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ABSTRACT 
Neocortical regions are organized into columns and layers.  
Connections between layers run mostly perpendicular to the 
surface suggesting a columnar functional organization. Some 
layers have long-range excitatory lateral connections 
suggesting interactions between columns. Similar patterns of 
connectivity exist in all regions but their exact role remain a 
mystery. In this paper, we propose a network model 
composed of columns and layers that performs robust object 
learning and recognition. Each column integrates its changing 
input over time to learn complete predictive models of 
observed objects. Excitatory lateral connections across 
columns allow the network to more rapidly infer objects 
based on the partial knowledge of adjacent columns. Because 
columns integrate input over time and space, the network 
learns models of complex objects that extend well beyond the 
receptive field of individual cells. Our network model 
introduces a new feature to cortical columns. We propose that 
a representation of location relative to the object being sensed 
is calculated within the sub-granular layers of each column. 
The location signal is provided as an input to the network, 
where it is combined with sensory data. Our model contains 
two layers and one or more columns. Simulations show that 
using Hebbian-like learning rules small single-column 
networks can learn to recognize hundreds of objects, with 
each object containing tens of features. Multi-column 
networks recognize objects with significantly fewer 
movements of the sensory receptors. Given the ubiquity of 
columnar and laminar connectivity patterns throughout the 
neocortex, we propose that columns and regions have more 
powerful recognition and modeling capabilities than 
previously assumed.   

INTRODUCTION 
The neocortex is complex. Within its 2.5mm thickness are 
dozens of cell types, numerous layers, and intricate 
connectivity patterns. The connections between cells 
suggest a columnar flow of information across layers as 
well as a laminar flow within some layers. Fortunately, this 
complex circuitry is remarkably preserved in all regions, 
suggesting that a canonical circuit consisting of columns 
and layers underlies everything the neocortex does. 
Understanding the function of the canonical circuit is a key 
goal of neuroscience. 

Over the past century, several theories have been proposed 
to explain the existence of cortical layers and columns. One 
theory suggested these anatomical constructs minimize the 
amount of wiring in cortical tissues (Shipp et al., 2007). 
Some researchers suggested there should be functional 
differentiation of different cortical layers that match the 
anatomical structure (Douglas and Martin, 2004).  Others 
have proposed that long-range laminar connections 
contribute to attention-related changes in receptive field 
properties (Raizada and Grossberg, 2003). Recent advances 
in recording technologies now enable detailed recording of 

activity in the micro-circuitry of cortical columns. However, 
despite these advances, the function of networks of neurons 
organized in layers and columns remains unclear, and 
assigning any function to columns remains controversial 
(Horton and Adams, 2005).  

Lacking a theory of why the neocortex is organized in 
columns and layers, almost all artificial neural networks, 
such as those used in deep learning (LeCun et al., 2015) 
and spiking neural networks (Maass, 1997), do not include 
these features, introducing the possibility they may be 
missing key functional aspects of biological neural tissue. 
To build systems that work on the same principles as the 
neocortex we need an understanding of the functional role 
of columnar and laminar projections. 
Cellular layers vary in the connections they make, but a 
few general rules have been observed. Cells in layers that 
receive direct feedforward input do not send their axons 
outside the local region and they do not form long distance 
horizontal connections within their own layer. Cells in 
layers that are driven by input layers form long range 
excitatory connections within their layer, and also send an 
axonal branch outside of the region, constituting an output 
of the region. This two-layer input-output circuit is a 
persistent feature of cortical regions. The most commonly 
recognized instance involves layer 4 and Layer 2/3. Layer 4 
receives feedforward input. It projects to layer 2/3 which is 
an output layer (Douglas and Martin, 2004; Shipp et al., 
2007). Upper layer 6 also receives feedforward input 
(Thomson, 2010). It projects to layer 5, which is an output 
layer (Douglas and Martin, 2004; Guillery and Sherman, 
2011), and therefore layers 6 and 5 may be a second 
instance of the two-layer input-output circuit. The 
prevalence of this two-layer connection motif suggests it 
plays an essential role in cortical processing. 

 In this paper, we introduce a theory of how columns and 
layers learn the structure of objects in the world. It is a 
sensorimotor theory in that learning and inference require 
movement of sensors relative to objects. We also introduce 
a network model based on the theory. The network consists 
of one or more columns, where each column contains an 
input layer and an output layer. First, we show how even a 
single column can learn the structure of complex objects. A 
single column can only sense a part of an object at any 
point in time, however, the column will be exposed to 
multiple parts of an object as the corresponding sensory 
organ moves. While the activation in the input layer 
changes with each movement of the sensor, the activation 
in the output layer remains stable, associating a single 
output representation with a set of feature representations in 
the input layer. Thus, a single cortical column can learn 
models of complete objects through movement. These 
objects can be far larger than any individual cell’s receptive 
field. 
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Next, we show how multiple columns collaborate via long-
range intralaminar connections. At any point in time, each 
column has only partial knowledge of the object it is 
observing, yet adjacent columns are typically sensing the 
same object, albeit at different locations on the object. 
Long range excitatory connections in the output layer allow 
multiple columns to rapidly reach a consensus of what 
object is being observed. Although learning always requires 
multiple sensations via movement, inference with multiple 
columns can often occur in a single or just a few sensations. 
Through simulation we illustrate that our model can learn 
the structure of complex objects, it infers quickly, and it has 
high capacity. 

A key component of our theory is the presence in each 
column of a signal representing location. The location 
signal represents an “allocentric” location, meaning it is a 
location relative to the object being sensed. In our theory, 
the input layer receives both a sensory signal and the 
location signal. Thus, the input layer knows both what 
feature it is sensing and where the sensory feature is on the 
object being sensed. The output layer learns complete 
models of objects as a set of features at locations. This is 
analogous to how computer-aided-design programs 
represent multi-dimensional objects. 

Because different parts of a sensory array (for example 
different fingers or different parts of the retina) sense 
different parts of an object, the location signal must be 
calculated uniquely for each sensory patch and 
corresponding area of neocortex. We propose that the 
location signal is calculated in the sub-granular layers of 
cortical columns and is passed to input layer 4 via 
projections from layer 6. 

It is important to note that we deduced the existence of the 
allocentric location signal. We first deduced its presence by 
considering how fingers can predict what they will sense 
while moving and touching an object. However, we believe 
the location signal is present in all neocortical regions. We 
show empirical evidence in support of this hypothesis. 
Although we cannot yet propose a complete mechanism for 
how the location signal is derived, the task of determining 
location and predicting new locations based on movement 
is similar to what grid cells do in the medial entorhinal 
cortex. Grid cells offer an existence proof that predictive 
models of allocentric location are possible, and they 
suggest mechanisms for how the location signal might be 
derived in cortical columns. 

The theory is consistent with a large body of anatomical 
and physiological evidence. We discuss this support and 
propose several predictions that can be used to further test 
the theory. 
 

MODEL 
Motivation 
Our research is focused on how networks of neurons in the 
neocortex learn predictive models of the world. Previously, 
we introduced a network (Hawkins and Ahmad, 2016) that 
learns a predictive model of naturally changing sensory 
sequences. In the present paper, we extend this network to 

address the related question of how the neocortex learns a 
predictive model of static objects, where the sensory input 
changes due to our own movement. 
A simple thought experiment may be useful to understand our 
model. Imagine you reach your hand into a black box and try 
to determine what object is in the box, say a coffee cup. Using 
only one finger it is unlikely you could identify the object 
with a single touch. However, after making one contact with 
the cup, you move your finger and touch another location, and 
then another. After a few touches, you identify the object as a 
coffee cup. Recognizing the cup requires more than just the 
tactile sensation from the finger, the brain must also integrate 
knowledge of how the finger is moving, and hence where it is 
relative to the cup. Once you recognize the cup, each 
additional movement of the finger generates a prediction of 
where the finger will be on the cup after the movement, and 
what the finger will feel when it arrives at the new location. 
This is the first problem we wanted to address, how a small 
sensory array (e.g. the tip of a finger) can learn a predictive 
model of three dimensional objects by integrating sensation 
and movement-derived location information. 

If you use two fingers at a time you can identify the cup with 
fewer movements. If you use five fingers you will often be 
able to identify an object with a single grasp. This is the 
second problem we wanted to address, how a set of sensory 
arrays (e.g. tips of multiple fingers) work together to 
recognize an object faster than they can individually. 

Somatic inference is obviously a sensorimotor problem. 
However, vision and audition are also sensorimotor tasks. 
Therefore, the mechanisms underlying sensorimotor learning 
and inference should exist in all sensory regions, and any 
proposed network model should map to the detailed 
anatomical and physiological properties that exist in all 
cortical regions. This mapping, an explanation of common 
cortical circuitry, is a third goal of our model. 

Model description 
Our model extends previous work showing how a single layer 
of pyramidal neurons can learn sequences and make 
predictions (Hawkins and Ahmad, 2016). The current model 
consists of two layers of pyramidal neurons arranged in a 
column. The model has one or more of these columns 
(Figure. 1A). Each cortical column processes a subset of the 
sensory input space and is exposed to different parts of the 
world as the sensors move. The goal is to have the output 
layer of each column converge on an object representation 
that is consistent with the accumulated sensations over time 
and across all columns. 

The input layer of each column in our model receives a 
sensory input and a location input. The sensory input is a 
sparse binary array representing the current feature in its input 
space. The location input is a sparse binary array representing 
the location of the feature on the object. There are numerous 
observations in the neocortex that receptive fields are 
modified by location information. Grid cells in the entorhinal 
cortex also solve a similar location encoding problem and 
therefore represent a model of how location might be derived 
in the neocortex. We explore these ideas further in the 
discussion section. For our model we require a) that the 
location of a feature on an object is independent of the 
orientation of the object, and b) that nearby locations have 
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similar representations. The first property allows the system 
to make accurate predictions when the object is sensed in 
novel positions relative to the body. The second property 
enables noise tolerance – you don’t have to always sense the 
object in precisely the same locations. 

Below we describe our neuron model, the connectivity of 
layers and columns, and how the sensory and location inputs 
are combined over time to recognize objects. A more detailed 
description of the activation and learning rules is available in 
the Methods section. 
Neuron model: We use HTM model neurons in the network 
(Hawkins and Ahmad, 2016). HTM neurons incorporate 
dendritic properties of pyramidal cells (Spruston, 2008), 
where proximal, basal, and apical dendritic segments have 
different functions (Figure 1B). Patterns detected on proximal 
dendrites represent feedforward driving input, and can cause 
the cell to become active. Patterns recognized on a neuron's 
basal and apical dendrites represent modulatory input, and 
will cause a dendritic spike and depolarize the cell without 
immediate activation. Depolarized cells fire sooner than, and 
thereby inhibit, non-depolarized cells that recognize the same 
feedforward patterns. In the rest of the paper we refer to 
proximal dendritic inputs as feedforward inputs, and the distal 
basal and apical dendritic inputs as modulatory inputs. A 
detailed description of functions of different dendritic 
integration zones can be found in (Hawkins and Ahmad, 
2016). 

Input layer: The input layer of each cortical column consists 
of HTM neurons arranged in mini-columns. (Here a mini-

column denotes a thin vertical arrangement of neurons 
(Buxhoeveden, 2002).) In our simulations we typically have 
150-250 mini-columns per cortical column, with 16 cells per 
mini-column (corresponding to 2400 to 4000 cells). The 
feedforward input of cells in this layer is the sensory input. As 
in (Hawkins and Ahmad, 2016) cells within a mini-column 
recognize the same feedforward patterns (Jones, 2000). We 
map each sensory feature to a sparse set of mini-columns. 

The basal modulatory input for cells in the input layer 
represents the location on an object. During learning, one cell 
in each active mini-column is chosen to learn the current 
location signal. During inference, cells that recognize both the 
modulatory location input and the feedforward driving input 
will inhibit other cells in the mini-column. In this way, the 
input layer forms a sparse representation that is unique for a 
specific sensory feature at a specific location on the object.  

Output layer: The output layer also contains HTM neurons. 
The set of active cells in the output layer represents objects. 
Cells in the output layer receive feedforward driver input 
from the input layer. During learning, the set of cells 
representing an object remains active over multiple 
movements and learns to recognize successive patterns in the 
input layer. Thus, an object comprises a representation in the 
output layer, plus an associated set of feature/location 
representations in the input layer.  

The modulatory input to cells in the output layer comes from 
other output cells representing the same object, both from 
within the column as well as from neighboring columns via 
long-range lateral connections. As in the input layer, the 

Figure 1 A. Our network model contains one or more laterally connected cortical columns (three shown). Each column receives 
feedforward sensory input from a different sensor array (e.g. different fingers or adjacent areas of the retina (not shown)). The input 
layer combines sensory input with a modulatory location input to form sparse representations that correspond to features at specific 
locations on the object. The output layer receives feedforward inputs from the input layer and converges to a stable pattern 
representing the object (e.g. a coffee cup). Convergence in the second layer is achieved via two means. One is by integration over time 
as the sensor moves relative to the object, and the other is via modulatory lateral connections between columns that are simultaneously 
sensing different locations on the same object (blue arrows in upper layer). Feedback from the output layer to the input layer allows 
the input layer to predict what feature will be present after the next movement of the sensor. B. Pyramidal neurons have three synaptic 
integration zones, proximal (green), basal (blue), and apical (purple). Although individual synaptic inputs onto basal and apical 
dendrites have a small impact on the soma, co-activation of a small number of synapses on a dendritic segment can trigger a dendritic 
spike (top right). The HTM neuron model incorporates active dendrites and multiple synaptic integration zones (bottom). Patterns 
recognized on proximal dendrites generate action potentials. Patterns recognized on the basal and apical dendrites depolarize the soma 
without generating an action potential. Depolarization is a predictive state of the neuron. Our network model relies on these properties 
and our simulations use HTM neurons. A detailed walkthrough of the algorithm can be found in the supplementary video. 
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modulatory input acts as a bias. Cells with more modulatory 
input will win and inhibit cells with less modulatory input. 
Cells representing the same object will positively bias each 
other. Thus, if a column has feedforward support for objects 
A and B at time t, and feedforward support for objects B and 
C at time t+1, the output layer will converge onto the 
representation for object B at time t+1 due to modulatory 
input from time t. Similarly, if column 1 has feedforward 
support for objects A and B, and column 2 has feedforward 
support for objects B and C, the output layer in both columns 
will converge onto the representation for object B.  

Feedback connections: Neurons in the input layer receive 
feedback connections from the output layer. Feedback input 
representing an object, combined with modulatory input 
representing an anticipated new location due to movement, 
allows the input layer to more precisely predict the next 
sensory input. In our model, feedback is an optional 
component. If included, it improves robustness to sensory 
noise and ambiguity of location. 

Illustrative example 
Figure 2 illustrates how the two layers of a single cortical 
column cooperate to disambiguate objects that have shared 
features, in this case a cube and a wedge. The first sensed 
feature-location, labeled f1, is ambiguous, as it could be part 
of either object. Therefore, the output layer simultaneously 
invokes a union of representations, one for each object that 

has that feature at that location. Feedback from the output 
layer to the input layer puts cells in a predictive state (shown 
in red). The predicted cells represent the set of all feature-
locations consistent with the set of objects active in the output 
layer. The red cells thus represent the predictions of the 
network consistent with the sensations up to this point. Upon 
the second sensation, labeled f2, only the subset of cells that is 
consistent with these predictions and the new feature become 
active. Each subsequent sensation narrows down the set until 
only a single object is represented in the output layer. A 
detailed walkthrough of the algorithm can be found in the 
supplementary video. 

Learning 
Learning is based on simple Hebbian-style adaptation: when 
cells fire, previously active synapses are strengthened and 
inactive ones are weakened. There are two key differences 
with most other neural models. First, learning is isolated to 
individual dendritic segments (Stuart and Häusser, 2001; 
Losonczy et al., 2008). Second, the model neuron learns by 
growing and removing synapses from a pool of potential 
synapses (Chklovskii et al., 2004). We model the growth and 
removal of synapses by incrementing or decrementing a 
variable we call “permanence”. The efficacy, or weight, of a 
synapse is binary based on a threshold of permanence. Thus, 
how fast the system learns and how long memory is retained 
can be adjusted independent of the weight of synapses. A 
complete description of the biological motivation can be 

 
Figure 2 Cellular activations in the input and output layers of a single column during a sequence of touches on an object. A. Two objects (cube 
and wedge). For each object, three feature-location pairs are shown (f1 and f3 are common to both the cube and wedge). The output layer 
representations associated with each object, and the sensory representations for each feature are shown. B. Cellular activations in both layers 
caused by a sequence of three touches on the cube (in time order from top to bottom). The first touch (at f1) results in a set of active cells in the 
input layer (black dots in input layer) corresponding to that feature-location pair. Cells in the output layer receive this representation through 
their feed-forward connections (black arrow). Since the input is ambiguous, the output layer forms a representation that is the union of both the 
cube and the wedge (black dots in output layer). Feedback from the output layer to the input layer (red arrow) causes all feature-location pairs 
associated with both potential objects to become predicted (red dots). The second touch (at f2) results in a new set of active cells in the input 
layer. Since f2 is not shared with the wedge, the representation in the output layer is reduced to only the cube. The set of predicted cells in the 
input layer is also reduced to the feature-location pairs of the cube. The third touch (at f3) would be ambiguous on its own, however, due to the 
past sequence of touches and self-reinforcement in the output layer, the representation of the object in the output layer remains unique to the 
cube. Note the number of cells shown is unrealistically small for illustration clarity. 
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found in (Hawkins and Ahmad, 2016). Below we briefly 
describe how these principles enable the network to learn; the 
formal learning rules are described in the Materials and 
Methods section. 

The input layer learns specific feature/location combinations.  
If the current feature/location combination has not been 
previously learned (no cell is predicted), then one cell from 
each active mini-column is chosen as the winner and becomes 
active. The winning cell is chosen as the cell with the best 
modulatory input match via random initial conditions. Each 
winner cell learns by forming and strengthening modulatory 
connections with the current location input. If the location 
input is encountered again the corresponding set of cells will 
be predicted. If the expected sensory feature arrives, the 
predicted cells will fire first, and the corresponding 
modulatory inputs will be reinforced. Apical dendrites of the 
winning cells form connections to active cells in the output 
layer. 

The output layer learns representations corresponding to 
objects. When the network first encounters a new object, a 
sparse set of cells in the output layer is selected to represent 
the new object. These cells remain active while the system 
senses the object at different locations. Feed forward 
connections between the changing active cells in the input 
layer and unchanging active cells in the output layer are 
continuously reinforced. Thus, each output cell pools over 
multiple feature/location representations in the input layer. 
Dendritic segments on cells in the output layer learn by 
forming lateral modulatory connections to active cells within 
their own column, and to active cells in nearby columns. 

During training, we reset the output layer when switching to a 
new object. In the brain, there are several ways the equivalent 
of a reset could occur, including a sufficiently long period of 
time with no sensation. When a new object is learned we 

select the object representation based on best match via 
random initial connectivity.  
 

SIMULATION RESULTS 
In this section, we describe simulation results that illustrate 
the performance of our network model. The network structure 
consists of one or more cortical columns, each with two 
layers, as described earlier (Figure 1). In the first set of 
simulations the input layer of each column consists of 150 
mini-columns, with 16 cells per mini-column, for a total of 
2400 cells. The output layer of each column consists of 4096 
cells, which are not arranged in mini-columns. The output 
layer contains inter-column and intra-column connections via 
the distal basal dendrites of each cell. The output layer also 
projects back to the apical dendrites of the input layer within 
the same column. All connections are continuously learned 
and adjusted during the training process. 

We trained the network on a library of up to 500 objects 
(Figure 2A). Each object consists of 10 sensory features 
chosen from a library of 5 to 30 possible features. Each 
feature is assigned a corresponding location on the object. 
Note that although each object consists of a unique set of 
features/locations, any given feature or feature/location is 
shared across several objects. As such, a single sensation by a 
single column is insufficient to unambiguously identify an 
object.  
The set of active cells in the output layer represents the 
objects that are recognized by the network. During inference 
we say that the network unambiguously recognizes an object 
when the representation of the output layer overlaps 
significantly with the representation for correct object and not 
for any other object. (Complete details of object construction 
and recognition are described in Materials and Methods).  

 
Figure 3.  The output layer represents each object by a sparse pattern. We tested the network on the first object. B. Activity in the output layer 
of a single column network as it touches the object. The network converges after 11 sensations (red rectangle). C. Activity in the output layer 
of a three column network as it touches the object. The network converges much faster, after 4 sensations (red rectangle). In both B and C the 
representation in Column 1 is the same as the target object representation after convergence. 
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In the following paragraphs we first describe network 
convergence, using single and multi-column networks. We 
then discuss the capacity of the network.  

Network convergence  
As discussed earlier, the representation in the output layer is 
consistent with the recent sequence of sensed features and 
locations. Multiple output representations will be active 
simultaneously if the sensed features and locations are not 
unique to one particular object. The output converges to a 
single object representation over time as the object is explored 
via movement. Figure 3 illustrates the rate of convergence for 
a one column network and for a three-column network. 
Multiple columns working together reduces the number of 
sensations needed for recognition.  

In Figure 4A we plot the mean number of sensations required 
to unambiguously recognize an object as a function of the 
total number of objects in the training set. As expected, the 
number of sensations required increases with the total number 
of stored objects. However, in all cases the network 
eventually correctly recognizes every object. The number of 
sensations is also dependent on the overall confusion between 
the set of objects. The more unique the objects, the faster the 
network can disambiguate them.   

Figure 4B illustrates the mean number of sensations required 
to recognize an object as a function of the number of cortical 
columns in the network. The graph demonstrates the 
advantage of including multiple columns. The number of 
sensations required decreases rapidly as the number of 
columns increases. Thus, although single column networks 
can recognize the objects, multicolumn networks are much 
faster. With a sufficient number of columns, the network 
disambiguates even highly confusing objects with a single 
sensation. In this experiment, each column receives lateral 
input from every other column. 

In Figure 4C we plot the fraction of objects that can be 
unambiguously recognized (“accuracy”) as a function of the 
number of sensations. We compare a single column network 
to an ideal observer model with and without location (see 
Methods). The performance of our model is close to the ideal 
observer with locations. It takes many more sensations for the 
model without locations to recognize the objects, and some 
objects cannot be distinguished (this is not shown on the 
graph as we plot the average number of sensations), 
underscoring the importance of the location signal. We have 
also shown that multi-column networks perform close to an 
ideal observer model that similarly observes multiple features 
per sensation (Supplementary Fig. 9). Taken together, these 
results show that our biologically derived sensorimotor 
network operates close to the non-biological ideal model with 
respect to accuracy and speed of convergence. 
 

Capacity 
In the network model presented here, each cortical column 
builds predictive models of objects. A key question is, how 
many objects can a single column represent? Also, does 
adding more columns impact capacity? In this section we 
explore the effect of various parameters on the number of 
objects that can be accurately recognized. We define capacity 
as the maximum number of objects a network can learn and 

 
Figure 4 A. Mean number of sensations needed to unambiguously 
recognize an object with a single column network as the set of 
learned objects increases. We train models on varying numbers of 
objects, from 1 to 100 and plot the average number of sensations 
required to unambiguously recognize a single object. The different 
curves show how convergence varies with the total number of 
unique features from which objects are constructed. In all cases the 
network eventually recognizes the object. Recognition requires 
fewer sensations when the set of features is greater. B. Mean 
number of observations needed to unambiguously recognize an 
object with multi-column networks as the set of columns increases. 
We train each network with 100 objects and plot the average 
number of sensations required to unambiguously recognize an 
object. The required number of sensations rapidly decreases as the 
number of columns increases, eventually reaching one. C. Fraction 
of objects that can be unambiguously recognized as a function of 
number of sensations for an ideal observer model with location 
(blue), without location (orange) and our one-column sensorimotor 
network (green). 
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recognize without confusion. We analyze four different 
factors that impact capacity: the representational space of the 
network, the number of mini-columns in the input layer, the 
number of neurons in the output layer, and the number of 
cortical columns. In our analysis we used numbers similar to 
those reported in experimental data. For example, cortical 
columns vary from 300 𝜇 m to 600 𝜇 m in diameter 
(Mountcastle, 1997), where the diameter of a mini-column is 
estimated to be in the range of 30-60 	𝜇m (Buxhoeveden, 
2002). For our analysis and simulations we assumed a cortical 
column contains between 150 and 250 mini-columns. 

First, the neural representation must allow the input and 
output layers to represent large numbers of unique 
feature/locations and objects. As illustrated in Figure 2, both 
layers use sparse representations.  Sparse representations have 
several attractive mathematical properties that allow robust 
representation of a very large number of elements (Ahmad 
and Hawkins, 2016). With a network of 150 mini-columns, 16 
cells per mini-column, and 10 simultaneously active mini-
columns, we can uniquely represent #$%

#% ~10#$  sensory 

features. Each feature can be represented at 16#%  unique 
locations.  Similarly, the output layer can represent *

+  
unique objects, where n is the number of output cells and w is 
the number of active cells at any time. With such large 
representational spaces, it is extremely unlikely for two 
feature/location pairs or two object representations to have a 
significant number of overlapping bits by chance 
(Supplementary material). Therefore, the number of objects 
and feature location pairs that can be uniquely represented is 
not a limiting factor in the capacity of the network. 
As the number of learned objects increases, neurons in the 
output layer form increasing numbers of connections to 
neurons in the input layer. If an output neuron connects to too 
many input neurons, it may be falsely activated by a pattern it 
was not trained on. Therefore, the capacity of the network is 
limited by the pooling capacity of the output layer. 
Mathematical analysis suggests that a single cortical column 
can store hundreds of objects before reaching this limit (see 
Supplementary material).  

To measure actual network capacity we trained networks with 
an increasing number of objects and plotted recognition 
accuracy.  For a single cortical column, with 4,096 cells in the 
output layer and 150 mini-columns in the input layer, the 
recognition accuracy remains perfect up to 400 objects 
(Figure 5A, blue). The retrieval accuracy drops when the 
number of learned objects exceeds the capacity of the network. 

From the mathematical analysis, we expect the capacity of the 
network to increase as the size of the input and output layers 

 
Figure 6. Robustness of a single column network to noise. A. 
Recognition accuracy is plotted as a function of the amount of noise 
in the sensory input (blue) and in the location input (yellow). B. 
Recognition accuracy as a function of the number of sensations. 
Colored lines correspond to noise levels in the location input. 

 

 
Figure 5. Recognition accuracy is plotted as a function of the 
number of learned objects. A. Network capacity relative to 
number of mini-columns in the input layer. The number of output 
cells is kept at 4096 with 40 cells active at any time. B. Network 
capacity relative to number of cells in the output layer. The 
number of active output cells is kept at 40. The number of mini-
columns in the input layer is 150. C. Network capacity for one, 
two, and three cortical columns (CCs). The number of mini-
columns in the input layer is 150, and the number of output cells 
is 4096. 
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increase. We again tested our analysis through simulations.   
With the number of active cells fixed, the capacity increases 
with the number of mini-columns in the input layer (Figure 
5A). This is because with more cells in the input layer, the 
sparsity of activation increases, and it is less likely for an 
output cell to be falsely activated. The capacity also 
significantly increases with the number of output cells when 
the size of the input layer is fixed (Figure 5B). This is 
because the number of feedforward connections per output 
cell decreases when there are more output cells available. We 
found that if the size of individual columns is fixed, adding 
columns can increase capacity (Figure 5C). This is because 
the lateral connections in the output layer can help 
disambiguate inputs once individual cortical columns hit their 
capacity limit. However, this effect is limited; the incremental 
benefit of additional columns decreases rapidly. 

The above simulations demonstrate that it is possible for a 
single cortical column to model and recognize several 
hundred objects. Capacity is most impacted by the number of 
cells in the input and output layers. Increasing the number of 
columns has a marginal effect on capacity. The primary 
benefit of multiple columns is to dramatically reduce the 
number of sensations needed to recognize objects. A network 
with one column is like looking at the world through a straw; 
it can be done, but slowly and with difficulty.  

Noise robustness 
We evaluated robustness of a single column network to noise. 
After the network learned a set of objects, we added varying 
amounts of random noise to the sensory and location inputs. 
The noise affected the active bits in the input without 
changing its overall sparsity (see Methods). Recognition 
accuracy after 30 touches is plotted as a function of noise (Fig. 
6A). There is no impact on the recognition accuracy up to 20% 
noise in the sensory input and 40% noise in the location input. 
We also found that the convergence speed was impacted by 
noise in the location input (Fig. 6B). It took more sensations 
to recognize the object when the location input is noisy. 
 

MAPPING TO BIOLOGY 
Anatomical evidence suggests that the sensorimotor inference 
model described above exists at least once in each column 
(layers 4 and 2/3) and perhaps twice (layers 6a and 5). We 
adopt commonly used terminology to describe these layers. 
This is a convenience as the connectivity and physiology of 
cell populations is what matters. Cells we describe as residing 
in separate layers may actually intermingle in cortical tissue 
(Guy and Staiger, 2017). 

Layers 4 and 2/3 
The primary instance of the model involves layers 4 and 2/3 
as illustrated in Figure 7A. The following properties evident 
in L4 and L2/3 match our model. L4 cells receive direct 
thalamic input from sensory "core" regions (e.g., LGN) 
(Douglas and Martin, 2004). This input onto proximal 
dendrites exhibits driver properties (Viaene et al., 2011a). L4 
cells do not form long range connections within their layer 
(Luhmann et al., 1990). L4 cells project to and activate cells 
in L2/3 (Lohmann and Rörig, 1994; Feldmeyer et al., 2002; 
Sarid et al., 2007), and receive feedback from L2/3 (Lefort et 
al., 2009; Markram et al., 2015). L2/3 cells project long 

distances within their layer (Stettler et al., 2002; Hunt et al., 
2011) and are also a major output of cortical columns 
(Douglas and Martin, 2004; Shipp et al., 2007). It is known 
that L2/3 activation follows L4 activation (Constantinople and 
Bruno, 2013). 

The model predicts that a representation of location is input to 
the basal distal dendrites of the input layer. A timing 
requirement of our model is that the location signal is a 
predictive signal that must precede the arrival of the sensory 
input. This is illustrated by the red line in Figure 7A. About 
45% of L4 synapses come from cells in L6a (Binzegger et al., 
2004). The axon terminals were found to show a strong 
preference for contacting basal dendrites (McGuire et al., 
1984) and activation of L6a cells caused weak excitation of 
L4 cells (Kim et al., 2014). Therefore, we propose that the 
location representation needed for the upper model comes 

from L6a. 

 
Figure 7. Mapping of sensorimotor inference network onto 
experimentally observed cortical connections. Arrows represent 
documented pathways. A. First instance of network; L4 is input 
layer, L2/3 is output layer. Green arrows are feedforward pathway, 
from thalamo-cortical (TC) relay cells, to L4, to L2/3 cortico-
cortical (CC) output cells. Cells in L2/3 also project back to L4 and 
to adjacent columns (blue arrows); these projections depolarize 
specific sets of cells that act as predictions (see text). Red arrow is 
location signal originating in L6a and terminating on basal distal 
dendrites of L4 cells. B. Possible second instance of network; L6a is 
input layer, L5 is output layer. Both instances of the network 
receive feedforward input from the same TC axons, thus the two 
networks run in parallel (Constantinople and Bruno, 2013; Markov 
et al., 2013). The origin and derivation of the location signal (LOC) 
is unknown but likely involves local processing as well as input 
from other regions (see text and Discussion). The output of the 
upper network makes direct cortical-cortical (CC) connections, 
whereas the output of the lower network projects to thalamic relay 
cells before projecting to the next region. 
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Layers 6a and 5 
Another potential instance of the model is in layers 6a and 5 
as illustrated in Figure 7B. The following properties evident 
in L6a and L5 match our model. L6a cells receive direct 
thalamic input from sensory "core" regions (e.g., LGN) 
(Thomson, 2010). This input exhibits driver properties and 
resembles the thalamocortical projections to L4 (Viaene et al., 
2011b). L6a cells project to and activate cells in L5 (Thomson, 
2010). Recent experimental studies found that the axons of L6 
CT neurons densely ramified within layer 5a in both visual 
and somatosensory cortices of the mouse, and activation of 
these neurons generated large excitatory postsynaptic 
potentials (EPSPs) in pyramidal neurons in layer 5a (Kim et 
al., 2014). L6a cells receive feedback from L5 (Thomson, 
2010). L5 cells project long distances within their layer 
(Schnepel et al., 2015) and L5 cells are also a major output of 
cortical columns (Douglas and Martin, 2004; Guillery and 
Sherman, 2011; Sherman and Guillery, 2011). There are three 
types of pyramidal neurons in L5 (Kim et al., 2015). Here we 
are referring to only one of them, the larger neurons with 
thick apical trunks that send an axon branch to relay cells in 
the thalamus (Ramaswamy and Markram, 2015). However, 
there is also empirical evidence our model does not map 
cleanly to L6a and L5. For example, (Constantinople and 
Bruno, 2013) have shown a sensory stimulus will often cause 
L5 cells to fire simultaneously or even slightly before L6 cells, 
which is inconsistent with the model. Therefore, whether L6a 
and L5 can be interpreted as an instance of the model is 
unclear. 

Origin of location signal 
The derivation of the location representation in L6a is 
unknown. Part of the answer will involve local processing 
within the lower layers of the column and part will likely 
involve long range connections between corresponding 
regions in “what” and “where” pathways (Thomson, 2010). 
Parallel “what” and “where” pathways exist in all the major 
sensory modalities (Ungerleider and Haxby, 1994; Ahveninen 
et al., 2006). Evidence suggests that regions in “what” 
pathways form representations that exhibit increasing 
invariance to translation, rotation or scale and increasing 
selectivity to sensory features in object centered coordinates 
(Rust and DiCarlo, 2010). This effect can be interpreted as 
forming allocentric representations. In contrast, it has been 
proposed that regions in “where” pathways form 
representations in egocentric coordinates (Goodale and Milner, 
1992). If an egocentric motor behavior is generated in a 
“where” region, then a copy of the motor command will need 
to be sent to the corresponding “what” region where it can be 
converted to a new predicted allocentric location. The 
conversion is dependent on the current position and 
orientation of the object relative to the body. It is for this 
reason we suggest that the origin of the location signal might 
involve long-range connections between “where” and “what” 
regions. In the Discussion section we will describe how the 
location might be generated. 

Physiological evidence 
In addition to anatomical support, there are several 
physiological predictions of the model that are supported by 
empirical observation.  L4 and L6a cells exhibit “simple” 
receptive fields (RFs) while L2/3 and L5 cells exhibit 

“complex” RFs (Hubel and Wiesel, 1962; Gilbert, 1977). Key 
properties of complex cells include RFs influenced by a wider 
area of sensory input and increased temporal stability 
(Movshon et al., 1978). L2/3 cells have receptive fields that 
are twice the size of L4 cells in the primary somatosensory 
cortex (Chapin, 1986). A distinct group of cells with large and 
non-oriented receptive fields were found mostly in layer 5 of 
the visual cortex (Mangini and Pearlman, 1980; Lemmon and 
Pearlman, 1981). These properties are consistent with, and 
observed, in the output layer of our model.  

The model predicts that cells in a mini-column in the input 
layer (L4 and L6a) will have nearly identical RFs when 
presented with an input than cannot be predicted as part of a 
previously learned object. However, in the context of learned 
objects, the cells in a mini-column will differentiate. One key 
differentiation is that individual cells will respond only in 
specific contexts.  This differentiation has been observed in 
multiple modalities (Vinje and Gallant, 2002; Yen et al., 2006; 
Martin and Schröder, 2013; Gavornik and Bear, 2014). Our 
model is also consistent with findings that early sensory areas 
are biased toward recent perceptual recognition results (St. 
John-Saaltink et al., 2016). 

A particularly relevant version of this phenomenon is “border 
ownership” (Zhou et al., 2000). Cells which have similar 
classic receptive fields when presented with isolated edge-like 
features, diverge and fire uniquely when the feature is part of 
a larger object. Specifically, the cells fire when the feature is 
at a particular location on a complex object, a behavior 
predicted and exhibited by our model. To explain border 
ownership, researchers have proposed a layer of cells that 
perform “grouping” of inputs. The grouping cells are stable 
over time (Craft et al., 2007). The output layer of our model 
performs this function. “Border ownership” is a form of 
complex object modeling. It has been observed in both 
primary and secondary sensory regions (Zhou et al., 2000). 
We predict that similar properties can be observed in primary 
and secondary sensory regions for even more complex and 
three-dimensional objects. 

Lee, Carvell, et. al show that enhancement of motor cortex 
activity facilitates sensory-evoked responses of 
topographically aligned neurons in primary somatosensory 
cortex (Lee et al., 2008). Specifically, they found that S1 
corticothalamic neurons in whisker/barrel cortex responded 
more robustly to whisker deflections when motor cortex 
activity was focally enhanced. This supports the model 
hypothesis that behaviorally-generated location information 
projects in a column-by-column fashion to primary sensory 
regions. 
 

DISCUSSION 
Relationship with previous models 
Due to the development of new experimental techniques, 
knowledge of the laminar circuitry of the cortex continues to 
grow (Thomson and Bannister, 2003; Thomson and Lamy, 
2007). It is now possible to reconstruct and simulate the 
circuitry in an entire cortical column (Markram et al., 2015). 
Over the years, numerous efforts have been undertaken to 
develop models of cortical columns. Many cortical column 
models aim to explain neurophysiological properties of the 
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cortex. For example, based on their studies on the cat visual 
cortex, (Douglas and Martin, 1991) provided one of the first 
canonical microcircuit models of a cortical column. This 
model explains intracellular responses to pulsed visual 
stimulations and has remained highly influential (Douglas and 
Martin, 2004). (Hill and Tononi, 2004) constructed a large-
scale model of point neurons that are organized in a repeating 
columnar structure to explain the difference of brain states 
during sleep and wakefulness. (Traub et al., 2004) developed 
a single-column network model based on multi-
compartmental biophysical models to explain oscillatory, 
epileptic and sleeplike phenomena. (Reimann et al., 2013) 
showed that the neocortical local field potentials can be 
explained by a cortical column model composed of >12,000 
reconstructed multi-compartmental neurons. 
Although these models provided important insights on the 
origin of neurophysiological signals, there are relatively few 
models proposing the functional roles of layers and columns. 
(Bastos et al., 2012) discussed the correspondence between 
the micro-circuitry of the cortical column and the connectivity 
implied by predictive coding. This study used a coarse 
microcircuit model based on the work of  (Douglas and 
Martin, 2004) and lacked recent experimental evidence and 
detailed connectivity patterns across columns.  

(Raizada and Grossberg, 2003) described the LAMINART 
model to explain how attention might be implemented in the 
visual cortex. This study highlighted the anatomical 
connections of the L4-L2/3 network and proposed that 
perceptual grouping relies on long-range lateral connections 
in L2/3. This is consistent with our proposal of the stable 
object representation in L2/3. A recent theory of optimal 
context integration proposes that long-range lateral 
connections are used to optimally integrate information from 
the surround (Iyer and Mihalas, 2017). The structure of their 
model is broadly consistent with the theories presented here, 
and provides a possible mathematical basis for further 
analysis. 

The benefit of cortical columns 
Our research has been guided by Mountcastle’s definition of a 
cortical column (Mountcastle, 1978, 1997), as a structure 
‘formed by many mini-columns bound together by short-
range horizontal connections’.  The concept plays an essential 
role in the theory presented in this paper.  Part of our theory is 
that each repetitive unit, or “column”, of sensory cortex can 
learn complete objects by locally integrating sensory and 
location data over time. In addition, we have proposed that 
multiple cortical columns greatly speed up inference and 
recognition time by integrating information in parallel across 
dispersed sensory areas. 

An open issue is the exact anatomical organization of 
columns. We have chosen to describe a model of columns 
with discrete inter-column boundaries. This type of well-
defined structure is most clear in the rat barrel cortex (Lubke 
et al., 2000; Bureau et al., 2004; Feldmeyer et al., 2013) but 
Mountcastle and others have pointed out that although there 
are occasional discontinuities in physiological and anatomical 
properties, there is a diverse range of structures and the more 
general rule is continuity (Mountcastle, 1978; Horton and 
Adams, 2005; Rockland, 2010).  
Mountcastle’s concept of a repetitive functional unit, whether 

continuous or discrete, is useful to understand the principles 
of cortical function.  Our model assigns a computational 
benefit to columns, that of integrating discontinuous 
information in parallel across disparate areas. This basic 
capability is independent of any specific type of column (such 
as hypercolumns or ocular dominance columns), and 
independent of discrete or continuous structures. The key 
requirement is that each column models a different subset of 
sensory space and is exposed to different parts of the world as 
sensors move.  

Generating the location signal 
A key prediction of our model is the presence of a location 
signal in each column of a cortical region. We deduced the 
need for this signal based on the observation that cortical 
regions predict new sensory inputs due to movement 
(Duhamel et al., 1992; Nakamura and Colby, 2002; Li and 
DiCarlo, 2008). To predict the next sensory input, a patch of 
neocortex needs to know where a sensor will be on a sensed 
object after a movement is completed. The prediction of 
location must be done separately for each part of a sensor 
array. For example, for the brain to predict what each finger 
will feel on a given object, it has to predict a separate 
allocentric location for each finger. There are dozens of semi-
independent areas of sensation on each hand, each of which 
can sense a different location and feature on an object. Thus, 
the allocentric location signals must be computed in a part of 
the brain where somatic topology is similarly granular.  For 
touch, this suggests the derivation of allocentric location is 
occurring in each column throughout primary regions such as 
S1 and S2. The same argument holds for primary visual 
regions, as each patch of the retina observes different parts of 
objects. 

Although we don’t know how the location signal is generated, 
we can list some theoretically-derived requirements. A 
column needs to know its current location on an object, but it 
also needs to predict what its new location will be after a 
movement is completed. To translate an egocentric motor 
signal into a predicted allocentric location, a column must 
also know the orientation of the object relative to the body 
part doing the moving. This can be expressed in the pseudo-
equation [current location + orientation of object + movement 
=> predicted new location]. This is a complicated task for 
neurons to perform. Fortunately, it is highly analogous to 
what grid cells do. Grid cells are a proof that neurons can 
perform these types of transformations, and they suggest 
specific mechanisms that might be deployed in cortical 
columns. 

(1) Grid cells in the entorhinal cortex (Hafting et al., 2005; 
Moser et al., 2008) encode the location of an animal’s body 
relative to an external environment. A sensory cortical column 
needs to encode the location of a part of the animal’s body (a 
sensory patch) relative to an external object. 
(2) Grid cells use path integration to predict a new location 
due to movement (Kropff et al., 2015). A column must also 
use path integration to predict a new location due to 
movement. 

(3) To predict a new location, grid cells combine current 
location, with movement, with head direction cells (Moser et 
al., 2014). Head direction cells represent the “orientation” of 
the “animal” relative to an external environment. Columns 
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need a representation of the “orientation” of a “sensory patch” 
relative to an external object. 

(4) The representation of space using grid cells is 
dimensionless. The dimensionality of the space they represent 
is defined by the tiling of grid cells, combined with how the 
tiling maps to behavior. Similarly, our model uses 
representations of location that are dimensionless. 

These analogs, plus the fact that grid cells are 
phylogenetically older than the neocortex, lead us to 
hypothesize that the cellular mechanisms used by grid cells 
were preserved and replicated in the sub-granular layers of 
each cortical column. It is not clear if a column needs neurons 
that are analogous to place cells  (Moser et al., 2015). Place 
cells are believed to associate a location (derived from grid 
cells) with features and events. They are believed to be 
important for episodic memory. Presently, we don’t see an 
analogous requirement in cortical columns. 

Today we have no direct empirical evidence to support the 
hypothesis of grid-cell like functionality in each cortical 
column. We have only indirect evidence. For example, to 
compute location, cortical columns must receive dynamically 
updated inputs regarding body pose. There is now significant 
evidence that cells in numerous cortical areas, including 
sensory regions, are modulated by body movement and 
position. Primary visual and auditory regions contain neurons 
that are modulated by eye position (Trotter and Celebrini, 
1999; Werner-Reiss et al., 2003) as do areas MT, MST, and 
V4 (Bremmer, 2000; DeSouza et al., 2002). Cells in frontal 
eye fields (FEF) respond to auditory stimuli in an eye-
centered frame of reference (Russo and Bruce, 1994). 
Posterior parietal cortex (PPC) represents multiple frames of 
reference including head-centered (Andersen et al., 1993) and 
body-centered (Duhamel et al., 1992; Brotchie et al., 1995, 
2003; Bolognini and Maravita, 2007) representations. Motor 
areas also contain a diverse range of reference frames, from 
representations of external space independent of body pose to 
representations of specific groups of muscles (Graziano and 
Gross, 1998; Kakei et al., 2003). Many of these 
representations are granular, specific to particular body areas, 
and multisensory, implying numerous transformations are 
occurring in parallel (Graziano et al., 1997; Graziano and 
Gross, 1998; Rizzolatti et al., 2014). Some models have 
shown that the above information can be used to perform 
coordinate transformations (Zipser and Andersen, 1988; 
Pouget and Snyder, 2000). 

Determining how columns derive the allocentric location 
signal is a current focus of our research. 

Role of Inhibitory Neurons 
There are several aspects of our model that require inhibition. 
In the input layer, neurons in mini-columns mutually inhibit 
each other. Specifically, neurons that are partially depolarized 
(in the predictive state) generate a first action potential 
slightly before cells that are not partially depolarized. Cells 
that spike first prevent other nearby cells from firing. This 
requires a very fast, winner-take-all type of inhibition among 
nearby cells, and suggests that such fast inhibitory neurons 
contain stimulus-related information, which is consistent with 
recent experiment findings (Reyes-Puerta et al., 2015). 
Simulations of the timing requirement for this inhibition can 
be found in (Billaudelle and Ahmad, 2015). Activations in the 

output layer do not require very fast inhibition. Instead, a 
broad inhibition within the layer is needed to maintain the 
sparsity of activation patterns. Experiment evidence for both 
fast and broad inhibition have been reported in the literature 
(Helmstaedter et al., 2009; Meyer et al., 2011). 

Our simulations do not model inhibitory neurons as individual 
cells. The functions of inhibitory neurons are encoded in the 
activation rules of the model. A more detailed mapping to 
specific inhibitory neuron types is an area for future research. 

Hierarchy 
The neocortex processes sensory input in a series of 
hierarchically arranged regions. As input ascends from region 
to region, cells respond to larger areas of the sensory array 
and to more complex features. A common assumption is that 
complete objects can only be recognized at a level in the 
hierarchy where cells respond to input over the entire sensory 
array. 

Our model proposes an alternate view. All cortical columns, 
even columns in primary sensory regions, are capable of 
learning representations of complete objects. However, our 
network model is limited by the spatial extent of the 
horizontal connections in the output layer. Therefore, 
hierarchy is still required in many situations. For example, say 
we present an image of a printed letter on the retina. If the 
letter occupies a small part of the retina, then columns in V1 
could recognize the letter. If, however, the letter is expanded 
to occupy a large part of the retina, then columns in V1 would 
no longer be able to recognize the letter because the features 
that define the letter are too far apart to be integrated by the 
horizontal connections in L2/3. In this case, a converging 
input onto a higher cortical region would be required to 
recognize the letter. Thus the cortex learns multiple models of 
objects, both within a region and across hierarchical levels.  

What would occur if multiple objects were being sensed at the 
same time? In our model, one part of a sensory array could be 
sensing one object and another part of the sensory array could 
be sensing a different object. Difficulty would arise if the 
sensations from two or more objects were overlaid or 
interspersed on a region, such as, if your index and ring finger 
touched one object while your thumb and middle finger 
touched another object. In these situations, we suspect the 
system would settle on one interpretation or the other. 
Sensory information is processed in parallel pathways,    
sometimes referred to as “what” and “where” pathways. We 
propose that our object recognition model exists in “what” 
regions, which are associated with the ability to recognize 
objects. How might we interpret “where” pathways in light of 
our model? First, the anatomy in the two pathways is similar. 
This suggests that “what” and “where” regions perform 
similar operations, but achieve different results by processing 
different types of data. For example, our network might learn 
models of ego-centric space if the location signal represented 
ego-centric locations. Second, we suspect that bi-directional 
connections between what and where regions are required for 
converting ego-centric motor behaviors into allocentric 
locations. We are currently exploring these ideas.  

Vision, audition, and beyond 
We described our model using somatic sensation. Does it 
apply to other sensory modalities? We believe it does. 
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Consider vision. Vision and touch are both based on an array 
of receptors topologically mapped to an array of cortical 
columns. The retina is not like a camera. The blind spot and 
blood vessels prevent all parts of an object from being sensed 
simultaneously, and the density of receptors in the retina is 
not uniform. Similarly, the skin cannot sense all parts of an 
object at once, and the distribution of somatic receptors is not 
uniform. Our model is indifferent to discontinuities and non-
uniformities. Both the skin and retina move, exposing cortical 
columns to different parts of sensed objects over time. The 
methods for determining the allocentric location signal for 
touch and vision would differ somewhat. Somatic sensation 
has access to richer proprioceptive inputs, whereas vision has 
access to other clues such as ocular disparity. Aside from 
differences in how allocentric location is determined, our 
model is indifferent to the underlying sensory modality. 
Indeed, columns receiving visual input could be interspersed 
with columns receiving somatic input, and the long-range 
intercolumn connections in our model would unite these into 
a single object representation. 

Similar parallels can be made for audition. Perhaps the more 
powerful observation is that the anatomy supporting our 
model exists in most, if not all, cortical regions. This suggests 
that no matter what kind of information a region is processing, 
its feedforward input is interpreted in the context of a location. 
This would apply to high-level concepts as well as low-level 
sensory data. This hints at why it is easier to memorize a list 
of items when they are mentally associated with physical 
locations, and why we often use mental imagery to convey 
abstract concepts. 

Testable predictions 
A number of experimentally testable predictions follow from 
this theory. 

(1) The theory predicts that sensory regions will contain cells 
that are stable over movements of a sensor while sensing a 
familiar object.  

(2) The set of stable cells will be both sparse and specific to 
object identity.  The cells that are stable for a given object 
will in general have very low overlap with those that are 
stable for a completely different object. 

(3) Layers 2/3 of cortical columns will be able to 
independently learn and model complete objects. We expect 
that the complexity of the objects a column can model will be 
related to the extent of long-range lateral connections.  

(4) Activity within the output layer of each cortical column 
(layers 2/3) will become sparser as more evidence is 
accumulated for an object. Activity in the output layer will be 
denser for ambiguous objects. These effects will only be seen 
when the animal is freely observing familiar objects. 

(5) These output layers will form stable representations. In 
general, their activity will be more stable than layers without 
long-range connections.   

(6) Activity within the output layers will converge on a stable 
representation slower with long-range lateral connections 
disabled, or with input to adjacent columns disabled. 

(7) The theory provides an algorithmic explanation for border 
ownership cells (Zhou et al., 2000). In general each region 
will contain cells tuned to the location of features in the 

object's reference frame. We expect to see these 
representations in layer 4. 

Summary 
Our research has focused on how the brain makes predictions 
of sensory inputs. Starting with the premise that all sensory 
regions make predictions of their constantly changing input, 
we deduced that each small area in a sensory region must 
have access to a location signal that represents where on an 
object the column is sensing. Building on this idea, we 
deduced the probable function of several cellular layers and 
are beginning to understand what cortical columns in their 
entirety might be doing. Although there are many things we 
don’t understand, the big picture is increasingly clear. We 
believe each cortical column learns a model of “its” world, of 
what it can sense. A single column learns the structure of 
many objects and the behaviors that can be applied to those 
objects. Through intra-laminar and long-range cortical-
cortical connections, columns that are sensing the same object 
can resolve ambiguity. 

In 1978 Vernon Mountcastle reasoned that since the complex 
anatomy of cortical columns is similar in all of the neocortex, 
then all areas of the neocortex must be performing a similar 
function (Mountcastle, 1978). His hypothesis remains 
controversial partly because we haven’t been able to identify 
what functions a cortical column performs, and partly because 
it has been hard to imagine what single complex function is 
applicable to all sensory and cognitive processes. 

The model of a cortical column presented in this paper is 
described in terms of a sensory regions and sensory 
processing, but the circuitry underlying our model exists in all 
cortical regions. Thus, if Mountcastle’s conjecture is correct, 
even high-level cognitive functions, such as mathematics, 
language, and science would be implemented in this 
framework. It suggests that even abstract knowledge is stored 
in relation to some form of “location” and that much of what 
we consider to be “thought” is implemented by inference and 
behavior generating mechanisms originally evolved to move 
and infer with fingers and eyes. 
 

MATERIALS AND METHODS 
Here we formally describe the activation and learning rules 
for the HTM sensorimotor inference network. We use a 
modified version of the HTM neuron model (Hawkins and 
Ahmad, 2016) in the network. There are three basic aspects of 
the algorithm: initialization, computing cell states, and 
learning. These steps are described along with implementation 
and simulation details. 

Notation: Let 𝑁-*  represent the number of mini-columns in 
the input layer, M the number of cells per mini-column in the 
input layer, 𝑁./0 the number of cells in the output layer and 
𝑁1 the number of cortical columns. The number of cells in the 
input layer and output layer is 𝑀𝑁-*  and 𝑁./0  respectively 
for each cortical column. Each input cell receives both the 
sensory input and a contextual input that corresponds to the 
location signal. The location signal is a 𝑁340	dimensional 
sparse vector 𝑳.  

Each cell can be in one of three states: active, predictive, or 
inactive. We use 𝑀×𝑁-*  binary matrices 𝐀-*  and 𝚷-*  to 
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denote activation state and predictive state of input cells and 
use the 𝑁./0  dimensional binary vector 𝐀./0  to denote the 
activation state of the output cells in a cortical column. The 
concatenated output of all cortical columns is represented as a 
𝑁./0𝑁1.9/:* dimensional binary vector 𝐀./0. At any point in 
time there are only a small number of cells active, so these are 
generally very sparse.  

Each cell maintains a single proximal dendritic segment and a 
set of basal distal dendritic segments (denoted as basal below). 
Proximal segments contain feedforward connections to that 
cell. Basal segments represent contextual input. The 
contextual input acts as a tiebreaker and biases the cell to win. 
The contextual input to a cell in the input layer is a vector 
representing the external location signal 𝑳 . The contextual 
input to a cell in the output layer comes from other output 
cells in the same or different cortical columns. 

For each dendritic segment, we maintain a set of “potential” 
synapses between the dendritic segment and other cells that 
could potentially form a synapse with it (Chklovskii et al., 
2004; Hawkins and Ahmad, 2016).  Learning is modeled by 
the growth of new synapses from this set of potential synapses. 
A “permanence” value is assigned to each potential synapse 
and represents the growth of the synapse. Potential synapses 
are represented by permanence values greater than zero. A 
permanence value close to zero represents an unconnected 
synapse that is not fully grown. A permanence value greater 
than the connection threshold represents a connected synapse. 
Learning occurs by incrementing or decrementing 
permanence values. 

We denote the synaptic permanences of the 𝑑 th dendritic 
segment of the 𝑖 th input cell in the 𝑗 th mini-column as a 
𝑁340×1 vector 𝐃-?@,-*. Similarly, the permanences of the 𝑑th 
dendritic segment of the 𝑖 th output cell is the 𝑁./0𝑁1×1 
dimensional vector 𝐃-@,./0.  
Output neurons receive feedforward connections from input 
neurons within the same cortical column. We denote these 
connections with a 𝑀×𝑁-*×𝑁./0 tensor 𝐅 , where 𝑓-?D 
represents the permanence of the synapse between the 𝑖 th 
input cell in the 𝑗th mini-column and the 𝑘th output cell.  

For 𝐃 and 𝐅, we will use a dot (e.g. 𝐃) to denote the binary 
vector representing the subset of potential synapses on a 
segment (i.e. permanence value above 0). We use a tilde (e.g. 
𝐃 ) to denote the binary vector representing the subset of 
connected synapses (i.e. permanence value above connection 
threshold). 

Initialization: Each dendritic segment is initialized to contain 
a random set of potential synapses. 𝐃-?@,-*  is initialized to 
contain a random set of potential synapses chosen from the 
location input. Segments in 𝐃-@,./0 are initialized to contain a 
random set of potential synapses to other output cells. These 
can include cells from the same cortical column. We enforce 
the constraint that a given segment only contains synapses 
from a single column. In all cases the permanence values of 
potential synapses are chosen randomly: initially some are 
connected (above threshold) and some are unconnected.   

Computing cell states: A cell in the input layer is predicted if 
any of its basal distal segments have sufficient activity: 

 𝜋-?-* = 	
			1	if	∃@ 𝐋 ⋅ 𝐃-?@,-* ≥ 𝜃O-* > 0
0	otherwise																												

 (1) 

where 𝜃O-*  is the activation threshold of the basal distal 
dendrite of an input cell.  

For the input layer, all the cells in a mini-column share the 
same feedforward receptive fields. Following (Hawkins and 
Ahmad, 2016) we assume that an inhibitory process selects a 
set of s mini-columns that best match the current feedforward 
input pattern. We denote this winner set as 𝐖-*. The set of 
active input layer cells is calculated as follows: 

 

𝑎-?-* = 	

1	if	𝑗 ∈ 𝐖-*	and	𝜋-?-* > 0										
		

1	if	𝑗 ∈ 𝐖-*	and	 𝜋-?-*

-

= 0			

							0	otherwise																																									

 

 

(2) 

The first conditional states that predicted cells in a winning 
mini-column becoming winners and become active. If no cell 
in a mini-column is predicted, all cells in that mini-column 
become active (second conditional).  
To determine activity in the output layer we calculate the 
feedforward and lateral input to each cell. Cells with enough 
feedforward overlap with the input layer, and the most lateral 
support from the previous time step become active. The 
feedforward overlap to the kth output cell is.: 

 𝑜D
./0,0 = I[𝑓-?D ≥ 𝜃1./0]𝑎-?

-*,0

-,?

 (3) 

The set of output cells with enough feedforward input is 
computed as: 

 𝐖./0,0 = 𝑘 𝑜D
./0,0 ≥ 𝜃b./0  (4) 

where 𝜃b./0  is a threshold. We then select the active cells 
using the number of active basal segments as a sorting 
function:  
 
 𝑎-

./0,0 = 1	if	𝑖 ∈ 𝐖./0,0	and	𝜌-
./0,0d# ≥ 𝜉0d#./0

0	otherwise																																										
 (5) 

where 𝜌-
./0,0d# = I[𝐀./0 ⋅ 𝐃-@,./0@ ≥ 𝜃O./0]  represents the 

number of active basal segments in the previous time step, 
and the sth highest number of active basal segments is 
denoted as 𝜉f./0.	𝜃O./0 is the activation threshold of the basal 
distal dendrite of an output cell.  𝐼[] is the indicator function, 
and 𝑠 is the minimum desired number of active neurons. If the 
number of cells with lateral support is less than s in a cortical 
column, 𝜉f

./0,1  would be zero and all cells with enough 
feedforward input will become active. Note that we used a 
modified version of the original HTM neuron model in the 
output layer by considering the effect of multiple active basal 
segments. 
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Learning in the input layer: In the input layer, basal segments 
represent predictions. At any point only segments that match 
its contextual input are modified. If a cell was predicted (Eq. 
(1)) and becomes active, the corresponding basal segments 
are selected for learning. If no cell in an active mini-column 
was predicted, we select a winning cell as the cell with the 
best basal input match via random initial conditions. 

For selected segments, we decrease the permanence of 
inactive synapses by a small value 𝑝d and increase the 
permanence of active synapses by a larger value 𝑝j 
 ∆𝐃-?@,-* = 𝑝-*j 𝐃-?@,-* ∘ 𝐋0 − 𝑝-*d 𝐃-?@,-*

∘ (𝟏 − 𝐋0)	 

(6) 

where ∘  represents element-wise multiplication. Incorrect 
predictions are negatively punished. If a basal dendritic 
segment on a cell becomes active and the cell subsequently 
does not become active, we slightly decrement the 
permanences of active synapses on the corresponding 
segments. Note that in Eq. 6, learning is applied to all 
potential synapses (denoted by 𝐃). 
Learning in the output layer: When learning a new object a 
sparse set of cells in the output layer is selected to represent 
the new object. These cells remain active while the system 
senses the object at different locations. Thus, each output cell 
pools over multiple feature/location representations in the 
input layer.  

For each sensation, proximal synapses are learned by 
increasing the permanence of active synapses by 𝑝qqj , and 
decreasing the permanence of inactive synapses by 𝑝qqd :  

 ∆𝑓-?D = [𝑝qqj 𝑎-?-* − 𝑝qqd (1 − 𝑎-?-*)]I[𝑓-?D > 0] (7) 

Basal segments of active output cells are learned using a rule 
similar to (7): 

∆𝐃-@,./0 = 𝑝./0j 𝐃-@,./0 ∘ 𝐀./0,0d# − 𝑝./0d 𝐃-@,./0

∘ (𝟏 − 𝐀./0,0d#)	 

(8) 

Feedback: Feedback from the output layer to the input layer is 
used as an additional modulatory input to fine tune which 
cells in a winning mini-column become active. Cells in the 
input layer maintain a set of apical segments similar to the set 
of basal segments. If a cell has apical support (i.e. an active 
apical segment), we use a slightly lower value of 𝜃O-*  to 
calculate 𝜋-?-*. In addition if multiple cells in a mini-column 
are predicted, only cells with feedback become active. These 
rules make the set of active cells more precise with respect to 
the current representation in the output layer. Apical segments 
on winning cells in the input layer are learned using exactly 
the same rules as basal segments. 

Simulation details: To generate our convergence and capacity 
results we generated a large number of objects. Each object 
consists of a number of sensory features, with each feature 
assigned to a corresponding location. We encode each 
location as a 2400-dimensional sparse binary vector with 10 
random bits active. Each sensory feature is similarly encoded 
by a vector with 10 random bits active. The length of the 

sensory feature vector is the same as the number of mini-
columns of the input layer 𝑁-*. The input layer contains 150 
mini-columns and 16 cells per mini-column, with 10 mini-
columns active at any time. The activation threshold of basal 
distal dendrite of input neuron is 6. The output layer contains 
4096 cells and the minimum number of active output cells is 
40. The activation threshold is 3 for proximal dendrites and 
18 for basal dendrites for output neurons.  

During training, the network learns each object in random 
order. For each object, the network senses each feature three 
times. The activation pattern in the output layer is saved for 
each object to calculate retrieval accuracy. During testing, we 
allow the network to sense each object at K locations. After 
each sensation, we classify the activity pattern in the output 
layer. We say that an object is correctly classified if, for each 
cortical column, the overlap between the output layer and the 
stored representation for the correct object is above a 
threshold, and the overlaps with the stored representation for 
all other objects are below that threshold. We use a threshold 
of 30. 

For the network convergence experiment (Figure 4-5), each 
object consists of 10 sensory features chosen from a library of 
5 to 30 possible features. The number of sensations during 
testing is 20. For the capacity experiment, each object consists 
of 10 sensory features chosen from a large library of 5000 
possible features. The number of sensations during testing is 
3.  
Finally, we make some simplifying assumptions that greatly 
speed up simulation time for larger networks. Instead of 
explicitly initializing a complete set of synapses across every 
segment and every cell, we greedily create segments on a 
random cell and initialize potential synapses on that segment 
by sampling from currently active cells. This happens only 
when there is no match to any existing segment. 

For the noise robustness experiment (Figure. 6), we added 
random noise to the sensory input and the location input. For 
each input, we randomly flip a fraction of the active input bits 
to inactive, and flip the corresponding number of inactive 
input bits to active. This procedure randomizes inputs while 
maintaining constant input sparsity. The noise level denotes 
the fraction of active input bits that are changed for each input. 
We varied the amount of noise between 0 and 0.7.  

We constructed an ideal observer model to estimate the 
theoretical upper limit for model performance (Fig. 4C, 
Supplementary Fig. 9).  During learning, the ideal observer 
model memorizes a list of (feature, location) pairs for each 
object. During inference, the ideal observer model stores the 
sequence of observed (feature, location) pairs and calculates 
the overlap between all the observed pairs and the memorized 
list of pairs for each object. The predicted object is the object 
that has the most overlap with all the observed sensations. To 
compare the ideal observer with a multi-column network with 
N columns, we provide it with N randomly chosen 
observations per sensation. Performance of the ideal observer 
model represents the best one can do given all the sensations 
up to the current time. We also used the same framework to 
create a model that only uses sensory features, but no location 
signals (used in Fig. 4C). 
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