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Biobank-based genome-wide association studies are enabling exciting insights in complex

trait genetics, but much uncertainty remains over best practices for optimizing statistical

power and computational efficiency in GWAS while controlling confounders. Here, we intro-

duce a much faster version of our BOLT-LMM Bayesian mixed model association method—

capable of running analyses of the full UK Biobank cohort in a few days on a single com-

pute node—and show that it produces highly powered, robust test statistics when run on all

459K European samples (retaining related individuals). When used to conduct a GWAS for

height in UK Biobank, BOLT-LMM achieved power equivalent to linear regression on 650K

samples—a 93% increase in effective sample size versus the common practice of analyzing

unrelated British samples using linear regression (UK Biobank documentation; Bycroft et al.

bioRxiv). Across a broader set of 23 highly heritable traits, the total number of independent

GWAS loci detected increased from 5,839 to 10,759, an 84% increase. We recommend the

use of BOLT-LMM (retaining related individuals) for biobank-scale analyses, and we have

publicly released BOLT-LMM summary association statistics for the 23 traits analyzed as a

resource for all researchers.
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To the Editor:

Despite recent work highlighting the advantages of linear mixed model (LMM) methods for

genome-wide association studies in data sets containing relatedness or population structure [1–

3], much uncertainty remains about best practices for optimizing GWAS power while controlling

confounders. Several recent studies of the interim UK Biobank data set [4] (∼150,000 samples)

removed>20% of samples by applying filters for relatedness or genetic ancestry, and/or used linear

regression in preference to mixed model association. These issues are exacerbated in the full UK

Biobank data set (∼500,000 samples), in which suggested sample exclusions decrease sample size

by nearly 30% [5]. Here, we release a much faster version of our BOLT-LMM Bayesian mixed

model association method [3] and show that it can be applied with minimal sample exclusions and

achieves greatly superior power compared to common practices for analyzing UK Biobank data.

In analyses of 23 highly heritable UK Biobank phenotypes (Supplementary Table 1), we ob-

served that BOLT-LMM (applied to all 459,327 European samples and ∼20 million imputed vari-

ants passing QC) consistently achieved far greater association power than linear regression with

principal component (PC) covariates (on 337,539 unrelated British samples, following ref. [5]),

attaining an 84% increase in GWAS locus discovery (10,759 total independent loci versus 5,839;

Fig. 1a and Supplementary Table 2). These gains in power were driven only partially by the in-

creased number of samples analyzed; we observed that BOLT-LMM achieved effective sample

sizes as high as ∼700,000 by conditioning on polygenic predictions from genome-wide SNPs,

which effectively reduces noise in an association test [2, 3, 6] (Fig. 1b, Supplementary Fig. 1, and

Supplementary Table 3). The large sample size of the UK Biobank—which enables BOLT-LMM

to predict and condition away up to 43% of phenotypic variance (Fig. 1b)—is now revealing the

full power of this approach.

To verify that BOLT-LMM analyses of all European samples were robust to potential con-

founding due to relatedness or population structure, we performed LD score regression (LDSC)

analyses [7] of association statistics computed using both BOLT-LMM (on all European sam-

ples) and linear regression (on unrelated British samples); we ran LDSC using the baselineLD

model [8]. We observed that while the value of the LD score regression intercept [7] was gen-

erally difficult to interpret due to attenuation bias [3], which causes the intercept to rise above 1
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with increased sample size and heritability (Supplementary Fig. 2 and Supplementary Note), the

attenuation ratio—(LDSC intercept – 1) / (mean χ2 – 1)—matched closely between BOLT-LMM

and PC-corrected linear regression and was relatively small (Fig. 1c, Supplementary Fig. 2, and

Supplementary Table 4). Across 23 traits, we observed similar mean attenuation ratios of 0.078

(s.e.m. 0.006) for PC-corrected linear regression and 0.082 (0.005) for BOLT-LMM, indicating

that BOLT-LMM successfully controlled for sample structure (as expected for mixed model meth-

ods) [1–3]. In contrast, uncorrected linear regression produced a mean attenuation ratio of 0.104

(0.012), indicating slight confounding (Supplementary Fig. 2 and Supplementary Table 4). We

note that attenuation ratios are broadly smaller under the LDSC baselineLD model [8], which in-

corporates functional and LD-related genome annotations, than under the original LDSC model

(Supplementary Table 5), consistent with better model fit.

Our new release of the BOLT-LMM software (version 2.3) implements additional computa-

tional improvements that reduce running times by a factor of ∼4x versus the previous version,

achieving run time scaling close to linear in sample size and comparable to linear regression (a few

days for UK Biobank analyses; Fig. 1d and Supplementary Table 6). Specifically, BOLT-LMM

v2.3 performs much faster processing of imputed genotypes, which we discovered was the bot-

tleneck for analyses of extremely large imputed data sets (e.g., ∼93 million variants in the UK

Biobank full release). To overcome this bottleneck, we implemented fast multi-threaded support

for test statistic computation on imputed genotypes in the new BGEN v1.2 file format (Supple-

mentary Note). Additionally, for analyses of very large data sets, we now recommend including

principal component covariates for the purpose of increasing the rate of convergence of the itera-

tive computations performed during BOLT-LMM’s model-fitting steps [3]. Projecting out top PCs

(which can be computed rapidly using FastPCA [9]) improves the conditioning of the matrix com-

putations that BOLT-LMM implicitly performs, roughly halving the number of iterations required

for convergence (Supplementary Table 7).

Our results demonstrate the latent power that mixed model association analysis unlocks in very

large GWAS, both by reducing the need for sample exclusions and by amplifying effective sam-

ple sizes via conditioning on polygenic predictions from genome-wide SNPs. Our new release of

BOLT-LMM makes mixed model association computationally tractable even on extremely large

data sets without the need for specialized computing infrastructure [10]. Our analyses also reveal

3

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2017. ; https://doi.org/10.1101/194944doi: bioRxiv preprint 

https://doi.org/10.1101/194944
http://creativecommons.org/licenses/by-nc-nd/4.0/


subtleties in the interpretation of LD score regression intercepts as a means of differentiating poly-

genicity from confounding in very large GWAS; we suggest that the attenuation ratio may be a

more suitable metric as sample sizes continue to increase. Overall, these findings provide much-

needed clarity to the GWAS community on analytical best practices for maximizing the value of

the UK Biobank and other large biobanks.

Code and data availability. BOLT-LMM v2.3 is open-source software freely available at http:

//data.broadinstitute.org/alkesgroup/BOLT-LMM/. Access to the UK Biobank Re-

source is available via application (http://www.ukbiobank.ac.uk/). BOLT-LMM associa-

tion statistics computed in this study are currently available for public download at http://data.

broadinstitute.org/alkesgroup/UKBB/ and have been submitted to the UK Biobank Data

Showcase.
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Figure 1. Power, calibration, and speed of BOLT-LMM v2.3 in UK Biobank analyses. (a)
Numbers of independent genome-wide significant associations (p<5×10–9) identified by
BOLT-LMM analyses of all European-ancestry individuals (N=459,327) versus linear regression
analyses of unrelated British individuals (N=337,539, following common practice [5]). Results
for 23 phenotypes are plotted, with 8 representative phenotypes highlighted. (b) Variance
explained by genome-wide SNPs on which BOLT-LMM implicitly conditions to increase power.
Conditioning on BOLT-LMM’s polygenic predictions—which attain accuracy (r2

BOLT-LMM)
approaching SNP-heritability (hg

2) for some traits—achieves effective sample sizes as high as
∼700K. (We measured effective sample size by comparing χ2 statistics at associated SNPs;
Supplementary Note.) (c) Test statistic calibration of BOLT-LMM on all European individuals
versus linear regression on unrelated British individuals (using 20 principal component
covariates). Attenuation ratios from LD score regression [7, 8] match closely between the two
methods, indicating that BOLT-LMM properly controls false positives (Supplementary Fig. 2).
Error bars, jackknife s.e. (d) Computational cost of association analysis using BOLT-LMM v2.3,
the previous version of BOLT-LMM [3], and linear regression (implemented efficiently within the
BOLT-LMM software) on the UK Biobank N=150K and N=500K data releases. Analyses were
run on 8 threads on a 2.10 GHz Intel Xeon E5-2683 v4 processor. Additional details and
numerical data are provided in the Supplementary Note, Supplementary Fig. 1, and
Supplementary Tables 1–7.
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