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Note on this version

Compared to the previous version of the manuscript, some changes have been made to improve the
readability and structure of the text, and to clarify the connections with the existing literature. One
reviewer pointed out inconsistencies in some of the numerical simulations, and in the mutation term
in appendix A2, which have now been fixed. When checking the calculations, I have also identified a
missing term in the equation for the dynamics of individual reproductive values. The new equation
makes much more sense. Additional results are also presented, in particular for discrete-time models
and populations with a continuous age structure, for which Fisher’s original definition of reproductive
value can be recovered.
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Abstract

In natural populations, individuals of a given genotype may belong to different classes. Such
classes can for instance represent different age groups, developmental stages, or habitats. Class
structure has important evolutionary consequences because the fitness of individuals with the same
genetic background may vary depending on their class. As a result, demographic transitions be-
tween classes can cause fluctuations that need to be removed when estimating selection on a trait.
Intrinsic differences between classes are classically taken into account by weighting individuals by
class-specific reproductive values, defined as the relative contribution of individuals in a given class
to the future of the population. These reproductive values are generally constant weights calculated
from a constant projection matrix. Here, I show, for large populations and clonal reproduction, that
reproductive values can be defined as time-dependent weights satisfying dynamical demographic
equations that only depend on the average between-class transition rates over all genotypes. Using
these time-dependent demographic reproductive values yields a simple Price equation where the
non-selective effects of between-class transitions are removed from the dynamics of the trait. This
generalises previous theory to a large class of ecological scenarios, taking into account density-
dependence, ecological feedbacks and arbitrary distributions of the trait. I discuss the role of
reproductive values for prospective and retrospective analyses of the dynamics of phenotypic traits.

Keywords: reproductive value, Price equation, selection gradient, population dynamics, neu-
trality
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Evolution is fuelled by the genetic variance of populations. However, natural populations also
display non-genetic sources of heterogeneity, when individuals of a given genotype belong to distinct
classes representing different demographic, physiological or ecological states, with different demo-
graphic or ecological impacts on the population dynamics. This occurs for instance in an age-structured
populations (e.g. when older individuals have a lower fecundity than younger individuals), in species
with distinct developmental stages (e.g. when a species’ life cycle consists of a dispersing and a sessile
morph), or in size-structured populations. The spatial location of an individual, or the quality of
its habitat, may also be used to partition the population into distinct classes. In demography and
ecology, this has led to a vast theoretical literature aiming at describing the population dynamics of
such structured populations (Metz & Diekmann, 1986; Caswell, 2001).

In most theoretical analyses, intrinsic differences between classes of individuals are taken into
account by weighting individuals by their reproductive values (Fisher, 1930; Price & Smith, 1972;
Taylor, 1990; Rousset, 1999; Leturque & Rousset, 2002; Rousset, 2004; Rousset & Ronce, 2004; Engen
et al., 2009; Engen et al., 2014). These reproductive values are defined as the long-term contribution
of individuals in a given class to the future of the population, relative to the contribution of other
individuals in the population. Reproductive values are typically calculated as a left eigenvector
associated to the dominant eigenvalue of a constant projection matrix (Tuljapurkar, 1989; Taylor,
1990; Caswell, 2001; Rousset, 2004). Hence, the reproductive values are associated to the long-
term growth rate of an exponentially growing population. Reproductive values play a key role in
evolutionary game theory and inclusive fitness theory, where one seeks to compute the invasion fitness
of a rare mutant arising in a monomorphic resident population that has reached its ecological attractor
(Metz et al., 1992; Rousset, 2004; Metz, 2008; Gardner et al., 2011; Lehmann & Rousset, 2014). Under
weak selection, the resulting selection gradient takes the form of a weighted sum of selective effects,
where the weights are the class frequencies and the reproductive values calculated in the resident
population (Taylor & Frank, 1996; Frank, 1998; Rousset, 1999; Rousset, 2004; Lehmann & Rousset,
2014; Gardner, 2015).

Reproductive values have also been used in combination with the Price equation (Price, 1970) in
attempts to isolate the effect of natural selection from the effects of transitions between demographic
classes (Crow, 1979; Engen et al., 2014; Grafen, 2015b). The motivation for doing so is the realisation
that, in class-structured populations, the mean trait can change even in a neutral model where the
vital rates do not depend on the trait, due to the dynamics of class structure itself. Following Grafen
(2015b), I will refer to this latter effect as “passive changes”, to distinguish it from the effect of selection.
In models with constant projection matrices, passive changes in mean trait are typically transient and
disappear when a stable class structure is reached (reviewed in Tuljapurkar, 1989; Caswell, 2001). As
first suggested by Fisher (1930), it is possible to get rid of this transient effect from the start if one
uses reproductive values as weights when calculating the average phenotypic trait (Engen et al., 2014;
Gardner, 2015). However, it is not clear how this property extends to models with density dependence
or environmental feedbacks.

In this manuscript, I derive a class-structured Price equation coupled with a general ecological
model in both continuous and discrete time. This extends previous works by Day & Gandon (2006)
and Gandon & Day (2007), and gives an ecological underpinning to some results of Grafen (2015b).
I then show, using only minimal ecological assumptions, that the purely demographic effect of class
dynamics can be removed from the dynamics of the mean trait if one weights the mean trait in each
class at time t by the reproductive value of that class at time t. This result is valid for large population
sizes and clonal reproduction, but holds generally for any out-of-equilibrium ecological model, allowing
for density-dependence, environmental feedbacks and environmental stochasticity. The requirement is
that reproductive values are not calculated asymptotically in a population at equilibrium, but from
a dynamical equation depending on average transition rates between classes, where the average is
taken over all the genotypes. Related dynamical equations have been derived before in monomorphic
populations (Tuljapurkar, 1989; Rousset, 2004; Rousset & Ronce, 2004; Barton & Etheridge, 2011),
but to my knowledge their implications for the Price equation under general ecological scenarios have
not been discussed. I discuss the usefulness of reproductive-value weighting for more practical studies,
distinguishing between backward studies where one is interested in detecting selection in a known
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temporal series, and forward studies where one is interested in making predictions about the future
change in a trait of interest. In particular, I show how these results extend previous results on the
selection gradient calculated from traditional invasion analyses (Taylor, 1990; Metz et al., 1992; Taylor
& Frank, 1996; Rousset, 1999; Rousset, 2004).

The structure of the paper should provide two levels of reading. Readers unfamiliar with the
mathematical details behind the concept of reproductive value are encouraged to read up to section
3, where the potential usefulness of time-dependent reproductive values for analysing time series
is discussed using numerical simulations. Sections 4 and 5 go deeper into the technical details and
connections with previous studies and can be skipped at first read by non-theoreticians. The discussion
should be readable by both categories of readers.

1 Ecological dynamics
The key points of the argument are easier to grasp using a population with a discrete structure and
continuous-time dynamics. These assumptions will therefore be used in the primary derivation of the
results, but extensions to discrete-time dynamics and continuous population structure will be discussed
at a later stage. Table 1 provides a summary of the mathematical symbols used in this article.

I consider an infinitely large population, such that demographic stochasticity can be ignored. The
population consists of M clonally reproducing types. A type may represent an allele or a phenotype,
depending on the level of interest. The population is further structured into K classes. Throughout
the article, I use the subscript i to refer to types and superscripts j and k to refer to classes. Hence, I
denote the density of individuals in class k as nk and the density of type i individuals in class k as nki
(the term density must be understood in the usual ecological sense, as number of individuals per surface
area). These densities are collected in the vectors ni =

(
n1
i . . . nKi

)>
and n =

(
n1 . . . nK

)>
.

Apart from clonal reproduction and large population densities, I will make only minimal ecological
assumptions. The results are only expressed in terms of the transition rates rkji of i individuals from
class j to class k. These transitions can be due to reproduction, mortality, maturation, or dispersal
depending on the biological context. For instance, the production of class-j offspring by type-i parents
in class k will contribute positively to the rate rjki , while the death of type-i individuals in class k
will contribute negatively to rkki . Similarly, the movement of type-i individuals from class k to class
j (due to maturation, dispersal, infection...) will add to rjki and subtract from rkki . In general, the
rates rkji will depend on the vital rates of the focal type (fecundity, mortality, migration, infection...),
but also on the vital rates of the other types. Most importantly, the rates rkji also depend on the
environment E(t). The environment is defined from an individual-centred perspective (Metz et al.,
1992; Mylius & Diekmann, 1995; Lion, in press) and collects all the relevant information necessary to
compute the reproduction and survival of individuals. Basically, the vector E(t) collects the densities
of the various types in the population, through the vectors ni, but also any ecological effects that
are external to the focal population, which are collected in a vector e. These external effects may
represent predation, parasitism, interspecific competition, or changes in abiotic factors. For spatially
structured populations, other variables summarising the spatial distribution of types and individuals
can also be added to the environment.

In continuous time, the dynamics of the total densities in each class may be written in matrix form
as

dn
dt = R(E(t))n. (1)

The matrix R has element r̄kj on the kth line and jth column, where r̄kj =
∑
i r
kj
i n

j
i/n

j is the
average transition rate from class j to class k. Coupled with a dynamical equation for the vector of
external densities e, equation (1) forms the basis for ecological studies of class-structured populations
(e.g. Caswell, 2001). For simplicity, I will often omit the dependency of the transition rates on
the environment E(t) in the following, but it is important to keep in mind the generality of this
formulation.
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Table 1: Definition of mathematical symbols used in the text

Mathematical symbol Description
nki Density of individuals of type i in class k
nk =

∑
i n

k
i Density of individuals in class k

n =
∑
k n

k Total density of individuals
fki = nki /n

k Frequency of i individuals within class k
fk = nk/n Frequency of individuals in class k (with respect to the total population)
fi =

∑
k n

k
i /n =

∑
k f

k
i f

k Frequency of type i (with respect to the total population)
zi Value of the trait for individuals of type i
z̄k =

∑
i zif

k
i Mean value of trait z within class k

z̄ =
∑
i zifi =

∑
k f

kz̄k Mean value of trait z in the total population
z̃ =

∑
k c

kz̄k Weighted average of trait z with time-dependent weights ck(t) for each
class.

rkji Per-capita rate at which type-i individuals in class j produce type-i
individuals in class k.

r̄kj =
∑
i r
kj
i f

j
i Average per-capita rate at which individuals in class j produce individ-

uals in class k.
r̄k =

∑
j r̄

kj fj

fk = d ln(nk)/dt Average per-capita rate at which individuals in class k are produced.
r̄ =

∑
k r̄

knk = d ln(n)/dt Average per-capita growth rate of the total population.

2 Dynamics of a phenotypic trait
Consider a trait z, with value zi for type i. For simplicity, the trait is assumed to be measurable in
each class and non-plastic (the trait value is fixed and does not depend on class, but see the discussion
for how to deal with plastic traits). To study evolutionary change, I will focus on the change in the
average of the focal trait, z̄. This average can be calculated in two equivalent ways, either direcly as
z̄ =

∑
i zifi, where fi represents the frequency of type i in the population, or as a weighted sum of

class means, z̄ =
∑
k f

kz̄k, where z̄k is the mean trait in class k, and fk is the frequency of class k.
The frequencies of each class can be calculated as fk = nk/n, where n =

∑
k n

k is the total density
of individuals. The within-class average z̄k can be calculated as z̄k =

∑
i zif

k
i , where fki = nki /n

k is
the frequency of type i within class k. Throughout the manuscript, an overbar with a superscript
will represent an average using the within-class frequencies fki (as in z̄k), and an overbar without a
superscript represents an average using the population frequencies fi (as in z̄).

2.1 The class-structured Price equation

In Appendix A, I show that the dynamics of z̄ are given by the following differential equation,

dz̄
dt =

∑
k

fkcov
k

(
zi, r

•k
i

)
+
∑
k

(z̄k − z̄)r̄•kfk + mutation term. (2)

Equation (2) is the class-structured version of Price equation and shows that the change in mean trait
can be partitioned into three components. The first term is the weighted average of the within-class
covariances between the trait and the rate at which each individual of type i in class k produces
individuals in any class, r•ki =

∑
j r

jk
i , which is a measure of fitness of type-i individuals in class k. By

definition, cov
k

(zi, r•ki ) =
∑
i(zi − z̄k)(r•ki − r̄•k)fki . The second term is the between-class covariance

between the mean trait in a class and the average rate at which an individual in class k produces
individuals in any class, r̄•k =

∑
k r̄

jk. This term depends on the phenotypic differentiation between
a given class and the total population, z̄k − z̄. Hence, equation (2) partitions the change in mean
trait into a within-class and a between-class component. Finally, the third component of equation
(2) represents the effect of mutation, recombination, or possibly external immigration events. In the
following, I will neglect the mutation term and focus on the effects of natural selection and demographic
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changes on the dynamics of the mean trait, but a more complete description of the mutation term can
be found in Appendix A.

Now let us assume that the per-capita growth rates rjki are independent of the type (i.e. rjki = rjk

for all i). Intuitively, we should not observe any selection in such a population. Indeed, equation (2)
tells us that the covariances in the first term are zero. However, one might still observe directional
change in the mean trait due to the second term, which depends on the average rates r̄jk and not on
the correlation between the trait and the type-specific transition rates. Following Grafen (2015b), I
will refer to this effect as the “passive changes in mean trait”.

Passive changes in mean trait obviously disappear if the class means exactly coincide with the
population average. The mechanisms causing the build-up of between-class differentiation can be
elucidated by writing the equation giving the dynamics of the mean trait in class k, z̄k (Appendix A).
Dropping the mutation term for simplicity, this gives:

dz̄k

dt =
∑
j

cov
j

(
zi, r

kj
i

) f j
fk

+
∑
j

(
z̄j − z̄k

)
r̄kj

f j

fk
. (3)

This shows that there are two components driving the dynamics of between-class differentiation. Even
when the per-capita growth rates rkji are independent of the trait, so that the covariance terms are zero,
the mean trait within class k can still change due to between-class demographic transitions between
class k and the other classes. This can lead to changes in the phenotypic differentation across classes,
measured by the deviation of the class averages z̄k from the population average z̄. Hence, the second
term of equation (2) conflates the consequences of natural selection (through the covariance term
in equation (3)) and of other ecological or genetical mechanisms causing phenotypic differentiation
between classes.

2.2 The class-structured Price equation for a weighted average

Equation (2) is derived by giving each individual a weight of unity. In contrast, a common approach in
the literature has been to assign a class-specific weight to each individual in order to extract the signal
of natural selection from the change in mean trait (Fisher, 1930; Crow, 1979; Taylor, 1990; Taylor &
Frank, 1996; Leturque & Rousset, 2002; Rousset, 2004; Rousset & Ronce, 2004; Engen et al., 2014;
Grafen, 2015b). Here, I follow this approach and consider the dynamics of a weighted average of the
focal trait. In contrast with the standard practice, however, I consider that the individual weights are
not constant through time. I therefore give each individual in class k at time t a weight of vk(t). A
weighted average for the focal trait can then be calculated at time t as

z̃(t) =
∑
k

ck(t)z̄k(t) (4)

where the weight ck(t) = vk(t)fk(t) is assigned to class k at t and scaled such that
∑
k c

k(t) = 1.
When all the vk’s are set to the constant value 1, we recover the results of the previous paragraph.
With these assumptions, the change in the weighted mean trait takes the following simple form:

dz̃
dt =

∑
k

fkcov
k

zi,∑
j

vjrjki

 . (5)

if the weights ck(t) satisfy a particular dynamical equation (Appendix A). Hence, for a well-chosen set
of weights, we can write the change in mean trait as the average across all classes of the covariance
between the trait and the (weighted) mean contribution of individuals in that class. The change in a
neutral trait with no effect on the vital rates will therefore be exactly zero. Comparing the covariance
term in equation (5) to the covariance term in equation (2), we note that the only difference is that
the sum r•ki =

∑
j r

jk
i is replaced with the weighted sum

∑
j v

jrjki .
For equation (5) to hold, the ck’s must satisfy the following system of differential equations

dck

dt = ck
∑
j

r̄kj
f j

fk
−
∑
j

cj r̄jk
fk

f j
. (6)
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This equation takes the form of a master equation describing the time evolution of a vector of proa-
bilities. An interpretation of this equation will be given in the next section.

Discrete-time dynamics For comparison with other works, it is useful to consider the discrete-
time version of this result. In Supporting Information S.1, I show that the change in weighted mean
trait can be written in discrete time as

z̃(t+ 1)− z̃(t) =
∑
k

fk(t)cov
k

zi,∑
j

vj(t+ 1)w
jk
i (t)
w̄(t)

 . (7)

Compared to equation (5), the per-capita growth rates rjki are replaced by the relative fitnesses
wjki /w̄(t), where w̄(t) is the average fitness in the population and the class weights satisfy the following
recursion:

ck(t) =
∑
j

cj(t+ 1) w̄
jk(t)nk(t)
nj(t+ 1) . (8)

which is a discrete-time analog of equation (6).

Importantly, the elimination of passive changes holds if the ck’s satisfy equation (6) and (8),
irrespective of initial or final conditions. As a result, the vector of weights is not unique, and additional
considerations are required to choose the relevant final condition. I will come back to this point when
presenting the numerical applications of this approach.

2.3 Biological interpretation of the weighted average

So far, the validity of the results does not hinge on a particular biological interpretation of the weights
used to compute the average z̃. However, it turns out that the weights vj(t) that appear in equation
(5) are the individual reproductive values in each class at time t, and that the weights cj(t) are the
class reproductive values at time t (Taylor, 1990; Rousset, 2004).

Indeed, a biological interpretation of ck(t) can be given as the probability that a random gene
sampled at some time in the future has its ancestor in class k at time t when we look backward in the
past. In discrete time, this probability will satisfy the following recursion

ck(t) =
∑
j

cj(t+ 1)p(k, t|j, t+ 1) (9)

where p(k, t|j, t + 1) is the probability that the lineage was in class k at t given that it is in class j
at t+ 1 (see e.g. Rousset (2004), equation (9.21)). This probability is the fraction of class-j offspring
produced by class-k individuals at time t, which is simply the number of class-j offspring produced
by class-k parents, w̄jk(t)nk(t), divided by the total number of class-j offspring, nj(t + 1). Hence,
equation (9) is exactly equation (8).

A perhaps more intuitive, but equivalent, interpretation of ck(t) can be given as the (relative)
number of descendants left by genes present in class k at time t, from t onwards (Tuljapurkar, 1989;
Caswell, 2001; Rousset, 2004; Barton & Etheridge, 2011), which is exactly the definition of reproduc-
tive value as a measure of relative long-term contribution used in population genetics and demography
(going back to Fisher (1930) and Goodman (1968)). The connection with previous definitions of re-
productive values will be explored in more detail in section 4.

The previous analysis thus shows that the individual reproductive values can be used as time-
dependent individual weights that guarantee the elimination of the passive changes in mean trait at
any time. The discrete-time formulation (equation (8)) more clearly shows that the reproductive-value
weighting needs to be applied to the offspring generation: an offspring in class j (at generation t+ 1)
is valued by its current contribution to the future of the population, vj(t+ 1).

In continuous time, the distinction between parent and offspring generations is blurred, but equa-
tion (6) can still be interpreted in a similar way. Indeed, because the terms for j = k cancel out, the
first term on the right-hand side is vk

∑
j 6=k r̄

kjf j . This tells us that the probability for a gene lineage
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to be in class k at time t will increase due to the creation of new class-k individuals, with reproductive
value vk, from individuals belonging to all the other classes. The second term is −

∑
j 6=k v

j r̄jkfk and
shows that the probability for a gene lineage to be in class k at time t will decrease due to the creation
of new class-j individuals, with reproductive value vj , from class-k individuals. It can be shown that
the master equation (6) is the continuous-time limit of the discrete-time backward recursion (8).

3 Reproductive values for retrospective data analyses
In this section, I present numerical simulations to show how the dynamical reproductive values can
be computed from time series and used to remove the passive changes from the dynamics of the mean
trait. As a proof-of-concept, I consider a discrete-time three-class model, with class densities n1

t , n2
t

and n3
t . The transition matrix for type i at time t is given by

Wi(t) =

 0 0 φ3F3(Et, t)
s1 + ω zi

1+κzi
0 0

0 s2S2(Et, t) s3

 (10)

The elements of Wi are the wjki of equation (7). The model is a variation on the classical Larva-
Pupae-Adult (LPA) model for the dynamics of Tribolium populations (Dennis et al., 1995). The
reproduction and survival of stages 2 (pupae) and 3 (adults) depend on the environmental dynamics
through the fecundity function F3(Et, t), and the survival function S2(Et, t), for which I make the
following assumptions:

F3(Et, t) = e−celn
1
t−cean3

t (11a)

S2(Et, t) = e−cpan3
t . (11b)

Following traditional notation, cel (resp. cea and cpa) reflects the intensity of cannibalism of eggs by
larvae (resp. eggs by adults and pupae by adults). Individuals are characterised by a trait z, which is
a property of the type and confers a non-linear survival advantage to the first stage. The parameter
ω measures the strength of selection.

General method Starting from some initial conditions, the model can be run forward in time from
time 0 to time T to provide a sequence of data. The details of the model are irrelevant, but what
matters in the end is that we get a time series for the mean traits in each class, z̄k(t), for the class
densities nk(t), and for the average fitnesses w̄kj(t), which determine between-class transitions. These
quantities can in principle be measured in the field without any knowledge of the genetic variation in
the population. Knowing this, recursion (8) can be iterated backward in time, starting from a given
final condition c(T ), yielding the weights c(t) that need to be applied to the mean traits z̄k(t) at
each time step. I will first present two illustrating examples, before discussing the choice of the final
condition.

Example 1 Figure 1a shows that, even for a neutral trait (ω = 0), the model exhibits sustained
fluctuations in the mean trait. A naive observer may interpret these fluctuations as caused by selection,
but in fact this is only due to demographic transitions between classes. The absence of selection is
revealed by plotting the dynamics of the weighted mean trait, using the class reproductive values
computed from equation (8) as weights. Doing so gives a flat line (in red), which reveals that the
fluctuations are not caused by selection. For comparison, the lower panels of figure 1b also show
the dynamics of the mean trait weighted with constant reproductive values calculated from the time-
averaged projection matrix (gray line). This weighting does not completely remove the passive changes
in mean trait. In the model with selection (figure 1b), the mean trait appears to fluctuate around
an increasing trend. Applying our reproductive-value weighting irons out the fluctuations due to the
passive changes in mean trait and yields a smooth trajectory that reveals the part of the change in
mean trait that is actually due to selection. Again, using constant reproductive values calculated from
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(a) Neutral model (ω = 0)
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(b) Model with selection (ω = 0.05)
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Figure 1: The dynamics of total population density and mean trait are shown for Model 1 at neutrality
(left panel) and in the presence of selection (right panel). The dynamics of the model are given by
equation ni(t + 1) = Wi(t)ni(t), where the transition matrix is defined in equation (10) and (11).
The upper panel gives the dynamics of the total population size, n(t). The lower panel gives the
dynamics of the arithmetic mean of the trait (dots), of the reproductive-value weighted trait (red
line), and of the weighted mean trait using constant reproductive values computed from the average
matrix over time (gray line). In figure (b), the blue dashed line shows the dynamics of the weighted
mean trait using the neutral reproductive values. . The initial densities for each class are n1(0) = 0.3,
n2(0) = 0.3, n3(0) = 0.4. The initial distribution of the types is Poisson with means z̄1(0) = z̄2(0) = 2
and z̄3(0) = 12, so that nki (0) = nk(0)(z̄k(0))ie−z̄k(0)/(i!) and zi = i for 0 ≤ i ≤ 49. Parameters:
φ3 = 10, s1 = 0.6, s2 = 1, s3 = 0.05, cea = 0.5, cpa = 1, cel = 0.4.

the time-averaged projection matrix does not eliminate the passive changes in mean trait (gray line).
Using the time-dependent neutral reproductive values from figure 1a as weights (blue dashed line) also
imperfectly removes the passive changes, even though selection is assumed to be weak in the model.

Example 2 I now assume that fecundity in stage 3 is further affected by environmental stochas-
ticity, through a stochastic multiplicative factor ρt. Figure 2 shows that, even with environmental
stochasticity, reproductive-value weighting can eliminate the transient passive changes in mean trait.
Note that, with environmental stochasticity the transient fluctuations decay rapidly and, eventually,
the weighted and unweighted averages of the trait coincide.

Choice of the final condition As noted above, the choice of the final condition is irrelevant
when deriving equations (5) and (7). In fact, for a neutral trait, the dynamics of the weighted mean
trait should be a flat line, irrespective of the final condition. With selection, however, different final
conditions will yield different trajectories for the weighted trait. In the two examples above, I used the
final condition c(T ) = f(T ) to compute the class reproductive values and weighted mean trait at each
time. The choice of this particular final condition is equivalent to setting the relative contribution of
each individual to the present generation to 1 (Barton & Etheridge, 2011), but also guarantees that
the trajectory of the weighted mean trait converges to the value measured at the end of the time series.
In other words, from the final state of the population under study, we trace backward in time the
trajectory corresponding to the change in mean trait in an ideal population where the passive changes
have been removed.
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(a) Neutral model (ω = 0)
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(b) Model with selection (ω = 0.05)
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Figure 2: The dynamics of total population density and mean trait are shown for Model 2 at neutrality
(left panel) and in the presence of selection (right panel). Compared with Model 1 and figure 1b, the
only change is that the fecundity F3(Et, t) in the matrix Wi(t) is multiplied by a stochastic factor ρt,
modelled as a uniformly distributed random variable between 0.5 and 1.5. To allow comparison, the
same sequence of random numbers is used in figure 2a and 2b.

A further motivation for choosing this final conditions comes from the consideration of the limiting
regime where selection is weak. The influence of the passive changes in mean trait should decay rapidly
under weak selection. As a result, if we have enough data points, we can expect the weighted dynamics
to converge to those of the unweighted mean trait, as in figure 2b.

4 The interplay of demography and selection
The previous results show that the effect of selection in class-structured populations is best captured by
weighting each class with time-dependent reproductive values. Using this weighting yields a compact
expression for the dynamics of mean phenotypic traits, (5), which can also be written in matrix form
as follows

dz̃
dt = v>Cf , (12)

where C is the matrix of covariances with components Cjk = cov
k

(zi, rjki ). In the remainder of the
paper, the notation > represents the transpose operation, i.e. v> is a row vector.

4.1 Dynamical equations for the demographic process

The vectors of reproductive values and class frequencies follow coupled dynamical equations that
generalise the classical interpretation in terms of eigenvectors. For class reproductive values, equation
(6) may be written compactly in matrix form as

dc>

dt = −c>Q(E(t)) (13)

where E(t) is the vector of environmental variables and Q(E(t)) is the matrix with elements qjk =
r̄jkfk/f j for j 6= k and qkk = −

∑
j 6=k qkj (Appendix B).
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Similarly, the vectors v> and f in equation (12) satisfy the following equations (Appendix B)

dv>

dt = −v>R(E(t)) + r̄(t)v>, (14a)

df
dt = R(E(t))f − r̄(t)f , (14b)

where r̄ = (1/n)dn/dt is the average growth rate of the total population. Note the similarity between
these two equations. The individual reproductive values and class frequencies are both calculated
using the matrix R(E(t)), which collects the average transitions rates r̄kj(E(t)), and the per-capita
growth rate of the total population size, r̄(t). However, while equations (14b) and (14a) use the same
input, they have different interpretations: using equation (14b), the future class frequencies can be
calculated from an initial condition, whereas equation (14a) works backwards in time to compute past
reproductive values from a final condition.

Equations (14b) and (14a) can be combined to recover an important property of the individual
reproductive values already noted by Fisher (1930) for linear models. If we evaluate the population
size not by a head count, but by weighting each individual by its reproductive value, the weighted
population size, ñ(t) =

∑
k v

k(t)nk(t) satisfies the following equation

dñ
dt = r̄(t)ñ. (15)

Hence, the reproductive value-weighted population size always grows as the unweighted population
size, even for out-of-equilibrium, non-linear ecological dynamics.

Note that it is also possible to derive similar equations for populations with continuous structure.
I give an illustration in Box 1 using a model with continuous age structure which allows to recover
Fisher’s original definition of reproductive value.

Discrete-time dynamics Equations (13) and (14a) have discrete-time counterparts. In Supporting
Information S.1, I show that the class reproductive values satisfy the following recursion:

c>(t) = c>(t+ 1)P(E(t)), (16)

where P is the matrix with elements pk,j = w̄kj(t)nj(t)/nk(t+1). Similarly, the individual reproductive
values and class frequencies satisfy the recursions

w̄(t)v>(t) = v>(t+ 1)W(E(t)), (17a)
w̄(t)f(t+ 1) = W(E(t))f(t) (17b)

where W(E(t)) is the matrix with elements w̄kj . Again, the two equations use the same input, but
represent different processes. As already noted by Tuljapurkar (1989), the matrix W acts to propagate
fT forward in time and vT backward in time. In Tuljapurkar’s words, the vector of class frequencies
at each time is an “accumulation of the past”, while the vector of reproductive values at each time is
a “summation of the future”.

4.2 Selection and demography

Equation (12) provides a simple partition of the change in the weighted mean phenotype into selective
and demographic components. While the matrix of covariances C captures the relative performances
of the different types for each between-class transition, the vectors v> and f solely depend on the
average rates at the population level and are therefore purely demographic properties of the system.
Indeed, a naive ecologist oblivious to the underlying genetic diversity of her study population would
still be able to calculate the reproductive values and class frequencies from the aggregate response of
the population. This is potentially valuable for data analysis, as we have seen in the previous section.

This demographic definition of reproductive values has its roots in Fisher (1930)’s original expo-
sition of the concept and provides a conceptually clear connection to the usage of reproductive values
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in other fields, such as human demography, where details about the genetic composition of the pop-
ulation are typically averaged out. Importantly, the dynamical definition of reproductive values used
here holds for a broad class of models, irrespective of the genetic composition of the population, of
the trait distribution, and of the underlying population and environmental dynamics. In particular,
the reproductive values are not calculated in a neutral or monomorphic population, nor under any
limiting assumption of mutant rarity, as typically assumed in evolutionary game theory. The next
paragraph clarifies the connection with these previous usages of reproductive values.

4.3 Connection with classical asymptotic results

Although most works directly compute reproductive values as a left eigenvector, some authors have
proposed to compute reproductive values from dynamical equations. To my knowledge, a dynamical
equation was first proposed by Crow (1979) for allele-specific reproductive values and by Tuljapurkar
(1989) at the population level (see also Barton & Etheridge (2011)). Dynamical equations for the class
reproductive values in monomorphic populations have also been used in inclusive fitness theory (e.g.
equation 9.21 in Rousset (2004) or equation (6) in Lehmann (2014)). However, while Tuljapurkar
(1989) explicitly defined reproductive values as a function of time, usage in evolutionary theory has
typically reserved the word “reproductive value” for the asymptotic behaviour of the dynamical equa-
tions, yielding a time-independent definition (Charlesworth, 1994; Rousset, 2004; Barton & Etheridge,
2011; Lehmann, 2014). This asymptotic definition of reproductive values hinges on additional demo-
graphic or genetic assumptions, such as exponential growth or weak selection, although it has been
noted that, in principle, reproductive values could be defined as time-dependent weights, as I do
here (see Lehmann & Rousset (2014), note 3). In this section, I discuss how previous definitions of
reproductive values can be recovered from equations (13) and (14a) under additional assumptions.

4.3.1 Exponential growth

The easiest way to recover the standard asymptotic definition of reproductive values is to assume that
the matrix R is approximately constant1. Then, it is well known that, in the long run, the population
growth rate r̄ is constant and equal to the dominant eigenvalue of R. The population then grows
exponentially with a stable class structure given by the right eigenvector of matrix R associated to
r̄. The corresponding left eigenvector collects the individual reproductive values (Goodman, 1968;
Tuljapurkar, 1989; Caswell, 2001). Reproductive value can then be defined as this left eigenvector,
which gives the long-term contribution of individuals in a given class to the future of the population,
relative to the contribution of other individuals in the population.

Equations (14) allow us to recover this result by assuming that the reproductive values and class
frequencies stabilise in the long run. Setting the time derivatives to zero then yields

v>R = r̄v>, (18a)
Rf = r̄f . (18b)

The analog discrete-time result follows from setting v(t + 1) = v(t) and f(t + 1) = f(t) in equation
(17), which gives

v>W = w̄v>, (19a)
Wf = w̄f . (19b)

The latter equations are respectively the left- and righ-eigenvector results of Taylor (1990) (his equa-
tions (7) and (5)), but they do not rely on the assumption that the population is monomorphic.
Rather, they explicitly take into account polymorphic populations with arbitrary trait distribution.
The key to this generalisation is to use the matrix of average transition rates.

1More generally, the matrix R can depend on a density-independent ergodic environment (Tuljapurkar, 1989).
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4.3.2 Density-dependent populations at equilibrium

Another frequent assumption in the literature is that the population is at a stable demographic
equilibrium. Then, the dynamics of reproductive values also depend on constant projection matrices
Q̂ = Q(Ê) and R̂ = R(Ê), where the environmental vector Ê is calculated at equilibrium. Because
r̄ = 0 at equilibrium, it follows from equations (13) that the vector c is a left eigenvector of the
matrix Q̂ associated to eigenvalue 0, where Q̂ has elements r̄jkfk/f j . Similarly, equations (14a)-(14b)
show that the individual reproductive values are proportional to a left eigenvector of R̂ associated to
eigenvalue 0, and the class frequencies to a right eigenvector.

A similar result holds in discrete-time. From equation (16), we see that at equilibrium when
c(t+ 1) = c(t) and E(t) = Ê, the vector c is a left eigenvector of the matrix P̂ = P(Ê) associated to
eigenvalue 1. For the individual reproductive values, we have w̄ = 1 at equilibrium and therefore v is
a left eigenvector of the matrix Ŵ associated to eigenvalue 1. These two results extend a widely used
result in evolutionary game theory and inclusive fitness theory (Taylor, 1990; Rousset, 1999; Rousset,
2004). Once again, in contrast to these previous studies, the reproductive values and class frequencies
are defined in polymorphic populations with arbitrary trait distribution, instead of being calculated
in a monomorphic population. However, it is straightfoward to recover the standard monomorphic
case from the polymorphic population under the assumption that all types are identical.

5 Reproductive values for predictive theoretical analyses

5.1 Separation of time scales

By construction, reproductive values quantify class contributions to the future demography of the
population. Equations (13)-(14a) and (16)-(17a) show that they can be calculated from backward
dynamical equations. As a result, equation (12) appears to have little predictive power as the change
in the mean trait at a given time depends on the whole future we are precisely trying to predict.
However, this problem can be solved if we are only interested in long-term evolution and assume a
separation of time scales between evolutionary and ecological time scales, as is typical when computing
invasion fitness (Metz et al., 1992; Geritz et al., 1998; Lehmann & Rousset, 2014; Van Cleve, 2015).
If evolution is slow compared to the demography of the population, we only need to evaluate equation
(12) on the population’s ecological attractor, which can be a point equilibrium, a limit cycle, or
more complicated objects. On the ecological attractor, the future is predictable, and the reproductive
values give information about the long-term contribution of each class, as required to analyse long-term
evolution.

Equation (12) can then be used as a starting point to derive approximations for the change in
mean trait following the introduction of a mutation with small phenotypic effect. I will illustrate this
idea in the remainder of this section.

5.2 Monomorphic resident population at equilibrium

I will first recall a classical result of evolutionary game theory obtained under the assumption of a
vanishingly small trait variance in the population. Consider two types w and m with traits zw and
zm = zw + ε. When ε = 0, we assume that the population settles on a demographic equilibrium. For
small values of ε, the following approximation for the change in weighted mean trait can be derived
(Appendix S.2; Taylor (1990), Taylor & Frank (1996), and Rousset (2004))

dz̃
dt = σzzv̂>

dRm

dε f̂ +O(ε3), (20)

where the vectors v̂ and f̂ in equation (20) are the equilibrium values of v and f computed in the
monomorphic resident population, and the matrix dRm/dε is the perturbation of the matrix of the
mutant per-capita growth rates rjkm (see Appendix S.2 for more details). Note that z̃ = zw + εf̃m,
where f̃m is the average frequency of the mutant type, calculated using class reproductive values as
weights (as defined in Appendix A.3), so that tracking the average phenotype is equivalent to tracking
the frequency of the mutant allele.
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Box 1: Continuous age structure and Fisher’s original concept of reproductive value

Fisher (1930) originally defined the concept of reproductive value in a model with continuous age
structure, whereas the results in the main text are derived using a discrete class structure. However,
the elimination of passive changes through reproductive-value weighting also extends to models with
continuous structure. Defining the reproductive value of individuals with age a at time t as v(a, t),
it is possible to derive the dynamics of a weighted average trait, z̃ =

∑
i ziv(a, t)f(a, t)fi(a, t), where

fi(a, t) is the fraction of type-i individuals among individuals with age a at t, and f(a, t) is the fraction
of individuals with age a at time t. In Appendix S.3, it is shown that the change in mean trait then
takes the following form

dz̃
dt = v(0, t)

∫ ∞
0

cov
a

(zi, bi(a, t))f(a, t)da−
∫ ∞

0
cov
a

(zi, di(a, t))f(a, t)da. (a)

This is the continuous-age equivalent of equation (12). Here, bi(a, t) and di(a, t) are the birth and
death rates of type-i individuals with age a at time t. The covariances between the trait z and the
vital rates are taken over all individuals with age a and time t. The contribution of the reproduction
of individuals with age a to selection is weighted by their frequency f(a, t) and by the reproductive
value v(0, t) of their newborn offspring. In contrast, the contribution of death events to selection is
weighted by the reproductive value of the age group, v(a, t).

Equation (a) only holds if the reproductive values v(a, t) satisfy the following partial differential
equation

∂v

∂t
+ ∂v

∂a
= −b̄(a, t)v(0, t) + d̄(a, t)v(a, t) + r(t)v(a, t). (b)

Again, this is the continuous analog of equation (14a). The reproductive values depend on the average
birth and death rates b̄(a, t) and d̄(a, t) and on the growth rate of the total population r̄(t). Bacaër &
Abdurahman (2008) derived a similar equation in a monomorphic epidemiological model structured
with infectious age.

To fully connect these results to Fisher (1930)’s original definition of reproductive values, one needs
to assume time-independent birth and death rates that only depend on age. With these assumptions,
the population will be characterised by a stable growth rate r, a stable age structure f(a) and a stable
distribution of reproductive values v(a). From equation (b), we then have the following expression:

v(a) = v(0) e
ra

`(a)

∫ ∞
a

e−rs`(s)b̄(s)ds (c)

where `(s) = exp(−
∫ s

0 d̄(x)dx) is the probability of surviving up to age s. Expression (c) is Fisher’s
original expression of reproductive value (Fisher, 1930; Charlesworth, 1994), but it explicitly takes
into account genetic polymorphism in the population by using the average birth and death rates.
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Equations (12) and (20) have the same form, but the second is only valid as an approximation under
weak selection. Expanding the matrix product in equation (20) then yields the classical expression for
the selection gradient as a weighted sum of the effects of selection on class transitions (Taylor, 1990;
Rousset, 1999; Rousset, 2004),

S =
∑
k

∑
j

f̂kv̂j
drjkm
dε . (21)

Selection gradients of this form are frequenly encountered in the literature, when quasi-monomorphic
populations are considered. Quasi-monomorphism typically arises in two-allele models when the mu-
tant allele is rare compared to the resident allele (as in Taylor, 1990), or in models with a continuous
trait distribution, when the trait distribution is assumed to be tightly clustered around the mean (weak
selection). Under these assumptions, the effect of a mutation on the demography of the population
can be neglected compared to the effect of the mutation on the covariance matrix. The fundamental
reason is that, because the resident population is monomorphic, C = 0 when ε = 0. As a result, the
perturbations of the vectors v and f will contribute terms of higher order to the dynamics of the mean
trait compared to the perturbation of the matrix C, and can therefore be neglected.

5.3 Polymorphic resident populations at equilibrium

Although standard models tend to focus on monomorphic resident populations, many natural popula-
tions will typically display a non-negligible amount of standing variation, with potentially multimodal
trait distributions. Because equation (12) is still valid under these assumptions, it can be used as a
starting point to derive approximations of the selection gradient. As in the monomorphic case, the
idea is to calculate perturbations of equation (12) resulting from a slight change in the trait distribu-
tion. For instance, if we have a stable coalition of M types, we may consider that a fraction p of the
individuals of type M mutates to trait value zM + ε. As before, the limit ε = 0 corresponds to the
resident population at equilibrium. If we can further assume that the effect of the mutation on the
population demography is negligible compared to the perturbation of the covariance matrix C, we can
approximate equation (12) as

dz̃
dt ≈ v̂>dC

dε f̂ . (22)

As in equation (20), the vectors v̂ and f̂ are computed at equilibrium for ε = 0. However, equation
(22) is valid for arbitrary trait distributions in the resident population. The reproductive values
and class frequencies must therefore be computed from the mean demographic matrix of the resident
population, which is the natural extension of the “neutral” reproductive values typically considered
when the resident population contains only one type.

Of course, additional work is needed to investigate the domain of validity of this approximation,
which is far beyond the scope of this paper. In particular, because in the resident polymorphic
population the covariance matrix C is not null, it may not always be possible to neglect the effect of the
mutation on the demographic variables v and f (Appendix S.2). However, the present considerations
shed light on the potential utility of equation (12) for deriving analytical expressions for long-term
measures of selection in polymorphic class-structured populations, while keeping the central concept
of reproductive value on board.

5.4 Periodic ecological attractor

Another potential extension of standard theory attainable from equation (12) is to consider non-
equilibrium ecological attractors, such as limit cycles. Limit cycles can be thought of as a continuous-
time description of periodic environments, as needed for instance for taking into account seasonality.

Consider a monomorphic population that has settled on a limit cycle with period T . Assuming as
in the equilibrium case that selection is weak, the average change in the mean trait over one period is
approximately proportional to (Appendix S.2)

S =
∑
k

∑
j

∫ T

0
f̂k(t)v̂j(t)drjkm (t)

dε dt. (23)
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The reproductive values and class frequencies are time-dependent and computed using the matrix
R(Ê(t)), where Ê(t) for 0 ≤ t ≤ T is the periodic environment generated by the resident population.
The rates rjkm are also calculated on the resident environment, which is indicated by the dependency
on t. The use of time-dependent reproductive values for periodic models has been suggested before for
continuous-time exponentially growing populations (Bacaër & Abdurahman, 2008) and discrete-time
density-regulated populations (Brommer et al., 2000) but to my knowledge equation (23) has not
been previously derived. Compared to earlier approaches that have dealt with complex demographies
by incorporating the demographic states into the class-structure (Brommer et al., 2000; Rousset &
Ronce, 2004; Lehmann et al., 2016), equation (23) provides a lower-dimensional invasion criterion
in which classes are defined independently of the population dynamical model. For instance, if we
study an ecological model with different attractors depending on parameter values, we do not need to
change the class structure and the dimension of the projection matrix to analyse the different regions
of parameter space. Although a full analysis of the connections between this result and previous
characterisations of invasion fitness in periodic environments (Tuljapurkar, 1985; Ferrière & Gatto,
1995) is beyond the scope of this article, this preliminary attempt suggest that equation (12) could be
used to provide potentially useful approximations for the change in mean trait also in non-stationary
ecological systems.

6 Discussion
In class-structured populations, changes in gene frequencies or mean phenotypes can be brought about
through three distinct routes. First, natural selection can act within each class through the covariance
between the focal trait and the vital rates of each type within that class. Second, directional changes
in the mean trait can occur due to the dynamics of between-class differentiation, as measured by the
difference between the mean trait in a class and the mean trait in the total population. The dynamics
of between-class differentiation is itself the resultant of natural selection and of “passive changes”
due to transitions between classes. These passive changes can be observed even in the absence of
natural selection, either transiently or on longer time scales, depending on genetic constraints and
environmental feedback. Third, mutation or recombination may introduce some directional change
in the mean trait, an effect that I have ignored in this article and should be kept in mind. In
the Price equation for class-structured populations, these three terms combine additively to give the
evolutionary change in the mean phenotype. This article proposes a general formulation that clarifies
this decomposition of the Price equation, both in discrete time and in continuous time. A key aspect
of my treatment is that the evolutionary dynamics encapsulated by the Price equation are explicitly
coupled with a set of equations describing the ecological dynamics through the dynamics of the vector
E(t).

An influential idea in the theoretical literature, going back to Fisher (1930), is that the effect
of selection is best captured by tracking the change in a weighted average rather than the more
intuitive change in the arithmetic mean of the phenotype of interest. So far, this idea has been
applied to exactly or approximately linear dynamics, where a focal population grows exponentially
(Crow, 1979; Charlesworth, 1994; Engen et al., 2014). These systems are characterised asymptotically
by a stable class structure (a right eigenvector of the constant projection matrix) and a stable set
of reproductive values (a left eigenvector) associated with the long-term growth rate. Using these
constant reproductive values as weights, the weighted density of the population grows from the start
as it would when the stable class structure is reached. Furthermore, these constant weights can be
used to cancel out the passive changes in the mean trait and therefore extract the signal of natural
selection from the purely demographic consequences of class dynamics (Engen et al., 2014; Grafen,
2015b).

This article provides a general extension of this result, provided a dynamical and demographic
definition of reproductive values is used. At a conceptual level, we need a clear distinction between
types and classes, but to compute reproductive values we only need to work at the demographic level,
using the between-class transition rates obtained by averaging over all types. The results hold for
a large class of ecological models, allowing for density- and frequency-dependence, non-equilibrium
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population dynamics and environmental fluctuations. In addition, although I have focussed on dis-
crete trait and state distributions, the derivation of Appendix A carries out unchanged if the trait
averages are computed over a continuous distribution. This provides a direct connection with previous
quantitative genetics models of age- and stage-structured populations (Lande, 1982a; Barfield et al.,
2011). Furthermore, the result also extends to populations structured by continuous states, such as
age-structured (Box 1) or size-structured populations studied by integral projection models (Rees &
Ellner, 2016; results not shown). However, in practice, it may often be more useful to segregate a
population into discrete classes, as this allows each class to be sufficiently populated.

The definition of reproductive values used in this paper departs from the classical usage in two
ways. First, class reproductive values are not defined asymptotically, but as functions of time. How-
ever, the classical computation of reproductive values as an eigenvector of a constant projection matrix
is obtained as a special case of the dynamical definition when the transition matrix for the ecologi-
cal dynamics is constant. This occurs in particular when populations are at ecological equilibrium,
as typically assumed in invasion analyses. Second, I emphasise a purely demographic notion of re-
productive value. In particular, there is no need to assign a reproductive value to each genotype in
the population. Rather, the relevant weights need to be calculated from the demographic dynamics
where the genotype-specific vital rates are averaged within each class. This use of reproductive values
contrasts with other definitions (e.g. Crow, 1979), but appears to match the definition attributed to
Fisher (1930) by Grafen (2015a) and Grafen (2015b). Defining reproductive values at a demographic
level allows one to circumvent the need for fitting models with phenotype- or genotype-dependent vital
rates. Instead, we only need to estimate demographic projection matrices from the aggregated data
where individuals of different genotypes are grouped by classes.

6.1 The different usages of reproductive values

An important question to ask is whether the properties of reproductive values discussed here are
of relevance for practical studies of natural selection. The usefulness of reproductive value clearly
depends on the biological question. First, one might be interested in detecting patterns of natural
selection in demographic and genetic data, as collected for instance in field or controlled experimental
studies. Then, it is possible to compute reproductive values by iterating estimated projection matrices
backward in time, and use them as weights to detect deviation from neutrality. This use of reproductive
values has been discussed by Engen et al. (2014), in the more restrictive setting of exponentially
growing populations where reproductive values can simply be calculated as a constant eigenvector. In
this article, I present an illustration of this approach using simulated data. Thus, if we are interested in
understanding past events, reproductive-value weighting provides a useful way to test for the presence
of selection without mistaking for selection the passive changes in mean trait resulting from class
dynamics. Note that, although these passive changes are expected to disappear quickly in haploid
linear models, in more realistic models, ecological feedbacks and genetic constraints may potentially
sustain fluctuations in allele frequencies among classes on longer time scales, at least long enough for
these fluctuations to become relevant for empirical or experimental studies. An example is given in
figure 1, based on the classical LPA model for Tribolium dynamics. Haplodiploid systems of inheritance
provide another example of this phenomenon (Gardner, 2015).

Alternatively, one may be interested in predicting patterns of evolutionary change for a particular
trait of interest. If, for instance, one seeks to make predictions about how the virulence of a pathogen
can be expected to change after the introduction of a vaccination campaign, the transient dynamics
are of direct relevance to identify a potentially deadly short-term epidemic by a virulent strain that
will eventually go extinct in the long run. Whether these changes are caused by natural selection or
by class dynamics is a secondary issue. In addition, reproductive values can only be computed by
backward iteration, so it is not clear how the concept is compatible with forward predictions on short-
term dynamics. For this type of forward-looking questions, the unweighted Price equation appears to
be more useful. In particular, the unweighted Price equation arises naturally when studying short-term
evolution in spatially structured population. For example, when studying the evolution of virulence
during spatial epidemics on networks, Lion & Gandon (2016) found that the change in mean virulence
depends on the build-up of a difference between the (local) virulence measured in hosts that have
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at least one susceptible neighbour and the (global) virulence measured at the population level. This
term, which was interpreted as spatial differentiation in virulence, is the exact equivalent of the z̄k− z̄
terms in equation (2).

For long-term evolution, the predictive power of reproductive values rests upon additional assump-
tions. For instance, if ecological dynamics take place on a fast time scale compared to evolutionary
dynamics, the effect of transient ecological dynamics can be neglected and reproductive values can be
computed on the ecological attractor. Thus, as for exponentially growing populations, we are inter-
ested in reproductive values in a “stable” population. Equation (12) gives a general description of the
dynamics of a weighted mean trait that can be combined with other genetic or ecological assumptions
to derive expressions for the selection gradient. This suggests perspectives for analysing selection in
polymorphic resident populations with arbitrary trait distributions. In addition, because most eco-
logical models can be expected to be non-stationary (Chesson, 2017), a time-dependent concept of
reproductive values may allow consideration of more complex, and realistic, population dynamics.

6.2 Neutrality, demography and selection

A key insight of equation (12) is that the effects of selection are captured by the covariance matrix
C and weighted by the individual reproductive values, v and the class frequencies, f , which are
purely demographic quantities computed using the average transition matrix R. In many problems
in evolutionary game theory, the selection gradient is calculated by evaluating the change in mean
phenotype due to a perturbation of a monomorphic population at equilibrium. The perturbation is
caused by a new mutation, which is typically assumed to be rare, or to have a small effect on the
phenotype (weak selection). Under these assumptions, the reproductive values and class frequencies
in equation (12) can be approximated by those calculated in the resident monomorphic population,
and this resident population, being monomorphic, may be thought of as “neutral”. However, real
populations will often be polymorphic and characterised by a possibly multimodal trait distribution.
It this case, it is still possible to ask how a mutation of small effect will affect the mean phenotype,
but is is not immediately clear how the concept of a neutral reproductive value will be helpful. The
results of this paper suggests that, for polymorphic populations with arbitrary trait distribution, the
reproductive values and class frequencies in equation (12) should be approximated using the mean
demographic matrix of the resident population. The reproductive values calculated in this way are
still neutral because they are calculated in the resident population where the change in mean trait
is assumed to be zero. However, they are not calculated under the assumption that the variance in
the trait is vanishingly small. Instead, the standing genetic variation is handled by averaging over
all types. Importantly, although the reproductive values do depend on the trait distribution of the
resident population, they are not “selective reproductive values” because they are calculated from the
average transition rates, so that information about the relative fitness of the different types is not
used.

6.3 Possible generalisations

The derivation of the weighted Price equation also extends to multiple traits and environmental
stochasticity. First, because the reproductive values do not depend on the trait one considers, the
extension to several jointly evolving traits is straightfoward. However, potential correlations between
traits will need to be accounted for in the transition rates. Second, the results extend directly to
environmental stochasticity. In practice, if we have a random sequence of environmental variables
Et and associated demographic and genetic data, we can still use the backward recursion to com-
pute reproductive values at different time steps, and then compute the reproductive-value-weighted
mean forward. This is illustrated in figure 2. At a theoretical level, the asymptotic value of re-
productive values under environmental stochasticity matches the results of Tuljapurkar (1989) in a
density-independent model.

In contrast, the derivation is only valid for large populations of clonally reproducing types. More
precisely, we need to have a sufficiently large number of individuals in each class. To account for the
effect of small population sizes, we would need to model demographic stochasticity explicitly. Dynam-
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ical equations for reproductive values have been derived under demographic stochasticity (Rousset &
Ronce, 2004; Lehmann, 2012), and this could provide a way forward. In principle, it should also be
possible to extend the results to other genetic systems, including sexual reproduction or recombina-
tion, by using alleles as types and incorporating the genetic background into the class structure. Such
potential extensions are left for future work.

Taking into account stochasticity is particularly important to fully extend the results of this paper
to spatially structured populations. Many results on evolution in class-structured populations have
been derived using an inclusive fitness formalism in subdivided populations (Taylor, 1990; Rousset,
2004; Lehmann & Rousset, 2014; Lehmann et al., 2016). In this approach, spatial structure is modelled
using a deme-structured population and the local fluctuations in allele frequencies are taken into
account through measures of population structure. It would be interesting to analyse how local
stochasticity affects the definition and properties of reproductive values discussed here. However, if the
total population size is sufficiently large, the spatial dynamics will follow approximately deterministic
equations given by spatial moment equations (Lion, 2016; Lion & Gandon, 2016). The per-capita
growth rates rkji will then depend on the dynamics of higher-order spatial moments, and the equations
for the mean trait and reproductive values will only represent the first in a hierarchy of dynamical
equations. However, the key result of this paper would still be valid because it does not depend on
any assumption on the functional form of the rkji ’s.

Finally, I have assumed throughout that the trait under consideration can be measured in each
class. This has clear limitations, because e.g. wing length cannot be used as a trait in the above
formalism if we are studying an insect species with both alate and wingless state. This difficulty may be
avoided by tracking the change in the frequencies of types, rather than the change in mean phenotype.
Appendix A presents equations for the dynamics of the unweighted and weighted frequencies of type
i in the population, with similar interpretations regarding the use of reproductive-value weighting.
Working with frequencies should also be more appropriate to study a plastic trait that takes different
values depending on the class in which it is expressed.

6.4 Connection with Fisher’s use of reproductive values

Historically, the use of reproductive values has also been advocated in two ways. In demography,
reproductive values are often characterised as the weights vk that need to be applied to the densities
of each class (or age) so that the total reproductive value

∑
k v

knk grows from the start with the long-
term growth rate r (Fisher, 1930; Price & Smith, 1972; Samuelson, 1977; Crow, 1979; Charlesworth,
1994). The generality of this result has been debated, as this property of reproductive values seems
tied to linear models (Samuelson, 1977; see also Bacaër & Abdurahman (2008) for an extension to
periodic environments). However, the dynamical definition of reproductive values used here guarantees
that the reproductive-valued weighted population size has the same growth rate as the non-weighted
population size.

Alternatively, in evolutionary theory, reproductive values have been discussed in relation to Fisher’s
Fundamental Theorem of Natural Selection (FTNS; Crow, 1979; Grafen, 2015a; Grafen, 2015b; Lessard
& Soares, 2016), which states that the change in mean fitness due to natural selection is given by the
genetic variance in fitness. In this literature, a focus of attention has been to determine whether
Fisher’s intention in the FTNS was to use reproductive values as weights. In principle, we could
obtain two different FTNS by substituting the growth rate ri of type i for the trait zi in the two
Price equations derived above (Gandon & Day, 2009). However, these Price equations are derived for
constant traits, whereas the growth rate ri is a function of the environment E(t), and possibly of time
itself if vital rates are functions of time. This will contribute an additional term to the Price equation,
representing the feedback of the environment on the change in mean “fitness” (Frank & Slatkin, 1992;
Gandon & Day, 2009; Lion, in press). Hence, as has long been recognised, the FTNS only captures a
partial change in mean fitness, with or without reproductive-value weighting.

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 28, 2017. ; https://doi.org/10.1101/155879doi: bioRxiv preprint 

https://doi.org/10.1101/155879
http://creativecommons.org/licenses/by-nc-nd/4.0/


6.5 Summary

The results of this article confirm that reproductive values are best viewed as weights that can be used
to decouple the changes due to selection from the passive changes due to demographic class dynamics.
This allows one to measure selection in distinct classes with potentially different evolutionary values
using a single, time-dependent currency. The practical interest of this approach is that the relevant
weights at each time can always be calculated from time series, even for complex population dynamics.
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Appendix A: Derivation of the class-structured Price equation

A.1 No mutation

The mean trait in the K-class model is z̄ =
∑
k z̄

kfk where fk = nk/n is the frequency of class k, and
z̄k is the mean trait among individuals in class k. Introducing the frequency of i-individuals within
class k, which is fki = nki /n

k, we have z̄k =
∑
i zif

k
i . We first compute the dynamics of frequencies.

Using the fact that dnki /dt = rki n
k
i , we have

dfki
dt = fki (rki − r̄k)

where the per-capita growth rate of type i in class k is

rki =
∑
j

rkji
nji
nki

=
∑
j

rkji
f ji
fki

f j

fk
.

and the average per-capita growth rte of individuals in class k, averaged over all types, is

r̄k =
∑
i

rki f
k
i =

∑
j

r̄kj
f j

fk
.

It is straightfoward to verify that dnk/dt = r̄knk =
∑
j r̄

kjnj as expected.
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Noting that fi =
∑
k f

k
i f

k, we have

dfi
dt =

∑
k

fk
dfki
dt +

∑
k

fki
dfk

dt

=
∑
k

fkfki (rki − r̄k) +
∑
k

fki

∑
j

r̄kjf j − fk 1
n

dn
dt


=
∑
k

fkfki
∑
j

rkji
f ji
fki

f j

fk
−
∑
k

fkfki
∑
j

r̄kj
f j

fk

+
∑
k

fki
∑
j

r̄kjf j − fi
∑
k

∑
j

r̄kjf j

=
∑
k

∑
j

rkji f
j
i f

j − fi
∑
k

∑
j

r̄kjf j

=
∑
k

∑
j

(rkji − r̄
kj)f ji f

j +
∑
k

∑
j

(f ji − fi)r̄
kjf j

Multiplying by zi and summing over i yields the dynamics of the mean trait

dz̄
dt =

∑
j

cov
j

(zi,
∑
k

rkji )f j +
∑
j

(z̄j − z̄)
∑
k

r̄kjf j . (A.1)

The dynamics of the mean trait in class k can be derived from the dynamics of fki . This gives

dz̄k

dt =cov
k

(zi, rki )

=
∑
i

∑
j

(zi − z̄k)rkji f
j
i

f j

fk

=
∑
j

∑
i

(zi − z̄j)rkji f
j
i

f j

fk
+
∑
j

(z̄j − z̄k)
∑
i

rkji f
j
i

f j

fk

=
∑
j

cov
j

(zi, rkji )f
j

fk
+
∑
j

(z̄j − z̄k)r̄kj f
j

fk
(A.2)

=
∑
j

cov
j

(zi, rkji )f
j

fk
+
∑
j

(z̄j − z̄)r̄kj f
j

fk
− (z̄k − z̄)

∑
j r̄

kjf j

fk
(A.3)

From equations (A.1) and (A.3), we can also derive the dynamics of z̄k − z̄, which gives:

d
dt(z̄

k− z̄) =
∑
j

cov
j

(
zi,

rkji
fk
−
∑
k

rkji

)
f j+

∑
j

(z̄j− z̄)
(
r̄kj

f j

fk
−
∑
k

r̄kjf j
)
−(z̄k− z̄)

∑
j r̄

kjf j

fk
(A.4)

A.2 Mutation

Let us consider the following mutation model: mutations occur at rate µ and with probability m`i a
parent of type i can give birth to an offspring of type `, conditional on mutation. Assuming that the
per-capita rate rki can be decoupled into birth and death contributions as bki − dki , the change in the
density nki can then be written as

dnki
dt = −dki nki + (1− µ)bki nki + µ

∑
`

mi`b
k
`n

k
` = rki n

k
i + µ

(∑
`

mi`b
k
`n

k
` − bki nki

)

Thus, mutation contributes an additional term to the dynamics of z̄k

dz̄k

dt = cov
k

(zi, rki ) + µ
∑
i

zi

(∑
`

mi`b
k
` f

k
` − bki fki

)
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which can be rewritten as

dz̄k

dt = cov
k

(zi, rki ) + µ
∑
i

(∑
`

z`m`i − zi

)
bki f

k
i .

Hence, because z̄ =
∑
k f

kz̄k, mutation contributes the following additional term to the dynamics of z̄

dz̄
dt = RHS of (A.1) + µ

∑
i

(∑
`

z`m`i − zi

)
bifi

where bi =
∑
k b

k
i n

k
i /n is the average birth rate of type i across all classes, and fi =

∑
k n

k
i /n is the

global frequency of type i. Note that the above derivation assumes that the rate and distribution of
mutations are constant across classes.

Noting δi =
∑
` z`m`i − zi the deviation between parent and offspring trait, the second term of

equation (A.2) can be further split into two components, as follows:

∑
i

(∑
`

z`m`i − zi

)
bifi = cov(δi, bi) + δ̄b̄,

where δ̄ =
∑
i δifi is the mean deviation over all types, b̄ is the mean birth rate, and cov(δi, bi) =∑

i δibifi− δ̄b̄ is the covariance between the trait difference and the birth rate. This is the continuous-
time version of equation (12) in Barfield et al. (2011).

A.3 Weighted Price equation

We now calculate the dynamics of a weighted average frequency, f̃i =
∑
k c

kfki , with weights ck(t)
such that ck = vkfk and

∑
ck = 1. In the absence of mutation, this yields

df̃i
dt =

∑
k

ck
dfki
dt +

∑
k

fki
dck

dt

=
∑
k

ckfki r
k
i +

∑
k

fki

[
dck

dt − c
kr̄k
]

=
∑
k

ckfki
∑
j

rkji
f ji
fki

f j

fk
+
∑
k

fki

dck

dt − c
k
∑
j

r̄kj
f j

fk


=
∑
k

ckfki
∑
j

rkji
f ji
fki

f j

fk
−
∑
k

fki
∑
j

cj r̄jk
fk

f j
+
∑
k

fki

dck

dt − c
k
∑
j

r̄kj
f j

fk
+
∑
j

cj r̄jk
fk

f j


If the ck’s satisfy the system

dck

dt = −
∑
j

cj r̄jk
fk

f j
+ ck

∑
j

r̄kj
f j

fk
, (A.5)

we then have the following simple equation for the dynamics of the weighted frequency

df̃i
dt =

∑
j

f j
∑
k

vk(rkji − r̄
kj)f ji .

Multiplying by zi and summing over i yields the dynamics of the weighted average z̃ =
∑
k c

kz̄k =∑
k c

k∑
i f

k
i zi:

dz̃
dt =

∑
j

cov
j

(
zi,
∑
k

vkrkji

)
f j , (A.6)
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or in matrix form as
dz̃
dt = v>Cf (A.7)

where C is the matrix of covariances with elements Ckj = cov
j

(zi, rkji ). Taking into account mutation
would only contribute an additional term, which is simply the second term of equation (A.2) with r̃i
and f̃i substituted for ri and fi.

Appendix B: Reproductive values
Equation (A.5) can be rewritten in matrix form as

dc>

dt = −c>Q (B.1)

where the matrix Q has elements

qjk = r̄jk
fk

f j
if j 6= k,

qkk = −
∑
j 6=k

r̄kj
f j

fk
= −

∑
j 6=k

qkj .

Similarly, we can find a dynamical equation for the vk’s. Because ck = vkfk by definition, we have

dvk

dt f
k =dck

dt − v
k dfk

dt

=−
∑
j

cj r̄jk
fk

f j
+ ck

∑
j

r̄kj
f j

fk
− vk

∑
j

r̄kjf j − r̄fk


=−
∑
j

vj r̄jkfk + vkfkr̄

which gives us the following equation for the vector v

dv>

dt = −v>R + r̄v> (B.2)

Equations (B.1) and (B.2) show that the vector c (resp. v) can be calculated at equilibrium as the
left eigenvector of the matrix Q (resp. R), associated with eigenvalue 0.
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Appendix S: Supporting Information for “On the dynamics of repro-
ductive values and phenotypic traits in class-structured populations”

S.1 Discrete time dynamics

Here I provide a derivation of the weighted and unweighted class-structured Price equations in discrete
time.

S.1.1 Ecological dynamics

As for the continuous time, the ecological dynamics of a class-structured population are given by a
matrix equation:

n(t+ 1) = W(t)n(t) (S.1)

where n(t) is the vector of densities in each class, nk(t), and W(t) collects the quantities w̄kj(t). This
gives us

nk(t+ 1) =
∑
j

w̄kj(t)nj(t) = w̄k(t)nk(t) (S.2)

where w̄k(t) =
∑
j w̄

kj(t)nj(t)/nk(t). The total population size, n(t), obeys the following equation

n(t+ 1) =
∑
k

nk(t+ 1) =
∑
k

w̄k(t)nk(t) = w̄(t)n(t) (S.3)

where w̄(t) =
∑
k w̄

k(t)nk(t)/n(t).
Similarly, the dynamics of type i in class k can be written as

nki (t+ 1) =
∑
j

wkji (t)nji (t) = wki (t)nki (t) (S.4)

where

wki (t) =
∑
j

wkji (t)n
j
i (t)
nki (t)

(S.5)

S.1.2 Change in frequency

The frequency of type i in class k is fki = nki /n
k. The change in frequency is then

fki (t+ 1)− fki (t) = nki (t+ 1)
nk(t+ 1) − f

k
i (t)

=
∑
j w

kj
i (t)nji (t)∑

j w̄
kj(t)nj(t) − f

k
i (t)

=
(
wki (t)
w̄k(t) − 1

)
fki (t) (S.6)

S.1.3 Change in mean trait

The change in the mean trait z̄k(t) =
∑
i zif

k
i (t) directly follows from the change in frequency:

z̄k(t+ 1)− z̄k(t) =
∑
i

zi
(
fki (t+ 1)− fki (t)

)
=
∑
i

zi

(
wki (t)
w̄k(t) − 1

)
fki (t)

=
cov
k

(zi, wki (t))

w̄k(t) (S.7)
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Using equation (S.5), this can be expanded as follows

z̄k(t+ 1)− z̄k(t) =
cov
k

(
zi,
∑
j w

kj
i (t)n

j
i (t)
nk

i (t)

)
w̄k(t)

=
cov
k

(
zi,
∑
j w

kj
i (t) f

j
i (t)
fk

i (t)
nj(t)
nk(t)

)
w̄k(t)

= 1
w̄k(t)

∑
i

(zi − z̄k(t))
∑
j

wkji (t)f ji (t)n
j(t)
nk(t)


= 1
w̄k(t)

∑
i

∑
j

(zi − z̄j(t) + z̄j(t)− z̄k(t))wkji (t)f ji (t)n
j(t)
nk(t)


= 1
w̄k(t)

∑
i

∑
j

(zi − z̄j(t))wkji (t)f ji (t)n
j(t)
nk(t) +

∑
i

∑
j

(z̄j(t)− z̄k(t))wkji (t)f ji (t)n
j(t)
nk(t)


which gives finally

z̄k(t+ 1)− z̄k(t) = 1
w̄k(t)

∑
j

cov
j

(zi, wkji )n
j(t)
nk(t) +

∑
j

(z̄j(t)− z̄k(t))w̄kj(t)n
j(t)
nk(t)

 (S.8)

S.1.4 Change in weighted mean trait

We now introduce the following weighted average

z̃(t) =
∑
k

ck(t)z̄k(t). (S.9)

Using equation (S.8), the weighted average at t+ 1 can be written as

z̃(t+ 1) =
∑
k

ck(t+ 1)z̄k(t+ 1)

=
∑
k

ck(t+ 1)

z̄k(t) +
∑
j

cov
j

(
zi,

wkji (t)
w̄k(t)

)
nj(t)
nk(t) +

∑
j

(z̄j(t)− z̄k(t)) w̄
kj(t)
w̄k(t)

nj(t)
nk(t)


=
∑
k

ck(t+ 1)z̄k(t) +
∑
j

cov
j

(
zi,
∑
k

ck(t+ 1)w
kj
i (t)
w̄k(t)

)
nj(t)
nk(t)

+
∑
k

ck(t+ 1)
∑
j

(z̄j(t)− z̄k(t)) w̄
kj(t)
w̄k(t)

nj(t)
nk(t)

=
∑
k

ck(t+ 1)z̄k(t) +
∑
j

cov
j

(
zi,
∑
k

ck(t+ 1)w
kj
i (t)
w̄k(t)

)
nj(t)
nk(t)

+
∑
j

z̄j(t)
∑
k

ck(t+ 1) w̄
kj(t)
w̄k(t)

nj(t)
nk(t) −

∑
k

ck(t+ 1)z̄k(t)
∑
j

w̄kj(t)
w̄k(t)

nj(t)
nk(t)

Because the sum over j in the fourth term is equal to one by definition, the first and fourth term
cancel out and we obtain:

z̃(t+ 1) =
∑
j

cov
j

(
zi,
∑
k

ck(t+ 1)w
kj
i (t)
w̄k(t)

)
nj(t)
nk(t) +

∑
j

z̄j(t)
∑
k

ck(t+ 1) w̄
kj(t)
w̄k(t)

nj(t)
nk(t) (S.10)

Now if we choose the weights ck such that they satisfy the recursion:

cj(t) =
∑
k

ck(t+ 1) w̄
kj(t)
w̄k(t)

nj(t)
nk(t) , (S.11)
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we obtain

z̃(t+ 1) =
∑
j

cov
j

(
zi,
∑
k

ck(t+ 1)w
kj
i (t)
w̄k(t)

)
nj(t)
nk(t) +

∑
j

z̄j(t)cj(t) (S.12)

which gives us directly the change in the weighted average as

z̃(t+ 1)− z̃(t) =
∑
j

cov
j

(
zi,
∑
k

ck(t+ 1)w
kj
i (t)
w̄k(t)

)
nj(t)
nk(t) (S.13)

A final rearrangement uses the fact that nk(t+ 1) = w̄k(t)nk(t) and the definition ck(t) = vk(t)fk(t),
so we have

z̃(t+ 1)− z̃(t) =
∑
j

cov
j

(
zi,
∑
k

vk(t+ 1)fk(t+ 1) wkji (t)
nk(t+ 1)

)
nj(t)

=
∑
j

cov
j

(
zi,
∑
k

vk(t+ 1) w
kj
i (t)

n(t+ 1)

)
nj(t)

=
∑
j

cov
j

(
zi,
∑
k

vk(t+ 1) wkji (t)
w̄(t)n(t)

)
nj(t)

and we have finally

z̃(t+ 1)− z̃(t) = 1
w̄(t)

∑
j

cov
j

(
zi,
∑
k

vk(t+ 1)wkji (t)
)
f j(t) . (S.14)

The latter equation thus shows that the change in the reproductive-value-weighted trait can be written
as a covariance between the trait and a weighted measure of fitness, obtained by weighting each
offspring in the next generation by the reproductive value of the class in the next generation.

A recursion for the individual reproductive can be obtained from equation (S.11) by noting that
w̄k(t)nk(t) = nk(t+ 1). We then have, using the definition fo cj(t)

vj(t)f j(t) =
∑
k

vk(t+ 1)fk(t+ 1) w̄
kj(t)nj(t)
nk(t+ 1) .

Because nk(t) = fk(t)n(t), this can be simplified as

vj(t) =
∑
k

vk(t+ 1) w̄
kj(t)n(t)
n(t+ 1) ,

and using n(t+ 1) = w̄(t)n(t) yields

w̄(t)vj(t) =
∑
k

vk(t+ 1)w̄kj . (S.15)

S.2 Derivation of the selection gradient for polymorphic and periodic resident
populations

The starting point of the derivation is the equation for the dynamics of the weighted mean trait,

dz̃
dt = v>Cf (S.16)

where the covariance matrix has elements

Cjk = cov
k

(zi, rjki ) =
∑
i

(zi, z̄k)(rjki − r̄
jk)fki . (S.17)

In a resident population at equilibrium, the change in the weighted mean trait is zero. We are interested
in the perturbation resulting from the introduction of a mutation with small phenotypic effect.
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Monomorphic population In a monomomorphic population, the covariance matrix C is nec-
essarily equal to the null matrix. Hence, in a population with two types, w and m, with the
same trait value zw the change in weighted mean trait is zero. If we now assume that the mu-
tant type has trait value zw + ε, we can write the resulting perturbation of the covariance matrix as
C = 0 + ε1C(1) + ε2C(2) +O(ε3), where the C(1) and C(2) are the first and second-order perturbation
terms of the matrix C.

If we assume that the resident population (when ε = 0) is on an ecological attractor, the perturba-
tion of the reproductive values and class frequencies are v̂ + εv(1) +O(ε2) and f̂ + εf (1) +O(ε2), where
v̂ and f̂ are calculated in the monomorphic population on its attractor. Plugging these expressions
into equation (S.16) yields the following perturbation of the change in weighted mean trait

dz̃
dt = εv̂C(1)f̂ + ε2v̂C(2) +O(ε3) (S.18)

Hence, the leading-order term of the perturbation only depends on the perturbation of the covariance
matrix, and not on the perturbation of the demographic variables v and f .

To calculate the perturbation of the covariance matrix, note that in a two-allele model, the rela-
tionship fkm + fkw = 1, r̄jk = rjkw f

k
w + rjkm f

k
m and z̄k = zwf

k
w + zmf

k
m yield the following egality

Cjk = (zm − zw)
(
rjkm − rjkw

)
fkm(1− fkm). (S.19)

Now, if we assume that the effect of the mutation has only a weak effect on the ecological attractor,
we can write the rates rjki as a function of the trait zi and of the resident monomorphic environment
Ê. We then have

rjkm − rjkw = ε
drjkm
dε +O(ε2). (S.20)

where the derivative is evaluated at ε = 0. Finally, this leads to

Cjk =
[
ε2fkm(1− fkm)

] drjkm
dε +O(ε2) (S.21)

The factor between square brackets is the trait variance within class k, σkzz. Under weak selection in a
deterministic model, σkzz should be well approximated by the trait variance in the whole population,
σzz (Lande (1982b); see also Barfield et al. (2011), their equation B11). Equation (S.21) implies
C(1) = 0 and C(2) = fm(1− fm)dRm/dε. This yields finally

dz̃
dt ≈ σzzv̂

dRm

dε f̂ . (S.22)

Periodic environment The derivations of equations (S.18) and (S.21) make no assumptions on
the nature of the resident attractor. Thus, equation (S.22) can be applied to a periodic monomorphic
attractor, but now the vectors v̂ and f̂ are time-dependent, and the matrix Rm depends on the time-
dependent resident attractor. In a deterministic model, the mutant frequency should not change in a
neutral model, even in a periodic model, because the densities of the two types have exactly the same
dynamics, so we can approximate the trait variance as a constant factor. Doing so, and integrating
over one period gives the change in the weighted mean trait over one period (equation (23) in the
main text).

Polymorphic resident populations I now assume thatM types coexist in the resident population
at equilibrium. For such polymorphic resident populations, the perturbation of the covariance matrix
can be calculated in different ways depending on how the mutation arises. For simplicity, I assume
here that all individuals in type m mutate. The trait value in the mutant individuals is zm = z0

m + ε.
Assuming that the per-capita growth rates can be evaluated using the resident environment Ê, we
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write

rjkm = rjk,0m + ε
drjkm
dε + ε2

2
d2rjkm
dε2 +O(ε3)

rjki = rjk,0i for i 6= m

r̄jk = r̄jk,0 + εfkm
drjkm
dε + ε2

2 f
k
m

d2rjkm
dε2 +O(ε3)

where the terms with a “0” superscript and the derivatives are calculated for ε = 0. In the following,
we also note zi = z0

i the trait value for i 6= m and zm = z0
m + ε the mutant trait value. We then have

z̄k = z̄k,0 + εfkm and

Cjk =
∑
i

(zi − z̄k)(rjki − r̄
jk)fki

=
∑
i

(z0
i − z̄k,0)(rjki − r̄

jk)fki + ε(rjkm − r̄jk)fkm − εfkm
∑
i

(rjki − r̄
jk)fki

=
∑
i

(z0
i − z̄k,0)(rjki − r̄

jk)fki + ε(rjkm − r̄jk)fkm because the last sum is zero by definition

=
∑
i

(z0
i − z̄k,0)(rjk,0i − r̄jk,0)fki + ε(rjkm − r̄jk)fkm

− ε
∑
i6=m

(z0
i − z̄k,0)fkm

[
drjkm
dε + ε

2
d2rjkm
dε2

]
fki + ε(z0

m − z̄k,0)(1− fkm)
[

drjkm
dε + ε

2
d2rjkm
dε2

]
fkm

=
∑
i

(z0
i − z̄k,0)(rjk,0i − r̄jk,0)fki + ε(rjkm − r̄jk)fkm

+
(
εfkm

drjkm
dε + ε2

2 f
k
m

d2rjkm
dε2

)−∑
i6=m

(z0
i − z̄k,0)fki + (z0

m − z̄k,0)(1− fkm)


The first term is C0

jk, the covariance evaluated at ε = 0. The term between brackets in the third term
can be simplified as −

∑
i f

k
i (z0

i − z̄k,0)+z0
m− z̄k,0 = z0

m− z̄k,0. Expanding the second term then yields

Cjk = C0
jk + ε(rjk,0m − r̄jk,0)fkm + ε(z0

m − z̄k,0)fkm

[
drjkm
dε + ε

2
d2rjkm
dε2

]
+ ε2fkm(1− fkm)drjkm

dε (S.23)

If the perturbations of the vectors v and f are assumed to be negligible compared to the perturbation of
the covariance matrix, we can pre- and post-multiply by the vectors v0 and f0 calculated at equilibrium
in the resident population with ε = 0. We then have

dz̃
dt =v0C0f0 + ε

∑
j

∑
k

vj,0fk,0(rjk,0m − r̄jk,0)fkm

+
∑
j

∑
k

vj,0fk,0
(
ε(z0

m − z̄k,0)fkm

[
drjkm
dε + ε

2
d2rjkm
dε2

]
+ ε2fkm(1− fkm)drjkm

dε

)

The first term is the change in mean trait in the resident population, which is zero because the resident
population is at equilibrium. The second term can be simplified by noting that

∑
j

∑
k

vj,0fk,0(rjk,0m − r̄jk,0)fkm =
∑
j

vj,0
(∑

k

rjk,0m fkmf
k,0
)
−
∑
k

fk,0fkm

∑
j

vj,0r̄jk,0


The first term between brackets is zero because it is proportional to dnjm/dt calculated for a neutral
mutant. The second term between brackets is zero by definition of v in the resident population at
equilibrium. Hence, the dynamics of the weighted mean trait can be approximated as

dz̃
dt = ε

∑
j

∑
k

vj,0fk,0(z0
m−z̄k,0)fkm

drjkm
dε +ε2∑

j

∑
k

vj,0fk,0
[
fkm(1− fkm)drjkm

dε + 1
2(z0

m − z̄k,0)fkm
d2rjkm
dε2

]
+O(ε3).

(S.24)
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Importantly, the leading order term is O(ε), which is of the same order as the perturbations of
v and f . Hence, to neglect the perturbation of demography compared to the perturbation of the
covariance matrix, we need to make a more stringent assumption than in the monomorphic case. If
this assumption does not hold, we need to compute the perturbation of the reproductive values and
class frequencies.

Note that if the population consists of only two types w and m with traits zw and zm = zw + ε
(so that, when ε = 0, the population is monomorphic), equation (S.22) can be recovered using the
relationship z̄k,0 = zw = z0

m.

S.3 Continuous age structure and Fisher’s original concept of reproductive value

Consider a population with continuous age structure. The density of type-i individuals with age a at
time t is ni(a, t). These individuals die at rate di(a, t) and give birth at rate bi(a, t). These assumptions
yield the following partial differential equation

∂ni
∂t

(a, t) + ∂ni
∂a

(a, t) = −di(a, t)ni(a, t) (S.25)

along with the boundary condition

ni(0, t) =
∫ ∞

0
bi(a, t)ni(a, t)da. (S.26)

The total density of individuals at age a and time t is n(a, t) =
∑
i ni(a, t).

Now, for a focal trait z with value zi in type-i individuals, we note z̄(a, t) the average trait value
in age-a individuals at time t. Noting c(a, t) the reproductive value at age a and time t, we calculate
the weighted average

z̃ =
∫ ∞

0
c(a, t)z̄(a, t)da =

∑
i

zi

∫ ∞
0

c(a, t)fi(a, t)da

where fi(a, t) = ni(a, t)/n(a, t). In this specific case, it is easier to work with the individual reproduc-
tive values. Using the relationship c(a, t) = v(a, t)f(a, t) where f(a, t) = n(a, t)/n(t) is the frequency
of individuals with age a at t in the population, we write

z̃ =
∑
i

zi

∫∞
0 ni(a, t)v(a, t)da

n(t)

With these assumptions, the dynamics of the weighted mean trait is

dz̃
dt =

∑
i

zi
1
n(t)

∫ ∞
0

∂(v(a, t)ni(a, t))
∂t

da−
∑
i

zi

∫∞
0 ni(a, t)v(a, t)da

n(t) r(t)

=
∑
i

zi

∫ ∞
0

ni(a, t)
n(t)

∂v

∂t
da+

∑
i

zi

∫ ∞
0

v(a, t)
n(t)

∂ni
∂t

da−
∑
i

zi

∫∞
0 ni(a, t)v(a, t)da

n(t) r(t)

=
∫ ∞

0
z̄(a, t)f(a, t)

[
∂v

∂t
− r(t)v(a, t)

]
da+

∑
i

zi

∫ ∞
0

v(a, t)
n(t)

∂ni
∂t

da

where r(t) = d ln(n)/dt is the per-capita growth rate of the total population.
Now using equation (S.25), the last term becomes

∑
i

zi

∫ ∞
0

v(a, t)
n(t)

∂ni
∂t

da = −
∑
i

zi

∫ ∞
0

v(a, t)
n(t)

∂ni
∂a

da−
∑
i

zi

∫ ∞
0

v(a, t)di(a, t)fi(a, t)f(a, t)da
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The first term on the right-hand side of the latter equation can be integrated by parts, which yields

∑
i

zi

∫ ∞
0

v(a, t)
n(t)

∂ni
∂t

da =−
∑
i

zi
1
n(t) [v(a, t)ni(a, t)]∞a=0 +

∑
i

zi

∫ ∞
0

∂v

∂a
fi(a, t)f(a, t)da

−
∑
i

zi

∫ ∞
0

v(a, t)di(a, t)fi(a, t)f(a, t)da

=
∑
i

ziv(0, t)ni(0, t)
n(t) +

∑
i

zi

∫ ∞
0

∂v

∂a
fi(a, t)f(a, t)da

−
∑
i

zi

∫ ∞
0

v(a, t)di(a, t)fi(a, t)f(a, t)da

Plugging this into the dynamics for z̃ gives

dz̃
dt =

∫ ∞
0

z̄(a, t)f(a, t)
[
∂v

∂t
+ ∂v

∂a
− r(t)v(a, t)

]
da

+
∑
i

ziv(0, t)ni(0, t)
n(t) −

∑
i

zi

∫ ∞
0

v(a, t)di(a, t)fi(a, t)f(a, t)da

Using the boundary condition (S.26) for ni(0, t), we obtain

dz̃
dt =

∫ ∞
0

z̄(a, t)f(a, t)
[
∂v

∂t
+ ∂v

∂a
− r(t)v(a, t)

]
da

+
∑
i

ziv(0, t)
∫ ∞

0
bi(a, t)fi(a, t)f(a, t)da−

∑
i

zi

∫ ∞
0

v(a, t)di(a, t)fi(a, t)f(a, t)da

Finally, we introduce the age-specific covariances:

cov
a

(zi, bi(a, t)) =
∑
i

(zi − z̄(a, t))(bi(a, t)− b̄(a, t))fi(a, t) (S.27)

and similar expressions for the covariances between the trait and the death rate. Doing so results in
the following equation

dz̃
dt =

∫ ∞
0

z̄(a, t)f(a, t)
[
∂v

∂t
+ ∂v

∂a
+ b̄(a, t)v(0, t)− d̄(a, t)v(a, t)− r(t)v(a, t)

]
da

+ v(0, t)
∫ ∞

0
cov
a

(zi, bi(a, t))f(a, t)da−
∫ ∞

0
v(a, t)cov

a
(zi, di(a, t))f(a, t)da

Thus, if the individual reproductive values satisfy the following partial differential equation

∂v

∂t
+ ∂v

∂a
+ b̄(a, t)v(0, t)− d̄(a, t)v(a, t)− r(t)v(a, t) = 0, (S.28)

the dynamics of the weighted mean trait take the simple form:

dz̃
dt = v(0, t)

∫ ∞
0

cov
a

(zi, bi(a, t))f(a, t)da−
∫ ∞

0
v(a, t)cov

a
(zi, di(a, t))f(a, t)da. (S.29)

This is the equivalent of equation (S.16) for a continuous-age structure. Note that the selective effects
due to birth events are weighted by the reproductive values of newborns, v(0, t) and the frequency of
adults with age a, f(a, t), whereas the selective effect due to death events at age a are weighted by
the reproductive value at age a, v(a, t), and the frequency f(a, t).

Equation (S.28) was previously derived by Bacaër & Abdurahman (2008) in a periodic epidemiolog-
ical model structured by infectious age (their equation (7)). Equation (S.28) generalises their finding
to polymorphic population. As in Bacaër & Abdurahman (2008), equation (S.28) is coupled to an
adjoint partial diffrential equation for f(a, t), with normalisation condition

∫∞
0 f(a, t)v(a, t)da = 1.
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Note that it is straightforward to show that, if the reproductive values satisfy equation (S.28), the
weighted population size ñ(t) =

∫∞
0 n(a, t)v(a, t)da always grows as

dñ
dt = r̄(t)ñ(t). (S.30)

A special solution of equation (S.28) can be found under the assumption that the birth and death
rates are independent of time. Then, the solution of equation (S.28) is

v(a) = v(0) e
ra

`(a)

∫ ∞
a

e−rs`(s)b̄(s)ds (S.31)

with `(s) = exp(−
∫ s

0 d̄(x)dx) the probability to survive to age s.2 Expression (S.31) is the original
definition of reproductive value given by Fisher (Fisher, 1930; Charlesworth, 1994), but with average
birth and death rates. Note that in Fisher (1930)’s first version, the normalisation constant v(0) was
omitted but this was corrected in the 1958 version of the book.

2An equivalent expression, with time-dependent coefficients, can be derived if the age distribution is assumed to
stabilise quickly relative to the time scale on which b̄(a, t) and d̄(a, t) change, see e.g. Day et al. (2011).
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