deep 3 

learning architecture, but often require very large datasets for robust training and evaluation. 4 

We introduce deep learning diffusion fingerprinting (DLDF), which we have used to classify 5 

diffusion-weighted magnetic resonance imaging voxels in a mouse model of glioblastoma 6 

(GL261 cell line), both prior to and in response to Temozolomide (TMZ) chemotherapy. We 7 

show that, even with limited training, DLDF can automatically segment brain tumours from 8 

normal brain, can automatically distinguish between young and older (after 9 days of growth) 9 

tumours and that DLDF can detect whether or not a tumour has been treated with 10 

chemotherapy. Our results also suggest that DLDF can detect localised changes in the 11 

underlying tumour microstructure, which are not evident using conventional measurements 12 

of the apparent diffusion coefficient (ADC). Tissue category maps generated by DLDF 13 

showed regions containing a mixture of normal brain and tumour cells, and in some cases 14 

evidence of tumour invasion across the corpus callosum, which were broadly consistent with 15 

histology. In conclusion, DLDF shows the potential for applying deep learning on a pixel-wise 16 

level, which reduces the need for vast training datasets and could easily be applied to other 17 

multi-dimensional imaging acquisitions. 18 

 19 
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Abbreviations: ANN, artificial neural network; CT, x-ray computed tomography; PET, 22 
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resolution diffusion weighted imaging; NODDI, neurite orientation dispersion and density 24 

imaging; VERDICT, vascular, extracellular and restricted diffusion for cytometry in tumours; 25 

DLDF, deep learning with diffusion fingerprinting; TMZ, Temozolomide; PFA, 26 

paraformaldehyde; H&E, hematoxylin and eosin; GFAP, glial fibrillary acidic protein;  27 
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1. INTRODUCTION 1 

Research into the use of deep learning with artificial neural networks (ANN) is being widely 2 

undertaken. A key application is in radiology, particularly in the classification and 3 

segmentation of biomedical images (1-4). ANNs have been trained and evaluated using x-4 

ray computed tomography (CT) (5-7) and positron emission tomography (PET) imaging (8-5 

10), and several magnetic resonance imaging (MRI) data types including structural T1- and 6 

T2-weighted images (11), perfusion images (12), MR spectroscopy (13) and diffusion MRI 7 

(14). 8 

In the last five years, convolutional neural networks (CNNs) have become by far the most 9 

popular choice of deep learning architecture (15). CNNs allow subtle and abstract features to 10 

be characterised, but often require very large, labelled data sets (16). As an alternative 11 

approach, we propose using data-rich diffusion-weighted MRI acquisitions to define a 12 

fingerprint in each voxel, which can easily be classified according to tissue type and used to 13 

train a deep neural network. This approach aims to produce accurate diagnostic information 14 

with a relatively small number of subjects, as every voxel is treated as an independent data 15 

point to train the ANN, rather than using whole images (or patches from within images) as 16 

used in CNN architectures. 17 

Contrast in diffusion weighted MRI is dependent on the random motion of water molecules 18 

and the structure of the underlying tissue microenvironment. Various multi-direction and 19 

multi-b-value diffusion MRI protocols have been proposed which are better at resolving 20 

complicated tissue microstructure compared to basic diffusion tensor imaging (DTI). HARDI 21 

(high angular resolution diffusion weighted imaging) and NODDI (neurite orientation 22 

dispersion and density imaging) use multiple diffusion directions (17,18) to improve 23 

measurement of neuronal fibre direction, whilst VERDICT (vascular, extracellular and 24 

restricted diffusion for cytometry in tumours) protocols employ multiple directions and 25 

multiple sets of diffusion weighted scans (19,20) to make estimates of cancer cell 26 

microstructure and density. These types of diffusion MRI protocols are particularly amenable 27 
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to pixel-wise deep learning because large amounts of data are acquired in individual 1 

subjects.  2 

A key advantage of deep learning over techniques which require mathematical models to fit 3 

the acquired diffusion signals, is that no assumptions are made about the underlying tissue 4 

microstructure. This is especially important when imaging pathology where, often, the lesion 5 

greatly alters or interferes with the tissue microstructure in the affected organ. Since most 6 

mathematical models are optimised to characterise one type of tissue, regions of pathology 7 

can often be poorly characterised because they simply correspond to regions where the 8 

model fitting is less robust. For example, NODDI is not designed to characterise brain 9 

tumour microstructure and VERDICT is not designed to characterise normal brain tissue. 10 

Characterising microstructure in transitional regions containing both neuronal and cancer 11 

cells is even more challenging. 12 

This therefore underpins our motivation for developing deep learning with diffusion 13 

fingerprinting (DLDF). In this study, we have evaluated DLDF in a set of diffusion MRI data 14 

from a mouse glioma model (GL261), both prior to and following treatment with 15 

Temozolomide (TMZ) chemotherapy. We investigate the ability of DLDF to distinguish brain, 16 

background, control and treated tumour pixels, independent of pixel location, and without 17 

applying mathematical models of tissue microstructure.  18 
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2. METHODS 1 

2.1 Ethics statement 2 

All in vivo experiments were performed in accordance with the UK Home Office Animals 3 

Scientific Procedures Act, 1986 and United Kingdom Coordinating Committee on Cancer 4 

Research (UKCCCR) guidelines, and with the approval of the University College London 5 

Animal Ethics Committee.  6 

2.2 Mouse Glioma Model and Therapy 7 

Female, C57BL/6 nude mice (6-9 weeks old) were sourced from Harlan (UK) and were 8 

housed in groups of 5 in isolated ventilated cages (IVCs) containing environmental 9 

enrichment. Mice had access to food and water ad libitum. 10 

Mice were injected in the right striatum with 2x104 GL261 mouse glioma cells, and randomly 11 

assigned to control and treatment (Temozolomide (TMZ)) groups (n = 12 per group). 12 

Following 13 days of tumour growth (day 0), to an average tumour volume of 8.1 ± 0.8 mm3, 13 

three doses of TMZ (130mg/kg) or vehicle were administered by gavage, on consecutive 14 

days. 15 

2.3 MRI setup 16 

MRI measurements were performed on a 9.4T horizontal bore scanner (Agilent 17 

Technologies, Santa Clara, USA) with a 205/120/HD 600mT/m gradient insert. RF 18 

transmission was performed with a 72mm inner diameter volume coil and a 2-channel 19 

receiver coil (RAPID biomed, Ripmar, Germany). Mice were anaesthetised with 1.5-2.0% 20 

isoflurane in 2 l/min oxygen and positioned prone in a cradle for imaging. The head was 21 

positioned within an MR-compatible head-holder and secured with plastic ear bars to 22 

minimise motion artefacts. Body temperature was maintained at physiological temperature 23 

using a hot water system and monitored using a rectal probe (SA Instruments). Respiration 24 

was monitored using a neonatal apnoea pad taped to the abdomen of the animal. For 25 

gadolinium-based scans, an intraperitoneal infusion line was inserted into the mouse. 26 
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2.4 Diffusion MRI 1 

Gliomas were localised using a structural spin-echo sequence. For generating the diffusion 2 

fingerprints, diffusion-weighted images were acquired in a coronal orientation using a 3-shot 3 

spin-echo echo planar imaging (EPI) sequence, with the following parameters: TR = 3s, TE 4 

= min, DM = 642, FOV = 20mm2, shots = 3, slice thickness = 0.5mm, slices = 5, averages = 5 

2. In total, 46 diffusion weightings in 3 directions were acquired in addition to a 42 direction 6 

DTI acquisition (b = 1000 s/mm2). Specific gradient combinations are detailed in Table 1. TE 7 

was minimised for all scans to maximise signal-to-noise. To correct for signal changes 8 

caused by this variation in TE, an accompanying b = 0 s/mm2 (B0) image was acquired for 9 

every combination of diffusion gradients. Total acquisition time for all DWIs was 70 minutes. 10 

Following diffusion imaging, mice were injected with gadolinium-DTPA (Magnevist). After 10 11 

minutes – to allow for the contrast agent to circulate – slice-matched T1-weighted spin echo 12 

EPI images were acquired. Tumour regions of interest (ROI) were drawn based on these 13 

images and applied to the diffusion data. 14 

 15 

δ (ms) Δ (ms) G (G/cm) b-value (s/mm2) 

3 10 / 20 / 30 / 40 3.6 8 / 16 / 24 / 33 

3 10 / 20 / 30 / 40 7.2 30 / 63 / 97 / 130 

3 10 / 20 / 30 / 40 10.8 68 / 143 / 218 / 293 

3 10 / 20 / 30 / 40 14.4 120 / 254 / 387 / 521 

3 10 / 20 / 30 / 40 18.0 188 / 397 / 606 / 814 

3 10 / 20 / 30 / 40 21.6 270 / 571 / 872 / 1173 

3 10 / 20 / 30 / 40 25.2 368 / 778 / 1187 / 1596 

3 10 / 20 / 30 / 40 28.8 481 / 1016 / 1550 / 2085 

3 10 / 20 / 30 / 40 32.4 609 / 1285 / 1962 / 2639 

3 10 / 20 / 30 / 40 36.0 752 / 1587 / 2422 / 3257 
    

10 30 / 40 4.0 305 / 420 

10 30 / 40 8.0 1221 / 1680 

10 30 / 40 12.0 2749 / 3780 

 16 

Table 1: Diffusion gradient combinations used in mouse brain imaging for creating diffusion 17 

fingerprints. 18 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 25, 2017. ; https://doi.org/10.1101/193730doi: bioRxiv preprint 

https://doi.org/10.1101/193730


 

7 
 

2.5 Histology 1 

To compare the DLDF category maps with a ground truth, histology was performed on the 2 

mouse brains. After the final MRI scan, mice were terminally anaesthetised via 3 

intraperitoneal injection of 100 mg/kg sodium pentobarbital (Pentoject, Animalcare, York, 4 

UK) and then transcardially perfusion-fixed with 10 ml heparinised saline followed by 10 ml 5 

4% paraformaldehyde (PFA). For histology, mouse brains were extracted, sliced in a coronal 6 

orientation and stained with hematoxylin and eosin (H&E) and glial fibrillary acidic protein 7 

(GFAP). 8 

2.6 Labelling and Diffusion Fingerprint Preparation 9 

Four tissue categories were manually identified on contrast-enhanced images: 1) 10 

background (corresponding to any pixel that was not part of any other region), 2) normal-11 

appearing brain, 3) untreated tumour (regions showing contrast-enhancement in all animals 12 

at day 0 and only control animals at day 9) and 4) treated tumour at day 9 (Figure 1a). 13 

Diffusion fingerprints consisting of 232 ordered data points, from individual pixels (Figure 2) 14 

were produced for each pixel, and were normalised to an acquisition with no diffusion 15 

encoding. 16 

2.7 Deep Learning of Diffusion Fingerprints 17 

We created a deep neural network with 5 hidden layers in Keras (a model-level library, 18 

Python 3.5.2) using TensorFlow as the numerical backend (21). Each hidden layer was 19 

regularized with 20% dropout (to avoid overfitting), and used rectified linear unit (ReLU) 20 

activation and normally-distributed initialisation. The number of nodes for each layer was 21 

100, 150, 200, 512 and 1024, respectively. The output layer contained 6 nodes 22 

corresponding to the categories defined above. Diffusion fingerprints from individual pixels 23 

were passed to the network input layer. 24 
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2.8 Training 1 

50% of the data were randomly assigned to a training set, which were further refined to 2 

include equal numbers of fingerprints from each category (a total of 6,608 fingerprints). 3 

Training of the network was performed on a Nvidia Titan-X GPU, using stochastic gradient-4 

descent optimisation (learning rate, 0.01; decay, 1e-6; momentum, 0.9), with mean squared 5 

error loss function. Training was performed for 50,000 epochs, with 10,000 steps in each. 6 

2.9 Evaluation 7 

The evaluation data set contained 5 animals per group. Each diffusion fingerprint was 8 

categorised by the deep learning network and reconstructed as category maps. Dropout 9 

regularisation was used to estimate classification probability and variance via Monte Carlo 10 

sampling (22). 11 

3. RESULTS 12 

3.1 Brain Region Classifiers and Diffusion Fingerprint Generation 13 

Gliomas were hyperintense on T1-weighted post-gadolinium images compared to normal 14 

brain at both day 0 and day 9 (Figure 1a). These images were used for manual delineation 15 

of brain and tumour regions (Figure 1a, dashed lines) resulting in four categories (Figure 1b): 16 

outside of brain, ‘normal’ brain, untreated tumour (all day 0 tumours and day 9 tumours 17 

which received no treatment) and treated tumour (day 9 tumours, which were treated with 18 

Temozolomide).  19 
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 1 

Figure 1: Coronal images from mouse brains at day 0 and day 9. (a) T1-weighted post-2 

gadolinium slices showing manual segmentation (dashed lines). (b) Masks showing 3 

classification regions used for training the deep learning neural network. (c) DLDF category 4 

maps from the evaluation phase. (d) ADC maps. (e) Maps of tumour age from the evaluation 5 

phase. 6 
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The category masks were applied to the slice-matched diffusion data to generate the 1 

diffusion fingerprints required for training the ANN. Figure 2a shows a complete dataset of 2 

diffusion MR images from one coronal slice through a mouse brain. Image intensity 3 

decreases as the level of diffusion-weighting is increased. Figure 2c shows diffusion 4 

fingerprints from four different regions. Diffusion fingerprint 1 (blue) comes from a region 5 

outside of the animal, hence the plot is a noisy trace. Diffusion fingerprint 2 (green) comes 6 

from normal brain, whilst diffusion fingerprints 3 (yellow) and 4 (red) originate from untreated 7 

and treated tumour, respectively. The first 48 points in each plot represent the DTI (plus six 8 

B0) scans. The remaining points represent different combinations of diffusion gradients 9 

(detailed in Table 1). Upon visual inspection, some differences can be observed in the 10 

diffusion fingerprint from the normal brain compared to the fingerprints from the tumours. For 11 

example, S/S0 for the DTI scans is ~0.5, compared to ~0.3–0.4 in the tumours. Furthermore, 12 

S/S0 decays more quickly in the tumours. The differences between the untreated (yellow) 13 

and treated tumour (red) fingerprints are subtler, however, demonstrating the need for deep 14 

learning to tease out the features within these fingerprints. 15 
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 1 

Figure 2: (a) Complete set of diffusion MR images from a single coronal slice in the brain. (b) 2 

Classification masks from an Untreated tumour and a Treated tumour. (c) Example diffusion 3 

fingerprints taken from the corresponding numbered region in panel (b), showing the 4 

normalised diffusion signal taken from a single voxel. 5 
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3.2 Model Accuracy 1 

In total, 6,608 fingerprints from 50% of the animals were used to train the ANN. Training 2 

lasted 80 hours, and resulted in a model accuracy of 98.65% (where pixels were classified 3 

as the same category determined by manual segmentation). Based on evaluation of the 4 

ANN using the remaining 50% of the imaging data, accuracy was 98.54% (once again, 5 

compared to manually segmented data). 6 

3.3 Voxel Classification 7 

A strong agreement was observed between manually segmented category maps (Figure 1b) 8 

and DLDF maps generated from the evaluation phase (Figure 1c) demonstrating the ability 9 

of the ANN to automatically segment tumour from normal brain. Predicted tumour volumes 10 

were 2.1 ± 0.2 times larger than manually-segmented volumes. This is due in part to the 11 

identification of tumour deposits that had grown beyond the skull. Ghosting artefact in 12 

background regions was also miscategorised as brain or tumour tissue. 13 

The ANN was able to reliably identify diffusion fingerprints corresponding to normal brain 14 

(green), untreated tumour (yellow) or post-treatment tumour (red). Furthermore, the ANN 15 

was able to distinguish between tumours based on age (Figure 1e): voxels within day 0 16 

tumours were predominantly classified as day 0 pixels (green, 92% accuracy), whilst 17 

untreated and treated tumours were mostly classified as day 9 pixels (red, 93% accuracy). 18 

Regardless of age, tissue outside of tumours was predominantly classified as normal brain 19 

(purple, 97% accuracy).  20 

In comparison, ADC alone was unable to correctly stratify all pre-therapy tumours from 21 

untreated tumours by simple thresholding (Figure 3b). Whilst the mean ADC value in the 22 

pre-therapy tumours was significantly lower than the untreated tumours at day 9 (p < 0.001), 23 

several tumours in both groups exhibited ADC values between 1.05 x 10-9 and 1.20 x 10-9 24 

m2/s (blue band, Figure 3b). The mean ADC value in the treated group at day 9 was 47% 25 
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higher than baseline and all mice could be distinguished from pre-therapy and control 1 

tumours. 2 

 3 

Figure 3: (a) Tumour volume measured from T2-weighted images. (b) Mean ADC 4 

measurements from mouse brain tumours (p < 0.001, Kruskal-Wallis one-way ANOVA). The 5 

blue region denotes a range of ADC values where pre-therapy and untreated tumours cannot 6 

be stratified based on ADC alone. 7 
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 1 

Figure 4: DLDF classification maps and corresponding H&E histological sections at day 9 in 2 

(a) Untreated tumours and (b) treated tumours. DLDF could correctly distinguish between all 3 

untreated and treated tumours at Day 9. (c) and (d) Localised regions in DLDF classification 4 

maps and the corresponding regions on histology. The untreated tumour in (c) shows voxels 5 

classified as normal brain, which correspond approximately with neuronal tissue on histology. 6 

The treated tumour in (d) shows a transition in voxel classification (left to right) from normal 7 

brain (green) to untreated tumour (yellow) to treated tumour (red), which corresponds to three 8 

distinct regions on histology: normal brain parenchyma, a region of tumour infiltration and the 9 

bulk tumour tissue. 10 
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Visual inspection of DLDF category maps from untreated tumours at day 9 (Figure 4a) 1 

revealed a more spiculated appearance than treated tumours at day 9 (Figure 4b) and 2 

showed a strong spatial accordance with H&E-stained histological sections. Centralised 3 

regions of normal brain pixels (green) and ‘treated’ pixels (red) were often observed inside 4 

the untreated tumours. These regions could correspond to areas on histology (Figure 4c) 5 

which showed a mix of tumour cells, neuronal tissue and voids likely corresponding to cell 6 

death. 7 

DLDF category maps from treated animals generally showed a distinctive rim of ‘untreated’ 8 

pixels (yellow) at the tumour periphery (Figure 4b), which could correspond to border regions 9 

in H&E images where the tumour transitions into the normal brain (Figure 4d). Whether 10 

these are regions that truly show less sensitivity to TMZ therapy requires further 11 

investigation. 12 

 13 

Figure 5: DLDF category maps compared with GFAP-strained histological sections from the 14 

same brains. (a) Evidence of tumour invasion across the corpus callosum in the DLDF map of 15 

an untreated tumour corresponds to a region of enhanced GFAP staining (black arrows). DLDF 16 

maps of (b) other untreated and (c) treated tumours showed no indication of corpus callosum 17 

invasion, which was reflected in histology. 18 
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In some of the untreated animals (Figure 5a, black arrows), the predicted category maps 1 

showed tumour invasion into the contralateral hemisphere along the corpus callosum. 2 

Histological sections from the same brains showed increased GFAP-staining along the 3 

corpus callosum (Figure 5a), whereas much less GFAP-staining was visible in untreated 4 

(Figure 5b) and treated (Figure 5c) mouse brains, which displayed no evidence of tumour 5 

invasion on DLDF category maps. 6 

4. DISCUSSION  7 

The aim of this study was to evaluate the ability of DLDF in a mouse brain tumour model to 8 

categorise normal brain, pre-treatment, untreated and Temozolomide-treated tumour pixels. 9 

We have shown that DLDF can automatically segment tumours from normal brain, DLDF 10 

can automatically distinguish between young and older (after 9 days of growth) tumours and 11 

that DLDF can detect whether or not a tumour has been treated with chemotherapy. We 12 

have also shown that, spatially, the category maps generated by DLDF were broadly 13 

consistent with histology and that interesting features are detected which may correspond to 14 

transitional regions within tumours where the microstructure is a mixture of normal brain and 15 

tumour cells. 16 

The ANN used for DLDF was trained on only 6,608 fingerprints and achieved good 17 

prediction and evaluation accuracies. Broadly, the shape of the tumours delineated using 18 

DLDF were consistent with manually-segmented training data. Interestingly, during manual 19 

segmentation of T1-weighted images, regions of enhancement above the bulk of the tumour 20 

or even external to the skull, which were likely caused by deposition of tumour cells during 21 

retraction of the inoculation needle, were not segmented as tumour, and yet these regions 22 

were correctly labelled as tumour on DLDF category maps. 23 

Likewise, we also found evidence in DLDF category maps for tumour invasion into the 24 

contralateral hemisphere, via the corpus callosum, but only in control mice. This was 25 

accompanied by a much more spiculated appearing boundary, which contrasted with the 26 
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smoother appearance of TMZ-treated tumours. No evidence of invasion was detected in 1 

treated mouse brains, most likely as a direct result of TMZ causing growth inhibition. GFAP-2 

stained histological slices from the same brains confirmed these regions of invasion, where 3 

more intense staining was seen along the corpus callosum in the untreated animals. This 4 

finding is of particular interest, as these invasion effects were not included in the manually 5 

segmented ROIs used to train the ANN. It also presents a challenge in regard to quantifying 6 

the accuracy of the ANN, as these, and other, correctly segmented and informative regions 7 

actually serve to reduce the reported accuracy of the ANN. 8 

Further deviations between manual segmentation and the DLDF category maps were 9 

evident, and which were consistent with histology. Untreated tumours at day 9 contained 10 

numerous voxels that were categorised as normal brain, and which were positioned in a 11 

similar location to regions of brain tissue within the tumours. Likewise, voxels at the 12 

periphery of TMZ-treated tumours were often misclassified as ‘untreated’. This could be a 13 

straightforward misclassification error by the ANN, or evidence of regions of tumour that 14 

were less prone to changes in microstructure induced by Temozolomide, or even with a 15 

potential for resistance. This could be an interesting area for further research, as 16 

noninvasive biomarkers of treatment resistance would be particularly useful in the clinic for 17 

monitoring response (23,24). 18 

The DLDF results are also interesting as they appear to outperform an alternative, more 19 

conventional approach to treatment monitoring, which is to apply simple thresholding to 20 

mean tumour ADC measurements. Untreated brain tumours could be distinguished from 21 

treated tumours based on their mean ADC, which was significantly higher in treated mice. 22 

However, assessment of localised treatment response was not possible using ADC alone. In 23 

treated mice, ADC was broadly elevated across the whole extent of tumour, however, 24 

untreated mice exhibited localised regions of similarly elevated ADC, most likely 25 

corresponding to regions of necrosis or (non-chemotherapy related) apoptosis. DLDF 26 
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provides a localised map of treatment response, possibly highlighting regions of non-1 

responding, or chemotherapy resistant, tumour tissue. 2 

The results presented in this study, although preliminary, show some of the potential for 3 

deep learning on an individual voxel level, and could be applied to other types of multi-4 

dimensional acquisitions. Even with limited training DLDF was able to accurately classify 5 

normal brain, treated tumours and control tumours at two different time points, and in some 6 

regards, was able to out-perform manual segmentation by identifying regions of tumour 7 

invasion, mixed tissue types and, potentially, tumour regions that were less sensitive to 8 

TMZ-treatment. The ability of DLDF to predict response to therapy and to ‘age’ tumour pixels 9 

will be the focus of further investigation. 10 
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TABLE CAPTIONS 1 

Table 1: Diffusion gradient combinations used in mouse brain imaging for creating diffusion 2 

fingerprints. 3 

 4 

FIGURE CAPTIONS 5 

Figure 1: Coronal images from mouse brains at day 0 and day 9. (a) T1-weighted post-6 

gadolinium slices showing manual segmentation (dashed lines). (b) Masks showing 7 

classification regions used for training the deep learning neural network. (c) DLDF category 8 

maps from the evaluation phase. (d) ADC maps. (e) Maps of tumour age from the evaluation 9 

phase. 10 

Figure 2: (a) Complete set of diffusion MR images from a single coronal slice in the brain. (b) 11 

Classification masks from an Untreated tumour and a Treated tumour. (c) Example diffusion 12 

fingerprints taken from the corresponding numbered region in panel (b), showing the 13 

normalised diffusion signal taken from a single voxel. 14 

Figure 3: (a) Tumour volume measured from T2-weighted images. (b) Mean ADC 15 

measurements from mouse brain tumours (p < 0.001, Kruskal-Wallis one-way ANOVA). The 16 

blue region denotes a range of ADC values where pre-therapy and untreated tumours cannot 17 

be stratified based on ADC alone. 18 

Figure 4: DLDF classification maps and corresponding H&E histological sections at day 9 in 19 

(a) Untreated tumours and (b) treated tumours. DLDF could correctly distinguish between all 20 

untreated and treated tumours at Day 9. (c) and (d) Localised regions in DLDF classification 21 

maps and the corresponding regions on histology. The untreated tumour in (c) shows voxels 22 

classified as normal brain, which correspond approximately with neuronal tissue on histology. 23 

The treated tumour in (d) shows a transition in voxel classification (left to right) from normal 24 

brain (green) to untreated tumour (yellow) to treated tumour (red), which corresponds to three 25 

distinct regions on histology: normal brain parenchyma, a region of tumour infiltration and the 26 

bulk tumour tissue. 27 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 25, 2017. ; https://doi.org/10.1101/193730doi: bioRxiv preprint 

https://doi.org/10.1101/193730


 

21 
 

Figure 5: DLDF category maps compared with GFAP-strained histological sections from the 1 

same brains. (a) Evidence of tumour invasion across the corpus callosum in the DLDF map of 2 

an untreated tumour corresponds to a region of enhanced GFAP staining (black arrows). DLDF 3 

maps of (b) other untreated and (c) treated tumours showed no indication of corpus callosum 4 

invasion, which was reflected in histology. 5 
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