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Abstract6

1. Binomial N-mixture models are commonly applied to analyze population survey data. By estimating7

detection probabilities, N-mixture models aim at extracting information about abundances in terms of8

actual and not just relative numbers. This separation of detection probability and abundance relies9

on parametric assumptions about the distribution of individuals among sites and of detections of10

individuals among repeat visits to sites. Current methods for checking assumptions are limited, and11

their computational complexity have hindered evaluations of their performances.12

2. We develop computationally efficient graphical goodness of fit checks and measures of overdispersion for13

binomial N-mixture models. These checks are illustrated in a case study, and evaluated in simulations14

under two scenarios. The two scenarios assume overdispersion in the abundance distribution via a15

negative binomial distribution or in the detection probability via a beta-binomial distribution. We16

evaluate the ability of the checks to detect lack of fit, and how lack of fit affects estimates of abundances.17

3. The simulations show that if the parametric assumptions are incorrect there can be severe biases in18

estimated abundances: negatively if there is overdispersion in abundance relative to the fitted model19

and positively if there is overdispersion in detection. Our goodness of fit checks performed well in20

detecting lack of fit when the abundance distribution is overdispersed, but struggled to detect lack of fit21

when detections were overdispersed. We show that the inability to detect lack of fit due to overdispersed22

detection is caused by a fundamental similarity between N-mixture models with beta-binomial detections23

and N-mixture models with negative binomial abundances.24

4. The strong biases in estimated abundances that can occur in the binomial N-mixture model when the25

distribution of individuals among sites, or the detection model, is mis-specified implies that checking26

goodness of fit is essential for sound inference in ecological studies that use these methods. To check27
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the assumptions we provide computationally efficient goodness of fit checks that are available in an28

R-package nmixgof. However, even when a binomial N-mixture model appears to fit the data well,29

estimates are not robust in the presence of overdispersion unless additional information about detection30

is collected.31

1 Introduction32

Count surveys are often conducted as parts of population monitoring programs and ecological studies to33

follow changes in abundance of organisms in the wild. N-mixture models (Royle 2004; Royle & Dorazio 2006)34

have become increasingly applied to data from count surveys to correct for imperfect detection and yield35

estimates of absolute abundances instead of just relative abundances. These models are intuitively appealing36

because they can be applied to data from surveys with simple as well as more complex field protocols and37

allow simultaneous inclusion of explanatory variables for both abundance and detection processes.38

N-mixture models are hierarchical models composed of two layers where the first layer gives a statistical39

model for the distribution of individuals among sampled sites and the second layer a statistical model for the40

sampling or detection process. Binomial N-mixture models (Royle 2004) are a particular class of models that41

rely only on repeated counts from a large number of sites to estimate absolute abundance while accounting42

for imperfect detection using binomial detection models. The assumptions of these models include that43

the population size is the same at each repeat visit to the same site, usually called the closure assumption,44

and that each individual could potentially be detected at each visit; that the distribution of the number of45

animals at each site is randomly and independently distributed according to some parametric distribution;46

and that all individuals are detected independently. The simplicity of collecting data under the protocol of47

the binomial N-mixture model has led some authors to suggest monitoring programs to incorporate multiple48

visits to sites (Lyons et al. 2012), while others have advised careful scrutiny of model performance before49

adopting the binomial N-mixture model for inferences (Hunt et al. 2012; Couturier et al. 2013). In the50

remainder of the paper we will refer to binomial N-mixture models simply as ‘N-mixture models’.51

Because N-mixture models rely on parametric distributions and other assumptions, it is vital for reliable52

inference to investigate how sensitive estimates are to deviations from assumptions, and to devise methods53

for checking any assumptions that the models are sensitive to. N-mixture models have been shown to be54

reasonably robust to individual heterogeneity in detection unless detection probabilities are small (Veech et al.55

2016), but to be sensitive to the closure assumption with overestimation of abundance when the assumption56

is violated (Toribio et al. 2012). Martin et al. (2011) showed through simulation that abundance was57
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severely overestimated with an N-mixture model when detection probabilities were varying randomly among58

visits according to a nearly uniform distribution. They associated such variation, causing overdispersion in59

detection relative to the binomial distribution, with correlated behaviour among animals. They suggested a60

beta-binomial detection model to deal with it.61

Many applications of N-mixture models use a Poisson abundance mixture which leads to a restrictive variance-62

mean scaling such that the variances of counts as well as abundances are proportional to their respective63

means. However, overdispersion is a common feature of population count data (Hoef & Boveng 2007; Lindén64

& Mäntyniemi 2011) and Taylor’s power law, with empirical as well as theoretical support, suggests that the65

variance-mean scaling of abundances follows a power law with an exponent typically somewhere between 166

and 2 (Cohen et al. 2013). Other work has suggested that the abundance distributions found in population67

surveys can be highly complex and irregular, effectively defying parametric modelling altogether (Dorazio68

et al. 2008; Canale & Prünster 2017). Abundance overdispersion is sometimes incorporated in N-mixture69

models by assuming a zero inflated Poisson, negative binomial or Poisson log-normal abundance mixture.70

Several studies have found estimates from N-mixture models applied to survey data to depend on which71

abundance mixture is used (Kéry et al. 2005; Joseph et al. 2009) and that estimates from models (Royle72

2004) with a negative binomial abundance mixture sometimes behave poorly, yielding infinite maximum73

likelihood estimates of abundance (Dennis et al. 2015). This has led to recommendations for using zero74

inflated Poisson mixtures instead of negative binomial mixtures, even if the latter provide a better model75

fit (Joseph et al. 2009; Kéry & Royle 2016). Seemingly more realistic estimates do however not necessarily76

translate into better inference as the use of an ill fitting model could result in misleading conclusions.77

In relation to their common usage relatively few studies have examined the performance of N-mixture models78

(Dennis et al. 2015), and calls have been made for evaluating and developing methods for assessing their79

fit (Kéry & Royle 2016; Knape & Korner-Nievergelt 2016). Our aim in this paper is to propose a set of80

tools, including graphical checks and overdispersion measures, to assess goodness of fit of N-mixture models,81

and to evaluate their ability in detecting lack of fit when there is overdispersion in abundance or detection82

relative to the fitted model. The graphical checks are based on randomized quantile residuals (Dunn & Smyth83

1996; Warton et al. 2016), which have recently been applied to check goodness of fit of occupancy models84

(Warton et al. 2017), while the overdispersion measures are defined through two types of chi-square statistics.85

Compared to previously suggested goodness of fit checks that require parametric bootstrapping (Kéry et al.86

2005) and are time consuming, the new checks are computationally efficient, making it possible to assess87

their performance through simulations. We demonstrate the goodness of fit checks in a case study of wetland88

birds, and assess them in two simulation scenarios with overdispersion in the abundance distribution and in89
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the detection model. The goodness of fit checks are available in an R-package nmixgof.90

2 Methods91

In this section we first introduce the basics of the N-mixture model. In section 2.2 we then develop graphical92

methods and overdispersion metrics for assessing the fit of N-mixture models. In section 2.3 we demonstrate93

the use of the goodness of fit checks in a case study on wetland birds in Sweden. Finally, in section 2.4 we94

investigate the sensitivity of N-mixture models to overdispersion in the abundance and detection models and95

the ability of the goodness of fit checks to detect violation of the distributional assumptions.96

2.1 N-mixture models97

N-mixture models are a suite of models for abundance data obtained from repeat count surveys at multiple98

sites (Royle 2004). They model the data as arising from an abundance process describing the spatial variation99

in the number of individuals among sites and a detection process describing how many of the individuals100

present at each site are found at each visit. Data come from a set of R different sites and for the abundance101

process it is assumed that the numbers of individuals at sites, Ni, are distributed according to some discrete102

statistical distribution with probability function g,103

Ni ∼ g(N ;λi, θ),

where the draw for each site is independent, λi is describing the mean abundance in site i which can be104

a function of covariates, and θ is an optional parameter for overdispersion in the abundance distribution.105

In most applications, g is modelled as either a Poisson, a zero-inflated Poisson (ZIP), or as a negative106

binomial distribution. We will focus on these three mixtures in this paper. For the ZIP mixture we use the107

parameterisation:108

Ni ∼

 0 with probability ψ

Poisson(λi) with probability 1− ψ

where ψ is the probability of an excess zero. For the negative binomial mixture we use the parameterisation:109

Ni ∼ NegBin(λi, θ)

such that the variance of Ni is V (Ni) = λi + θλ2
i .110
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For each site observations come in the form of T counts, yi1, . . . , yiT , and for the detection model it is assumed111

that the counts are independent binomial draws with population size as index (Royle 2004):112

yit ∼ Bin(Ni, pit).

where pit is the detection probability associated with finding an individual that is present at site i at visit113

t and which may vary according to site or visit specific covariates. The design idea underlying this model114

is that counts are conducted during repeat visits to each site during a period of time for which the local115

abundance is closed so that at each visit all individuals are present but only a fraction is detected.116

Sometimes additional variation in detection is allowed for by letting117

yit ∼ Bin(Ni, p
′
it)

where the p′it are independently distributed according to a beta distribution118

p′it ∼ Beta(pit
1− δ2

δ2 , (1− pit)
1− δ2

δ2 )

resulting in a beta-binomial detection model. The specific parameterisation in the above equation ensures119

that pit is the mean detection probability and that the standard deviation of p′it scales linearly with δ and is120

equal to δ
√
pit(1− pit), with 0 ≤ δ ≤ 1.121

2.2 Checking for over-dispersion and goodness of fit122

N-mixture models rely on several crucial assumptions that include population closure within sites at repeat123

visits (i.e. that the population size N remains the same across visits), specific parametric distributions for the124

detection process and the distribution of abundance as well as functional assumptions about covariate effects.125

Checking the fit and assumptions of hierarchical models is difficult in general because distributional and126

independence assumptions occur at multiple levels in the hierarchy, and through conditioning on unobserved127

stochastic variables. Current common practice for assessing goodness of fit of N-mixture models, if checked128

at all, is to use parametric bootstrapping in combination with some goodness of fit statistic, often sums129

of squares or a Freeman-Tukey statistic (Kéry & Royle 2016). This approach is computationally intensive130

since in each bootstrap sample the model under investigation needs to be fitted to simulated data a large131

number of times. In this section we suggest three types of residuals to check the goodness of fit of N-mixture132
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models, as well as two measures of overdispersion relative to a fitted model. The benefit of these over the133

bootstrap procedure is that i) they are orders of magnitude faster to compute, with computing time measured134

in terms of seconds rather than hours as is sometimes the case for the parametric bootstrap procedure, and ii)135

residuals can be used to graphically check a range of assumptions such as overdispersion via quantile-quantile136

plots (qq plots), residual plots against fitted values to check homoscedasticity, and plots of residuals against137

covariates to check functional assumptions (Warton et al. 2017).138

2.2.1 Randomized-quantile residuals139

We will define three types of randomized-quantile (rq), or Dunn-Smyth, residuals (Dunn & Smyth 1996). Rq140

residuals have recently gained popularity in ecological analyses (Warton et al. 2016) due to their convenient141

property that they are normally distributed under the correct model. For sparse count data this means that142

plots of e.g. residuals against fitted values behave in similar ways to such plots for ordinary linear models143

which is not the case for standard residuals for count data. That the residuals are indeed normally distributed144

is also easy to check, for example using qq plots (Warton et al. 2016).145

The normality of rq residuals is achieved by randomization: For a random count variable z with cumulative146

distribution function (CDF) F , they are defined by147

rrq = Φ−1(u)

u ∼ Unif(F (z − 1), F (z))
(1)

where Φ−1 is the inverse of the standard normal CDF and u is a value randomly generated from a uniform148

distribution. To compute rq residuals the function F needs to be computed and below we define three variants149

of rq residuals using CDFs corresponding to different aspects of the data and potentially picking up different150

aspects of model fit.151

2.2.1.1 Marginal rq residuals152

For the first type of rq residuals we simply take F to be the marginal distribution of the counts (i.e. the153

distribution of the counts over all possible latent abundances). For the N-mixture model without heterogeneity154

in pit and with a Poisson, ZIP or negative binomial mixture distribution, the marginal distribution of each155

observation comes from the same type of distribution as that used for the abundance mixture. If for example156
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the abundance mixture is ZIP (λi, ψ), the marginal distribution of each yit is ZIP (pitλi, ψ). In these cases157

the randomized-quantile residuals can be easily computed using the definition above (eq. 1).158

For beta-binomial detection models the marginal distribution is to our knowledge not available in closed form159

but can be computed by numeric summation over N using160

F (yit) ≈
K∑

N=yit

FBetaBin(yit;N, pit, δ)Pi(N)

where K is large enough that the contribution from larger N can be ignored, FBetaBin is the CDF of the161

beta-binomial, and Pi(N) is the probability that the abundance at site i is equal to N given by the abundance162

distribution. This is similar to how the likelihood of the N-mixture model can be approximated by a finite163

sum (Royle 2004).164

A property of the marginal rq residuals computed from an N-mixture model is that residuals from the same165

site are not independent because the counts are not. Hence they should not be used directly in qq plots166

which assume independent observations. However sets of residuals containing only one residual from each site167

are independent in the same way that sets of counts are, and separate qq plots can be drawn for each set.168

Since there is one marginal rq residual per observation, they can be plotted against visit specific detection169

covariates as well as against site specific covariates.170

2.2.1.2 Site-sum rq residuals171

The second type of residuals we propose is defined from the marginal distribution of the sum of the counts172

within each site ySi =
∑

t yit. The marginal CDF for the site sums can be computed numerically using173

F (ySi) ≈
K∑

N=ySi

FBinSum(ySi;N, pi1, . . . , piT )Pi(N)

where FBinSum is the CDF of a sum of independent binomial variables, all with the same index N but174

potentially different probabilities pit. If the pit are all the same FBinSum is simply the cumulative probability175

function of a binomial distribution with index TN but if the pit are not all identical then FBinSum is more176

complex. In the general case it can be computed by brute force as a numeric sum:177

FBinSum(ySi;N, pi1, . . . , piT ) =
∑

k1+...+kT≤ySi

PBin(k1;N, pi1) · . . . · PBin(kT ;N, piT )

where PBin is the probability function of the Binomial distribution. The same computation may be used for178
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beta-binomial detection models by replacing PBin with PBetaBin.179

The idea of aggregating counts across sites is to make the residuals independent and to potentially increase180

their informativeness in cases where counts are sparse. Since there is one site-sum residual per site, they can181

be used in plots against site-specific covariates.182

2.2.1.3 Observation rq residuals183

We also explored a third type of residuals that we refer to as observation residuals. The idea is to compute184

residuals from the observation model only by conditioning on the abundances, with the intent of more185

specifically checking the detection part of the model. Since the abundances are not directly available from a186

fitted model we use a random sample of abundances from the empirical Bayes distribution (the distribution187

of the abundances given the data and under the parameters obtained by maximum likelihood) for the188

conditioning. That is, residuals were computed using the binomial or beta-binomial CDF with Ni equal to a189

draw from the empirical Bayes distribution. The random draw introduces additional stochasticity to the190

residuals which is likely to reduce their power to some degree.191

2.2.2 Measures of overdispersion192

The parametric bootstrap procedure used to check goodness of fit mentioned above has also been used to193

provide a measure of overdispersion (Kéry & Royle 2016) through194

ĉ = χ2
od/χ

2
od,sim (2)

where χ2
od is a goodness of fit statistic computed from a model fit to the data and χ2

od,sim is the mean of195

the same statistic computed from fits of the model to data simulated from the model using parameters196

estimated from the original data. Under the correct model the expectation of ĉ is 1 while we would expect ĉ197

to be greater than 1 if the data are over-dispersed relative to the fitted model (and less than 1 if they are198

under-dispersed). Clearly this is a computationally expensive calculation and thereby difficult to evaluate199

through simulations. The goal in this section is to find similar measures with less of a computational burden,200

and whose behaviour we will explore in simulations in a later section.201

For measures of discrepancy between the observed data and a fitted model we use chi-square type statistics202

based on Pearson residuals which have the form (Hilbe 2011):203
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χ2 =
∑ (O − E)2

V
(3)

where V is the variance of the observations O and E is its expectation. The statistic differs from the standard204

chi-square statistic which has the form205

χ2 =
∑ (O − E)2

E
.

The former collapses to the latter when the variance is equal to the mean, such as when O are counts from206

a Poisson distribution with mean E. The statistic based on Pearson residuals has the advantage that the207

expectation of the terms in the sum are 1 under the correct model which is not the case for the standard208

chi-square statistic in general (e.g. under a negative binomial model). We will use this feature here to209

define overdispersion metrics that have mean 1 under the correct model. We will consider two variants of210

overdispersion measures, one based on marginal Pearson residuals and the other based on site-sum Pearson211

residuals.212

2.2.2.1 Marginal ĉ213

For the marginal measure of overdispersion we use the chi-square statistic based on Pearson residuals (eq. 3)214

computed over each observation:215

χ2
M =

∑
i,t

(yit − E(yit))2

V (yit)
=

∑
i,t

(yit − pitE(Ni))2

V (yit)
.

The general expression for the variance of the counts with beta-binomial detection is216

V (yit) = pit(1− pit)[E(Ni) + δ2{E(Ni)2 − E(Ni) + V (Ni)}] + p2
itV (Ni)

where E(Ni) and V (Ni) are the mean and variance given by the abundance mixture (a derivation of this formula217

is given in Appendix 1). For the simplest case with Poisson distributed abundances (E(Ni) = V (Ni) = λi)218

and binomial detection (δ = 0) the variance reduces to219

V (yit) = λipit(1− pit) + p2
itλi.
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From χ2
M we define the marginal overdispersion measure as220

ĉM = χ2
M/(RT − np)

where np is the number of parameters of the model and RT is the product of the number of sites and the221

number of visits, i.e. the total number of counts.222

2.2.2.2 Site-sum ĉ223

We define the site-sum measure of overdispersion by computing the chi square statistic (eq. 3) for Pearson224

residuals of the summed counts across sites:225

χ2
S =

∑
i

(ySi − E(ySi))2

V (ySi)
=

∑
i

(ySi −
∑

t pitE(Ni))2

V (ySi)
.

The variance of the summed counts in the above equation is226

V (ySi) =
∑

j

V (yit) +
∑

t1 6=t2

pit1pit2V (Ni)

From this we define the site-sum measure of overdispersion by again dividing by the number of terms in the227

sum (R) less the number of parameters (np):228

ĉS = χ2
S/(R− np).

2.3 Case study: Northern shoveler229

To illustrate the performance of the residuals and overdispersion metrics above, we analyse data from a230

wetland survey conducted in May and June of 2016 at 50 wetland sites across southern Sweden. Most sites231

(90%) were visited 10 times during a three week period, split between 5 visits by each of two observers,232

but some sites had fewer visits. The number of individuals for each of 70 bird species associated with233

wetlands was recorded on each visit. Here, we use counts for Northern shoveler (Fig. S1), a dabbling duck234

moderately common in lakes and wetlands in southern Sweden. We fit six N-mixture models to the data using235

combinations of Poisson (P), ZIP and negative binomial (NB) abundance mixtures and binomial (B) and236

beta-binomial (BB) detection. Hereafter the models will sometimes be referred to using abbreviations such as237

BB-ZIP with prefix denoting the detection modeland suffix denoting the abundance distribution. All models238
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included two covariates for abundance, the log transformed total area of water at the wetland representing239

its size and the latitude of the wetland, and two covariates for detection, the date of the survey and the240

percentage of reed cover at the wetland as a proxy for visibility. All covariates were introduced as linear241

functions on the log (abundance) and logit scale (detection) and were standardized to mean 0 and standard242

deviation 1 prior to analyses. We fitted models with binomial detection using the R-package unmarked (Fiske243

& Chandler 2011) and models with beta-binomial detection using custom code.244

The N-mixture model as implemented in unmarked approximates the likelihood by truncating an infinite sum245

over all possible values of N . The upper bound, K, needs to be set when fitting the model, but it is known246

that estimates can be unstable to changes in this bound, possibly due to maximum likelihood estimates of247

abundance being infinite (Dennis et al. 2015). We used a numeric upper bound K = 400 for abundance in248

the calculation of the likelihoods but also fitted the same models a second time using K = 1000 to check if249

the estimates were stable to this numeric cutoff.250

2.3.1 Results of case study251

Estimates under the Poisson and ZIP abundance mixtures were not sensitive to the numerical cutoff K while252

this was the case for both models with an NB mixture. The estimates obtained for the NB mixtures are thus253

not maximum likelihood estimates, and estimates of abundance will increase and those of detection decrease254

as K is increased. We will refer to them as truncated estimates. Models with binomial and beta-binomial255

detection give similar estimates under the same abundance mixture but the estimates differ among abundance256

mixtures (Fig. 1).257

Qq plots of site-sum randomized quantile residuals show that models with Poisson or ZIP mixtures provide258

poor fits to the data since the quantiles deviate clearly from the identity line (Fig. 2), while the truncated259

estimates of the NB mixtures appear adequate (Fig. 2). The qq plots for the Poisson mixtures indicate that260

the largest residuals are larger and the smallest smaller than would be expected under Poisson mixtures261

while the qq plots for the ZIP mixtures show some improvement in terms of explaining the smallest (zero)262

observations, but is still at loss in explaining larger counts. Similar patterns are seen for the marginal rq263

residuals (Fig. S2). The ĉ measures similarly indicate substantial overdispersion (ĉ >> 1) for the Poisson264

and ZIP mixtures but not for the truncated NB estimates (Table 1). Overdispersion is stronger according to265

ĉM than ĉS (Table 1). Similarly, AIC values indicate a poor fit of the Poisson and ZIP mixtures relative to266

the truncated NB mixture estimates (Table 1). AIC in addition suggest a poor fit of the truncated B-NB267

model relative to the truncated BB-NB model which is not picked up by the qq plots of site-sum residuals or268
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ĉS . Qq plots of observation residuals however do suggest lack of fit of the truncated B-NB model (Fig. 3).269

Qq plots of observation residuals for the truncated BB-NB model show no obvious lack of fit (Fig. 3).270

model ĉS ĉM AIC
B-P 11.0 5.3 2026.3
B-ZIP 4.4 3.3 1915.6
B-NB 0.9 1.3 1601.6
BB-P 9.2 2.9 1789.5
BB-ZIP 4.6 2.2 1719.8
BB-NB 0.9 0.8 1568.3

Table 1: Estimates of overdispersion for fits to Northern shoveler data.

These results leave us in a quandary. The NB mixtures give unstable estimates and cannot be used for271

inferences about abundance, and the poor fit of the Poisson and ZIP mixtures suggest that we cannot use272

estimates from these models for reliable inference either. To check if the reason for the poor fit of the Poisson273

and ZIP mixtures might be due to incorrect functional covariate relationships we plot rq residuals against274

each of the covariates for the BB-ZIP model, which has the best fit among the models with stable estimates275

(Fig. S3). Since there is no clear pattern in the residuals as a function of covariates for this model there276

appears to be no simple correction to improve its fit. The conclusion from this case study therefore has to be277

that we are not able to find an adequately fitting N-mixture model that provides reasonable estimates for the278

data at hand. The seemingly decent fit using the truncated estimates from the NB mixtures on the other279

hand suggest that an analysis of relative abundances with generalized linear mixed models accounting for280

overdispersion could be fruitful (Barker et al. 2017), but we do not pursue this further here.281

2.4 Simulations282

To investigate the properties of our goodness of fit checks, and how they relate to potential bias in parameter283

estimates, we ran two simulation scenarios, one where there is overdispersion in the abundance distribution284

relative to the Poisson distribution and one where there is overdispersion in detection relative to the binomial285

distribution such that detection probabilities vary independently among sites and visits.286

2.4.1 Scenario 1: Overdispersed abundance287

We simulated data over 200 sites, each visited 5 times, using a binomial detection model with pit set to 0.25288

for all visits and sites and with a constant expected abundance across all sites λi = 10. To investigate effects289

of overdispersion we used a negative binomial abundance distribution and varied the overdispersion coefficient290

θ from 0 to 2 in steps of 0.25. Thus, data were generated using a B-NB model. For each value of θ 500 data291
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Figure 1: Estimates and 95% confidence intervals for intercepts and covariates coefficients for abundance
(left panels) and detection (right panels) of the models fitted to Northern shoveler data. Prefix B and BB
refers to, respectively binomial and beta-binomial detection models. Suffix P, ZIP and NB refers to Poisson,
zero-inflated Poisson, and negative binomial abundance mixtures. Estimates under the NB mixtures are
unstable and not maximum likelihood estimates. Truncated point estimates are given in gray for K=400 for
those models, but confidence intervals are omitted.
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Figure 2: QQ plots of site-sum randomized-quantile residuals against standard normal residuals for fits of
models to the Northern shoveler data. Under a good fit residuals should be close to the identity line (gray).
Prefix B and BB refers to, respectively binomial and beta-binomial detection models. Suffix P, ZIP and NB
refers to Poisson, zero-inflated Poisson, and negative binomial abundance mixtures.
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Figure 3: QQ plots of observation randomized quantile residuals against standard normal residuals for fits
of binomial and beta-binomial NB models to the Northern shoveler data. Under a good fit residuals should
be close to the identity line (gray). B and BB refers to, respectively binomial and beta-binomial detection
models, while NB refers to the negative binomial abundance mixture.

sets were generated. For each simulated data set we fit a B-P, B-ZIP, B-NB (which in this simulation is the292

correct model), and a BB-P N-mixture model, each with a single intercept for detection and abundance but293

no covariates. The models with binomial detection (B-P, B-ZIP, and B-NB) were fitted in unmarked while294

the BB-P model was fitted using custom R-code.295

In addition, we fitted a second set of models that were identical to the ones described above except for296

the addition of a single covariate for abundance. The covariate was generated from a standard normal297

distribution and was used in the fitted models but was unrelated to the simulated data. These three models298

with covariates were fitted in order to investigate if overdispersion might lead to finding spurious effects of299

covariates (Richards 2008).300

We used a numeric cutoff value K = 200 for the calculation of the likelihood during model fitting. To check301

for stability of estimates with respect to K we additionally fitted each model using a K value of 400 and302

classified estimates as stable if the abundance intercept between the two K values differed by less than 0.01.303

For all the fitted models we retrieved parameter estimates, AIC, and also computed ĉM and ĉS . As a304

rough estimate of the power of the qq plots to detect non-normality in the randomized quantile residuals305

we computed the p-value from a Shapiro-Wilks test of normality for the site-sum and observation residuals306

(this was not done for the marginal residuals because they are not independent among visits). We do not307

recommend this procedure in applications but used it here to obtain a crude but objective measure of power308
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of the residuals to detect lack of fit. In applications we suggest using graphical checks via qq plots and plots309

of residuals against fitted values and covariates because such checks provide more information about the310

nature of the lack of fit than a p-value does.311

2.4.2 Scenario 2: Overdispersed detection312

In the second scenario we explored the effects of overdispersion in detection relative to the binomial distribution.313

The setup in this scenario is similar to the setup in scenario 1, except that we used a Poisson abundance314

mixture and a beta-binomial detection model to simulate data (i.e. a BB-P model). We varied δ, i.e. the315

amount of variation in the detection probability, from 0 to 1/
√

5. The upper bound was chosen so that the316

distribution of the detection probability has an interior mode for all values of δ except for δ = 1/
√

5 where317

the mode is at 0. We fitted the same models as in scenario 1.318

2.4.3 Simulation results: scenario 1319

Nearly all model fits converged and were stable with respect to K in this scenario (Fig. 4a). As expected,320

fitting the true B-NB model provided the least bias, nearly nominal confidence interval coverage for the321

covariate effect, ĉ measures close to 1, and rejected the normality test for the rq residuals in proportion to322

the alpha level (Fig. 4).323

The B-P, B-ZIP and BB-P models strongly underestimated abundance for high levels of overdispersion with324

a relative bias of less than -50% for the B-P, B-ZIP and BB-P models (Fig. 4c). The strongest bias was given325

by the BB-P model. These levels of bias are of similar magnitude to estimates not adjusted for detection,326

which had a relative bias of around -60%. Overdispersion also led to poor confidence interval coverage for the327

spurious covariate effect, except when fitting the correct model (Fig. 4d).328

Lack of fit relative to the true B-NB model was readily identified by AIC in the simulations (Fig. 4b).329

Absolute lack of fit was similarly well identified by ĉM and ĉS but the latter estimates of overdispersion were330

higher (Fig. 4e and f). Considerable bias in the abundance estimates (more than 30%) was associated with331

average ĉM and ĉS as low as 1.5.332

Normality tests of the site-sum rq residuals rejected incorrect models at high rates (Fig. 4g), but observation333

rq residuals had considerably lower power (Fig. 4h).334
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Figure 4: Results for binomial Poisson (B-P, blue), binomial ZIP (B-ZIP, green), binomial NB (B-NB,
magenta), and beta-binomial Poisson (BB-P, orange) models fitted to data simulated from a negative binomial
mixture with binomial detection (scenario 1) as a function of the overdispersion θ. Grey lines give the reference
level in each panel. a) Proportion of simulations for which estimates where stable relative to the numerical
cutoff K and for which the optimization routine converged. b) Average difference in AIC between each model
and the fitted correct B-NB model. c) Relative bias in estimated mean abundance. Black line gives estimates
not adjusted for imperfect detection, computed as the mean of the maximum counts at each site. The red
line gives the theoretical bias of the BB-P model by matching moments. d) Proportion of Wald confidence
intervals (90%) for the covariate effect that cover the true value (0). e) Marginal overdispersion measure. f)
Site-sum overdispersion measure. g) Proportion of simulations for which a normality test (Shapiro) computed
from site-sum rq residuals was rejected at the 10% level. h) Proportion of simulations for which a normality
test (Shapiro) computed observation rq residuals was rejected at the 10% level.17
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Figure 5: Results for binomial Poisson (B-P, blue), binomial ZIP (B-ZIP, green), binomial NB (B-NB,
magenta), and beta-binomial Poisson (BB-P, orange) models fitted to data simulated from a Poisson mixture
with beta-binomial detection (scenario 2) as a function of the amount of variation in detection probability
δ. Grey lines give the reference level in each panel. a) Proportion of simulations for which estimates where
stable relative to the numerical cutoff K and for which the optimization routine converged. b) Average
difference in AIC between each model and the fitted true BB-P model. c) Relative bias in estimated mean
abundance. Black line gives estimates not adjusted for imperfect detection, computed as the mean of the
maximum counts at each site. The red line gives the theoretical bias of the B-NB model by matching moments.
d) Proportion of Wald confidence intervals (90%) for the covariate effect that cover the true value (0). e)
Marginal overdispersion measure. f) Site-sum overdispersion measure. g) Proportion of simulations for which
a normality test (Shapiro) computed from site-sum rq residuals was rejected at the 10% level. h) Proportion
of simulations for which a normality test (Shapiro) computed observation rq residuals was rejected at the
10% level.
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2.4.4 Simulation results: scenario 2335

Most model fits in scenario 2 converged and were stable with respect to K, except under the B-NB model336

that failed for almost all simulated data sets when δ > 0.2 (Fig. 5a). Properties of the model fits like bias,337

coverage etc. were computed only from fits that converged and were stable with respect to K.338

The B-NB model, when it converged, strongly overestimated abundance even for small amounts of variation339

in the detection probability, while the B-P and B-ZIP models strongly overestimated abundance when the340

variation in detection probability was larger (Fig. 5c). The correct beta-binomial Poisson model (BB-P)341

provided unbiased estimates. Confidence intervals for the spurious covariate had acceptable coverage for342

moderate variation in the detection probability but declined as that variability increased except under the343

correct model (Fig. 5d).344

The overdispersion measures ĉM and ĉS performed similarly in detecting lack of fit. They were unable to345

indicate lack of fit of the strongly biased B-NB model but did increase for the B-P and B-ZIP models as346

the variation in the detection probability increased (Fig. 5e and f). However, even when abundance was347

estimated at twice its true value (100% relative bias) under these models, the overdispersion measures were348

only around 1.5. These metrics therefore struggled to indicate lack of fit, and overdispersion metrics only349

slightly larger than 1 could correspond to very strong bias in estimated abundance.350

Normality tests of rq residuals similarly failed to detect lack of fit for small to moderate variation in the351

detection probability. For large variation in the detection probability the test of the observation rq residuals352

did often detect lack of fit and had better power than the test of the marginal rq residuals (Fig. 5g and h).353

AIC had better performance in determining relative lack of fit of the B-P and B-ZIP model in relation to the354

true BB-P model, but was unable to distinguish between the B-NB model and the true model (Fig 5b).355

2.4.5 Approximating the BB-P N-mixture model with a B-NB model356

The inability of the overdispersion measures to diagnose lack of fit of the B-NB model in scenario 2, the357

small difference in AIC between this model and the true BB-P model for moderate values of δ, and the358

collapse at large values of δ, can be understood through approximating the BB-P model with a B-NB model.359

Barker et al. (2017) recently used moment matching to show that Poisson and negative binomial N-mixture360

models with a binomial detection model can be approximated by a double Poisson regression model, the361

latter lacking any notion of a latent abundance. Using moment matching, we show in Appendix 1 that an362

N-mixture model with beta-binomial detection and a Poisson abundance mixture can be approximated by363
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another N-mixture model with binomial detection and a negative binomial abundance mixture where the364

abundance is inflated as long as δ2 < p/(λ− λp). In other words, data from a BB-P model will look identical365

to data from a B-NB model with higher abundance in terms of means, variances and covariances for such366

values. Because of this it is difficult to distinguish between overdispersion in the detection probability and367

overdispersion in abundance. The only chance to separate between them is therefore to resort to more subtle368

properties of the models given by their higher order moments.369

This explains why the overdispersion measures ĉM and ĉS cannot detect lack of fit in scenario 2 since they only370

depend on the first and second order moments of the models. It also gives a justification for the breakdown371

of the B-NB model around δ = 0.2 in Fig. 5. The moment matching gives negative p for the B-NB model if372

δ > 0.18. For these values of δ, the best moment approximation is therefore p = 0 and λ =∞. For values of373

δ < 0.18 the expected bias from the B-NB moment approximation matches the bias in the simulations (Fig.374

5c).375

The above approximation also suggests that the BB-P model could underestimate abundance and provide a376

decent fit to data that are generated from a B-NB model with the same moments as long as δ2 < p/(λ− λp).377

For larger values of δ there is no matching B-NB model but we show in Appendix 1 that for such δ there is a378

range of BB-NB N-mixture models with the exact same moments as the BB-P model. This range contains one379

model for each possible value of abundance larger than λ. Hence, data that have first and second moments380

that matches the BB-P model could have been generated from a model with overdispersion in both abundance381

and detection with a much higher abundance than the BB-P model would suggest.382

3 Discussion383

N-mixture models provide an appealing framework for learning about absolute rather than relative abundance384

of populations from count data alone, but this comes at the price of a very strong reliance on model385

assumptions. Count data by themselves contain only minimal information about absolute abundances (Knape386

& Korner-Nievergelt 2015; Barker et al. 2017) and our results, and some results of previous studies (Martin387

et al. 2011; Toribio et al. 2012), show that this leads to N-mixture models often being sensitive to even388

small amounts of model mis-specification. As a result, estimates of abundance and detection can be severely389

biased and inference about effects of covariates misleading if model assumptions are not met to a satisfactory390

degree. In light of this, finding a model that adequately fits the data is necessary for reliable inferences about391

abundance using N-mixture models. The diagnostic tools proposed here are designed to evaluate the goodness392

of fit of N-mixture models.393

20

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 27, 2017. ; https://doi.org/10.1101/194340doi: bioRxiv preprint 

https://doi.org/10.1101/194340


Our results show sensitivity of estimated abundances to overdispersion in the abundance mixture and, as394

previously shown (Martin et al. 2011), in the detection probability if the overdispersion is not accounted395

for. Not accounting for overdispersion in the abundance mixture leads to underestimating actual abundance396

while not accounting for random variation in the detection probability leads to overestimating abundance.397

In our simulations, site-sum rq residuals and marginal and site-sum overdispersion measures were effective398

in detecting lack of fit caused by overdispersion in the abundance mixture. However, average values of the399

overdispersion metrics as small as 2 or less corresponded to underestimating abundance by 30% on average.400

We found detecting lack of fit due to overdispersion in the detection probability to be more challenging. Lack401

of fit of a binomial detection model due to random variation in the detection probability among sites and402

visits was only reliably detected at levels of overdispersion where bias was already large. Rq residuals and403

overdispersion metrics had no power to detect lack of fit of the negative binomial model even when abundance404

was overestimated by over 300%, but had some power to detect lack of fit of the binomial Poisson and ZIP405

models for high variability in the detection probability. Like for lack of fit due to overdispersion in abundance,406

small values of the overdispersion metrics can correspond to strong bias in estimated abundance.407

Problems with detecting lack of fit due to variation in the detection probability occur despite the fact that we408

used a large sample size of 200 sites and 5 repeat visits in our simulation, and are not simply due to a poor409

choice of goodness of fit metrics. The problems arise due to a fundamental similarity between alternative410

model structures for the same data leading to difficulties in distinguishing between models. We show in411

Appendix 1 that the first and second order moments of the negative binomial N-mixture model can be matched412

exactly to the moments of a beta-binomial Poisson N-mixture model for small to intermediate variability413

in the probability of detection. This correspondence explains why detecting lack of fit is problematic for414

this model since higher order moments are needed to separate between them. That is, data from a negative415

binomial model and a beta-binomial Poisson model can behave in much the same way and are therefore416

difficult to separate. While it is possible that alternative goodness of fit metrics that are more efficient in417

detecting lack of fit due to variation in the detection probability could be designed, this will be a hard and418

sometimes impossible problem to solve, especially for limited sample sizes such as a low number of repeat419

visits.420

Barker et al. (2017) recently used moment matching to show that alternative data generating mechanisms421

can give rise to data that are similar to the binomial Poisson and negative binomial N-mixture models. The422

moment matching here extends these results to beta-binomial models, and does so within the extended423

framework of beta-binomial negative binomial N-mixture models to show that a wide range of different424

abundances can give rise to similar data. This is concerning for the robustness of estimates of abundance using425
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the beta-binomial model. Most real data sets would be expected to contain overdispersion (or sometimes426

underdispersion) in both the detection and the abundance process. The beta-binomial negative binomial427

N-mixture model provides one framework for such data, but we have shown that this framework is identifiable428

only by considering moments of the models beyond those of the second order (means, variances and covariances)429

so that resorting to arguably subtle properties of the models would be required to identify abundance.430

The bias of the N-mixture model under mis-specification depends on parameter values. We used a moderately431

low detection probability (p = 0.25) and a high abundance (λ = 10) in our simulations. The moment matching432

suggests that if the detection probability is higher or abundances lower, the biases will be smaller and the433

N-mixture model more robust. The problem in practice is that these quantities are unknown. It seems434

tempting to rely on estimated detection probabilities and abundances from a fitted model to determine435

that one is in the parameter region where estimates are robust, but it is clear from the simulations that436

such an approach is not reliable. In scenario 1, estimated detection probabilities under models ignoring437

overdispersion in abundance were much higher than the detection probabilities used to simulate the data.438

Our suggestion is to instead fit multiple N-mixture models with and without overdispersion to the same data.439

In the parameter region where the N-mixture model is more robust, the different models are expected to440

provide similar although not necessarily identical estimates. In cases where the different models give similar441

abundances and fit the data well, the estimation issues discussed here may therefore be less of a problem.442

Variability in the detection probability led to failure of the negative binomial N-mixture model such that443

it provided practically infinite estimates of abundance as this variability increased. This happened in our444

simulations when matching the moments of the negative binomial N-mixture model to the beta-binomial445

model suggests a negative probability. Thus our results give a mechanism through which the negative binomial446

model can fail to provide finite estimates of abundance, a problem that has been commonly observed in case447

studies and in simulations (Dennis et al. 2015; Kéry & Royle 2016).448

The goodness of fit checks discussed here for binomial N-mixture models are easily extended to multinomial449

N-mixture models (Kéry & Royle 2016). Site-sum rq residuals and overdispersion metrics may for example450

be defined for the sum of counts over all the observed categories of the multinomial. In distance sampling451

this equates to the total number of individuals detected across all distances at each site, and our ĉS measure452

defined in this way would correspond to the ĉ metric for distance sampling given by Johnson et al. (2010) in453

the case of Poisson distributed abundances.454
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3.1 Conclusions455

Some studies have questioned the utility of the N-mixture framework (Hunt et al. 2012; Couturier et al. 2013;456

Barker et al. 2017). Our results extend concerns about robustness to N-mixture models with beta-binomial457

detections, which have been argued to be more robust than their binomial counterparts (Martin et al. 2011).458

We agree with Barker et al. (2017) that count data lacking additional information about detection probabilities459

are often better treated as indices of relative abundance than used to estimate absolute abundance. By460

treating data as indices one can get around the instabilities often associated with the N-mixture model and461

utilize more standard frameworks like the generalized linear or additive mixed models (Link & Sauer 1997;462

Fewster et al. 2000; Knape 2016) with their suite of methods for assessing model fit (Barker et al. 2017).463

Alternatively, detection probabilities in the binomial N-mixture model may be calibrated using additional464

information about detections for some or all sites, e.g. through removal (Farnsworth et al. 2002) or distance465

sampling (Johnson et al. 2010) protocols. If one despite the concerns with robustness uses binomial N-mixture466

models for estimating absolute abundance one should make sure that the final model provides a good fit467

to the data. Doing so will provide some steps towards reducing the risk of strongly biased estimates. Our468

goodness of fit checks can be used to this end and are available in an R-package nmixgof compatible with469

unmarked.470
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