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ABSTRACT	
	
Data	quality	is	increasingly	recognized	as	one	of	the	most	important	confounding	factors	in	
brain	imaging	research.	It	is	particularly	important	for	studies	of	brain	development,	where	
age	is	systematically	related	to	in-scanner	motion	and	data	quality.	Prior	work	has	
demonstrated	that	in-scanner	head	motion	biases	estimates	of	structural	neuroimaging	
measures.	However,	objective	measures	of	data	quality	are	not	available	for	most	
structural	brain	images.	Here	we	sought	to	identify	quantitative	measures	of	data	quality	
for	T1-weighted	volumes,	describe	how	such	measures	of	quality	relate	to	cortical	
thickness,	and	delineate	how	this	in	turn	may	bias	inference	regarding	associations	with	
age	in	youth.	Three	highly-trained	raters	provided	manual	ratings	of	1,840	raw	T1-
weighted	volumes.		These	images	included	a	training	set	of	1,065	images	from	Philadelphia	
Neurodevelopmental	Cohort	(PNC),	a	test	set	of	533	images	from	the	PNC,	as	well	as	an	
external	test	set	of	242	adults	acquired	on	a	different	scanner.	Manual	ratings	were	
compared	to	automated	quality	measures	provided	by	the	Preprocessed	Connectomes	
Project’s	Quality	Assurance	Protocol	(QAP),	as	well	as	FreeSurfer’s	Euler	number,	which	
summarizes	the	topological	complexity	of	the	reconstructed	cortical	surface.	Results	
revealed	that	the	Euler	number	was	consistently	correlated	with	manual	ratings	across	
samples.	Furthermore,	the	Euler	number	could	be	used	to	identify	images	scored	
“unusable”	by	human	raters	with	a	high	degree	of	accuracy	(AUC:	0.98-0.99),	and	out-
performed	proxy	measures	from	functional	timeseries	acquired	in	the	same	scanning	
session.		The	Euler	number	also	was	significantly	related	to	cortical	thickness	in	a	
regionally	heterogeneous	pattern	that	was	consistent	across	datasets	and	replicated	prior	
results.		Finally,	data	quality	both	inflated	and	obscured	associations	with	age	during	
adolescence.	Taken	together,	these	results	indicate	that	reliable	measures	of	data	quality	
can	be	automatically	derived	from	T1-weighted	volumes,	and	that	failing	to	control	for	data	
quality	can	systematically	bias	the	results	of	studies	of	brain	maturation. 
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INTRODUCTION	
	

In-scanner	motion	and	other	artifacts	are	increasingly	appreciated	as	a	source	of	
bias	in	neuroimaging	research.	In-scanner	motion	reduces	image	quality,	and	is	also	related	
to	subject	characteristics	of	interest,	including	participant	age	(Power	et	al.,	2012;	
Satterthwaite	et	al.,	2012).	As	such,	it	has	the	potential	to	systematically	confound	
inference,	especially	in	studies	of	lifespan	development	(Zuo	et	al.,	2017).	While	motion	has	
long	been	a	well-described	methodological	obstacle	in	medical	imaging	(Bellon	et	al.,	1986;	
Smith	and	Nayak,	2010),	and	a	known	confound	for	task-related	fMRI	(Friston	et	al.,	1996),	
it	has	recently	attracted	additional	scrutiny.	Following	reports	that	even	small	amounts	of	
in-scanner	motion	can	bias	studies	of	functional	connectivity		(Power	et	al.,	2012;	
Satterthwaite	et	al.,	2012;	Van	Dijk	et	al.,	2012),	there	has	been	a	proliferation	of	recent	
studies	that	have	documented	the	impact	of	data	quality	on	other	imaging	modalities,	
including	T1-weighted	neuroimaging	of	brain	structure	(Alexander-Bloch	et	al.,	2016;	
Pardoe	et	al.,	2016;	Reuter	et	al.,	2015;	Savalia	et	al.,	2017).	

Following	initial	work	to	assess	motion’s	impact	on	structural	images	(Atkinson	et	
al.,	1997),	much	subsequent	work	has	addressed	structural	image	quality	issues	driven	by	
scanner	and	platform-related	variation	(Chen	et	al.,	2014;	Magnotta	and	Friedman,	2006;	
Styner	et	al.,	2002;	Woodard	and	Carley-Spencer,	2006).	However,	several	published	
studies	have	used	unique	attributes	of	T1-weighted	images	to	quantify	image	quality.	
Specifically,	Mortamet	et	al.	(2009)	introduced	a	quality	index	(Qi)	that	accurately	
identified	unusable	volumes	(AUC=0.93)	collected	as	part	of	the	Alzheimer’s	Disease	
Neuroimaging	Initiative.	Furthermore,	Pizarro	et	al.	(2016)	developed	statistics	based	on	
specific	artifacts	such	as	eye	motion,	ringing	and	tissue	contrast.	Combined	in	a	
multivariate	approach,	these	statistics	classified	unusable	volumes	with	a	classification	
accuracy	of	80%.	However,	these	studies	examined	neither	quality	indices	related	to	
measures	of	brain	structure,	nor	how	quantitative	indices	of	data	quality	might	be	used	to	
account	for	biases	in	group	level	analyses.	This	is	particularly	relevant	given	that	measures	
of	brain	structure	such	as	cortical	thickness	are	frequently	used	as	putative	biomarkers	in	
research	on	development,	aging,	and	a	myriad	of	neuropsychiatric	diseases.	

Research	using	functional	timeseries	has	typically	summarized	motion	via	the	
“framewise	displacement”	calculated	from	timeseries	realignment	parameters	(Power	et	
al.,	2012;	Satterthwaite	et	al.,	2012;	Van	Dijk	et	al.,	2012).	However,	most	structural	
imaging	sequences	do	not	provide	a	ready	estimate	of	participant	motion	during	
acquisition.	A	variety	of	motion-tracking	systems	have	recently	become	widely	available	
for	use	in	structural	MRI,	including	in-bore	optical	systems	as	well	as	approaches	using	the	
MRI	scanner	itself	to	track	motion,	allowing	for	motion	to	be	directly	quantified	in	a	
manner	akin	to	functional	imaging	time	series	(Zaitsev	et	al.,	2015).	Reuter	et	al.	(2015)	
used	the	vNav-MPRAGE	sequence	(Tisdall	et	al.,	2012),	which	simultaneously	acquires	a	
T1-weighted	volume	and	performs	motion	tracking	with	the	MRI	scanner,	to	demonstrate	
in	12	healthy	adults	that	motion	during	the	T1	sequence	was	associated	with	spurious	
alterations	of	cortical	thickness	and	cortical	volume.	Tisdall	et	al.	(2016)	demonstrated	that	
using	this	motion	information	prospectively	could	substantially	reduce	the	deleterious	
effects	of	motion	on	both	image	quality	and	subsequent	morphometry.	

Despite	the	clear	importance	of	such	work,	the	vast	majority	of	T1-weighted	
imaging	sequences	acquired	to	date	lack	any	motion-tracking	or	motion-correction	
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technology,	and	thus	cannot	derive	a	quantitative	assessment	of	motion.	While	current	
commonly-used	processing	pipelines	(including	CCS,	DPABI,	and	HCP	pipelines,	Marcus	et	
al.,	2013;	Xu	et	al.,	2015;	Yan	et	al.,	2016)	provide	a	range	of	measures	of	data	quality	for	
functional	timeseries,	validated	quantitative	measures	of	data	quality	are	not	typically	
produced	for	the	T1	volume.	Accordingly,	three	important	recent	studies	used	motion	
during	a	functional	imaging	sequence	acquired	during	the	same	scanning	session	as	a	
proxy	of	in-scanner	motion	during	the	structural	scan	(Alexander-Bloch	et	al.,	2016;	Pardoe	
et	al.,	2016;	Savalia	et	al.,	2017).	This	approach	is	based	on	the	observation	that	participant	
motion	tends	to	be	highly	correlated	across	acquisitions:	individuals	with	high	motion	in	
one	sequence	tend	to	have	high	motion	in	other	sequences	(Pardoe	et	al.,	2016;	Yan	et	al.,	
2013).	Three	studies	demonstrated	that	higher	motion	during	a	functional	sequence	
acquired	in	the	same	session	is	associated	with	cortical	thickness,	even	in	those	scans	
which	passed	manual	quality	assurance	procedures	(Alexander-Bloch	et	al.,	2016;	Pardoe	
et	al.,	2016;	Savalia	et	al.,	2017).	Furthermore,	Salvia	et	al.	(2017)	demonstrated	that	
unaccounted-for	motion	artifact	inflated	the	apparent	effects	of	aging.	While	motion	during	
a	functional	sequence	is	an	opportune	proxy	for	motion	during	a	structural	scan,	it	
nonetheless	has	several	limitations.	First,	it	requires	that	a	functional	scan	was	acquired,	
which	may	not	be	possible	due	to	subject	factors,	time	restrictions,	or	study	design.	Second,	
the	ecological	validity	of	the	proxy	is	likely	to	vary	with	ordering	effects,	amount	of	time	
between	scans,	as	well	as	other	uncontrolled	variables	such	as	patient	comfort.			

In	this	study,	we	sought	to	identify	quantitative	measures	of	data	quality	that	could	
be	derived	from	the	T1	volume	alone.	Measures	of	data	quality	were	provided	by	the	
Preprocessed	Connectomes	Project’s	Quality	Assurance	Protocol	(QAP);	the	Euler	number	
provided	by	FreeSurfer	was	also	evaluated.	We	investigated	the	degree	to	which	these	
quantitative	measures	could	be	used	to	identify	unusable	images,	and	compared	them	to	
proxy	measures	of	data	quality	provided	by	functional	sequences.		Furthermore,	we	
described	how	quantitative	metrics	of	image	quality	related	to	cortical	thickness,	and	
potentially	confound	associations	with	age.	Throughout,	we	leveraged	the	large	sample	
provided	by	the	Philadelphia	Neurodevelopmental	Cohort	(PNC),	as	well	as	an	independent	
sample	of	adults	imaged	on	a	different	scanner.	As	described	below,	we	found	that	
measures	derived	from	the	T1-weighted	volume	provide	useful	measures	of	image	quality.	

	
	

METHODS	
	
Approach	overview	

Our	overall	goal	was	to	evaluate	quantitative	measures	of	image	quality	directly	
from	structural	MRI	volumes.	This	process	included	several	discrete	tasks.	First,	all	image	
analysts	underwent	rigorous	training,	and	then	independently	rated	all	images.	Second,	we	
evaluated	quantitative	measures	of	image	quality	to	determine	which	aligned	best	with	
manual	ratings.	Third,	we	used	these	quantitative	measures	to	identify	images	that	were	
unusable;	we	refer	to	this	as	the	“inclusion”	model.	Fourth,	we	compared	this	approach	to	
proxy	measures	estimated	from	motion	during	functional	time	series	acquired	during	the	
same	session.	Fifth,	we	examined	how	quantitative	measures	of	image	quality	related	to	
cortical	thickness	as	measured	by	the	popular	FreeSurfer	platform	(Fischl	and	Dale,	2000).	
Sixth	and	finally,	we	examined	how	data	quality	might	bias	inference	regarding	
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associations	with	age	in	samples	of	youth.	All	analysis	code	is	publicly	available	here	
https://github.com/PennBBL/RosenT1QA.	

	
Participants	

We	included	a	total	of	1,840	images	across	two	studies	that	used	different	scanners	
(Table	1).		This	included	1,598	images	from	the	PNC	(Satterthwaite	et	al.,	2014)	as	well	as	
an	additional	242	images	from	a	study	acquired	on	a	different	scanner	(Roalf	et	al.,	2015).	
Specifically,	1,065	PNC	images	were	used	for	training,	and	533	were	used	during	testing.	In	
order	to	maintain	a	similar	distribution	of	age,	sex,	and	manual	image	quality	rating	across	
the	training	and	testing	samples	of	the	PNC,	we	used	the	`caret`	package	in	R	(Kuhn	et	al.,	
2016).		The	data	from	the	second	study	were	used	only	as	an	external	test	dataset.	This	
second	cohort	was	comprised	of	adults,	and	thus	not	matched	on	demographic	details	(see	
Table	1).	
	
Image	acquisition	

All	imaging	data	from	the	PNC	were	acquired	on	the	same	3T	Tim	Trio	scanner	with	
a	32-channel	head	coil	(Siemens:	Erlangen,	Germany)	as	previously	described	
(Satterthwaite	et	al.,	2014).	Structural	images	were	acquired	using	a	magnetization-
prepared,	rapid-acquisition	gradient-echo	(MPRAGE)	T1-weighted	sequence	(TR	=	
1810ms;	TE	=	3.51ms;	T1	=	1100ms;	FoV	=	180	×	240mm;	flip	angle	=	9°;	GRAPPA	factor	=	
2;	BW/pixel	=	130	Hz;	resolution:	0.94mm	x	0.94mm	x	1.0mm;	Acquisition	time	=	3:28).	
Prior	to	scanning,	in	order	to	acclimate	participants	to	the	MRI	environment	and	to	help	
subjects	learn	to	remain	still	during	the	actual	scanning	session,	a	mock	scanning	session	
was	conducted	using	a	decommissioned	MRI	scanner	and	head	coil.	Mock	scanning	was	
accompanied	by	acoustic	recordings	of	the	noise	produced	by	gradient	coils	for	each	
scanning	pulse	sequence.	In	the	external	test	set,		T1-weighted	volumes	were	collected	on	a	
different	3T	Tim	Trio	scanner,	using	an	8-channel	head	coil	with	the	following	acquisition	
parameters:	TR	=	1680ms;	TE	=	4.67ms;	T1	=	1100ms;	FoV	=	180	×	240mm;	flip	angle	=	
15°;	bandwith/pixel	=	150Hz;	resolution:	0.94mm	x	0.94mm	x	1.0mm;	acquisition	time	=	
5:00	(Roalf	et	al.,	2015).		
	
Image	Processing	

Cortical	reconstruction	of	the	T1	image	was	performed	for	all	subjects	using	
FreeSurfer	version	5.3	(Fischl,	2012).	FreeSurfer	includes	registration	to	a	template,	
intensity	normalization,	gray	and	white	matter	segmentation,	and	tessellation	of	the	
gray/CSF	and	white/gray	matter	boundaries	(Dale	et	al.,	1999);	cortical	surfaces	are	
inflated	and	normalized	to	a	template	via	a	spherical	registration.	Cortical	thickness	is	
measured	as	the	shortest	distance	between	the	pial	and	the	white	matter	tessellated	
surfaces	(Dale	et	al.,	1999).	The	cortex	was	then	parcellated	into	40	regions	(Desikan	e	al.,	
2006)	and	cortical	thickness	was	averaged	across	parcels	to	obtain	regional	cortical	
thickness	estimates.	
	
Manual	rating	procedure	and	rater	training	
	 Similar	to	prior	work	(Reuter	et	al.,	2015;	Savalia	et	al.,	2017),	all	images	were	rated	
on	quality	using	a	0-2	ordinal	scale.	Initial	pilot	testing	indicated	that	using	systems	with	
more	quality	classes	(i.e.,	4	or	5	rating	classes)	resulted	in	substantially	diminished	inter-
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rater	reliability	even	among	experts.	In	the	3-class	framework	used,	a	“0”	denoted	images	
that	suffer	from	gross	artifacts	and	were	considered	unusable.	In	contrast,	a	“2”	was	
assigned	to	images	free	from	visible	artifact.	The	intermediate	“1”	category	was	used	for	
images	with	some	artifact,	but	which	still	would	be	considered	usable.		

A	rigorous	process	of	training	was	used	to	ensure	high	inter-rater	reliability	(see	
Figure	1).	First,	anchors	and	exemplars	for	the	three	quality	classes	were	agreed	upon	
through	consensus	of	5	experts,	including	a	board-certified	neuroradiologist	(JES),	an	MR	
physicist	(MAE),	a	cognitive	neuroscientist	(DRR),	an	experienced	image	analyst	(AR),	and	
a	neuropsychiatrist	(TDS).	Next,	two	of	these	experts	(DRR	and	TDS)	created	a	larger	
training	sample	by	rating	100	images	independently.	Initial	concordance	was	93%;	
discrepancies	were	resolved	through	consensus,	thus	yielding	a	set	of	100	images	that	
were	used	to	train	three	image	analysts	(KS,	PV,	JB)	who	served	as	the	raters	for	the	
complete	dataset.	These	three	analysts	were	trained	to	>85%	agreement	in	this	dataset.	
This	required	two	rounds	of	blind	rating:	during	the	first	round,	agreement	with	the	expert	
consensus	was	82%	(JB),	57%	(PV),	and	82%	(KS).	Following	further	training,	each	rater	
re-rated	this	set	of	100	images	(presented	in	a	different	order,	without	identifiers),	and	
achieved	an	accuracy	of	91%	(JB),	86%	(PV),	and	94%	(KS).	Having	met	reliability	
benchmarks,	these	three	raters	then	independently	rated	all	1,840	images	across	datasets.		

Rater	concordance	was	evaluated	using	two	measures:	the	weighted-κ	statistic	and	
polychoric	correlations.	These	two	measures	provide	complementary	information:	while	
the	weighted-κ	assesses	absolute	rating	agreement,	the	polychoric	correlation	assesses	the	
ordering	of	the	ratings.	Variation	amongst	raters	were	assessed	using	a	repeated	measures	
ANOVA	model.	The	relationship	between	manual	rating	and	age	was	evaluated	using	
partial	Spearman’s	correlations;	sex	differences	were	evaluated	using	a	Wilcoxon	signed-
rank	test.		

	
Quantitative	metrics	of	structural	image	quality	
	 We	evaluated	the	utility	of	an	array	of	quantitative	imaging	measures	included	in	
QAP	(see	Table	2)(Shehzad	et	al.,	2013).	QAP	version	1.0.3	utilized	FMRIB's	Automated	
Segmentation	Tool	(FAST,	Zhang	et	al.,	2001)	for	image	segmentation,	which	enables	
definition	and	quantification	of	quality	metrics	using	an	image’s	gray	matter,	white	matter,	
and	background	voxels.	Steps	were	taken	to	avoid	the	inclusion	of	neck	and	face	tissue	
within	the	image’s	background	for	the	calculation	of	all	background	metrics	as	previously	
described	(Mortamet	et	al.,	2009).		In	addition	to	the	measures	included	in	QAP,	we	also	
calculated	image	kurtosis	and	skewness	(Joanes	and	Gill,	1998)	for	each	tissue	class	and	
background	using	tools	included	in	the	`ANTsR`	(Avants	et	al.,	2016)	and	`psych`	(Revelle,	
2017)	packages	in	R;	these	measures	have	been	integrated	into	recently-released	updates	
to	QAP.		Finally,	we	considered	a	quality	measure	produced	by	the	FreeSurfer	pipeline:	the	
Euler	number	(Dale	et	al.,	1999)	which	is	a	measure	of	the	topological	complexity	of	the	
reconstructed	cortical	surface.	Euler	number	is	calculated	separately	for	each	hemisphere;	
we	averaged	across	both	hemispheres	here	to	produce	one	value	per	subject.	

In	order	to	visualize	the	relationship	between	quantitative	measures	and	manual	
quality	rating,	we	plotted	the	mean	value	for	each	image	quality	metric	versus	the	mean	
manual	quality	rating.		Furthermore,	we	also	calculated	partial	Spearman’s	correlations	
between	the	average	manual	rating	and	quantitative	metrics	(while	controlling	for	age,	age	
squared,	and	sex).	For	these	plots	and	subsequent	analyses,	we	collapsed	any	image	with	
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an	average	rating	less	than	1	into	the	‘0’	bin	due	to	the	small	cell	size	of	these	bins.	
	
Identifying	unusable	images:	the	“inclusion”	model	
	 A	common	step	in	sample	construction	is	to	remove	images	where	data	quality	is	so	
low	that	the	images	are	considered	unusable.		We	sought	to	use	the	quantitative	measures	
of	data	quality	described	above	to	automatically	identify	unusable	images.		To	do	so,	we	
constructed	a	logistic	regression	model	for	each	quality	metric,	where	the	outcome	was	a	
binarized	image	quality	score	(i.e.,	images	with	a	quality	score	of	“0”	versus	all	others).		The	
primary	measure	of	model	performance	was	area	under	the	curve	(AUC);	accuracy,	
sensitivity,	and	specificity	were	also	calculated.	

As	described	below	(see	Results),	a	single	variable	performed	quite	well	in	this	task.		
However,	in	order	to	ascertain	if	using	additional	measures	of	data	quality	would	aid	in	
classification,	we	also	evaluated	multivariate	models.	Model	training	began	with	a	simple	
mass-univariate	model	and	then	added	features	to	create	a	multivariate	model	in	a	
forward-stepwise	manner.	The	first	(base)	variable	in	the	multivariate	model	was	defined	
as	the	variable	with	the	best	performing	receiver	operator	curve	(ROC)	as	measured	by	
area	under	the	curve	(AUC)	in	the	mass-univariate	analyses	conducted	in	the	training	
sample.	Additional	measures	were	added	separately	to	this	base	model,	and	the	AUC	was	
re-calculated.	The	best	performing	feature	was	selected,	and	this	process	was	repeated.	At	
each	step,	in	order	to	determine	whether	an	additional	model	parameter	provided	
significantly	improved	classification,	we	calculated	the	Delong	statistic,	which	tests	for	a	
significant	increase	in	AUC	between	models	(DeLong	et	al.,	1988).	Model	building	was	
terminated	when	no	significant	increase	in	AUC	was	found.		
	 After	construction	of	the	model	in	the	training	set,	the	classification	threshold	
criterion	from	the	training	set	was	applied	to	the	first	(internal)	testing	dataset	as	well	as	
the	second	(external)	test	set.		The	same	outcome	measures	(AUC,	accuracy,	sensitivity,	
specificity)	were	then	calculated	separately	for	each	test	sample.	Performance	using	the	
threshold	defined	in	the	training	set	was	compared	with	outcomes	when	the	classification	
thresholds	were	calculated	separately	for	each	dataset.		
	
Comparison	to	motion	in	functional	scans	acquired	in	the	same	session		
	 Three	recent	reports	demonstrated	that	motion	in	functional	sequences	acquired	
during	the	same	scanning	session	acts	as	an	effective	proxy	for	structural	image	quality	
(Alexander-Bloch	et	al.,	2016;	Pardoe	et	al.,	2016;	Savalia	et	al.,	2017).	Accordingly,	we	next	
compared	our	quantitative	measure	of	structural	image	quality	to	head	motion	estimated	
from	functional	sequences.	This	was	only	conducted	in	the	PNC	sample.		These	additional	
sequences	included	a	pseudo-continuous	arterial	spin	labeled	(PCASL)	perfusion	scan,	two	
task	fMRI	scans	(tfMRI	1	&	tfMRI	2),	and	one	resting	functional	connectivity	scan	(rsfMRI)	
(Satterthwaite	et	al.,	2014,	2016).	As	sequences	acquired	at	the	end	of	the	scanning	session	
are	more	likely	to	be	missing,	we	examined	motion	during	each	functional	sequence,	which	
was	summarized	as	the	Frame	Displacement	(FD),	estimated	using	the	average	root	mean	
square	displacement	as	calculated	by	FSL’s	MCFLIRT	(Jenkinson	et	al.,	2002).	Next,	we	
evaluated	attrition	over	the	course	of	the	scanning	session,	and	plotted	the	proportion	of	
missing	scans	for	each	sequence,	separated	by	the	manual	quality	rating	of	the	T1	image.	
Finally,	we	evaluated	the	degree	to	which	motion	during	the	functional	sequence	could	
identify	unusable	images	using	a	logistic	regression	model	as	described	above.	In	order	to	
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ensure	that	the	same	sample	was	considered	by	each	model,	this	analysis	was	conducted	in	
a	sample	of	1,275	PNC	subjects	that	spanned	both	training	and	testing	samples	with	
complete	data	across	all	sequences.		
	
Relationship	of	quantitative	measures	of	quality	to	cortical	thickness	

As	described	below,	Results	revealed	that	a	single	metric	–	the	Euler	number	–	was	
sufficient	for	identifying	unusable	images	with	a	high	degree	of	accuracy.		Next,	we	
examined	associations	between	this	quantitative	measure	of	data	quality	and	cortical	
thickness	in	the	images	that	were	considered	usable	(according	to	their	manual	rating).	
Specifically,	we	used	linear	regression	to	examine	the	association	between	the	Euler	
number	and	regional	estimates	of	cortical	thickness	derived	from	the	FreeSurfer	pipeline.	
In	this	mass-univariate	analysis,	cortical	thickness	was	the	outcome	and	Euler	number	was	
the	predictor	of	interest;	age,	age	squared,	and	sex	were	included	in	these	regression	
models	as	covariates.	Multiple	comparisons	across	regions	were	accounted	for	using	the	
False	Discovery	Rate	(FDR;	q	<	0.05).	

	
Impact	of	data	quality	on	associations	with	age	
	 The	analysis	described	above	revealed	substantial	relationships	between	data	
quality	and	cortical	thickness.	As	a	final	step,	we	examined	how	data	quality	might	bias	
tests	examining	associations	with	age.	Accordingly,	using	the	training	and	testing	samples	
from	the	PNC,	we	conducted	mediation	analyses	to	determine	whether	quantitative	
estimates	of	data	quality	(e.g.,	the	Euler	number)	might	mediate	the	apparent	relationship	
between	age	and	brain	structure.		Our	test	statistic	for	this	analysis	was	the	Sobel’s	z-score	
(Sobel,	1982),	which	was	calculated	for	each	cortical	region.	Sobel’s	z-score	estimation	was	
implemented	in	the	`bda`	package	in	R	(Wang,	2015).	Multiple	comparisons	were	
accounted	for	using	FDR	as	above	(q	<	0.05).	
	
	
RESULTS	
	
Highly	trained	manual	raters	achieve	good	concordance		
	 Across	datasets,	image	quality	was	relatively	high,	with	a	minority	of	images	being	
considered	unusable	(Figure	2A-C).		Although	there	were	significant	differences	among	
raters	(training:	F[2,	3198]	=	39.65,	p<.0001;	internal	testing:	F[2,	1599]	=	17.74,	p<.0001;	
external	testing:	F[2,837]	=	3.50,	p<.05),	post-hoc	analysis	found	that	raters	never	
disagreed	by	more	than	one	quality	class.	Weighted	kappa	statistics	indicated	that	all	three	
raters	achieved	good	concordance	(Figure	2B)	in	both	the	training	(mean	weighted-κ	=	
0.64),	internal	testing	(mean	weighted-κ	=	0.68),	and	external	testing	datasets	(mean	
weighted-κ	=	0.81).	Additionally,	polychoric	correlations	(Figure	2G-I),	indicated	very	high	
correlation	between	raters	in	all	datasets	(training:	mean	r	=	0.93;	internal	testing:	mean	r	
=	0.94;	external	testing	datasets	mean	r	=	.94).		
	
Manual	quality	ratings	vary	by	age	
	 While	controlling	for	age,	no	sex	differences	were	present	in	manual	rating	in	any	of	
the	three	datasets	(training:	W	=	137700,	p	>	0.1,	Figure	3A;	internal	testing:	W	=	36791,	p	
>	0.1,	Figure	3B;	external	testing:	W	=	6925,	p	>	0.1,	Figure	3C).		However,	in	both	
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developmental	samples	from	the	PNC,	younger	age	was	associated	with	lower	quality	
(training:	ρ =	.14,	p	<	0.0001,	Figure	3D;	internal	testing:	ρ	=	.12,	p	<	0.01,	Figure	3E).		In	
contrast,	among	the	older	adults	from	the	external	testing	dataset,	greater	age	was	
associated	with	lower	quality	(ρ =	-0.15,	p	<	0.05,	Figure	3F).		 
	
Quantitative	measures	of	image	quality	align	heterogeneously	with	manual	rating	

Next,	we	evaluated	how	quantitative	measures	of	data	quality	related	to	the	average	
quality	rating	across	three	raters.		Putative	quality	measures	displayed	heterogeneous	
associations	with	manual	quality	ratings,	both	across	measures	and	sometimes	across	
datasets	(Figure	4).	The	Euler	number	had	the	strongest	association	with	manual	rating	
across	all	three	datasets.	Furthermore,	while	the	relationship	was	consistent	across	
datasets	for	some	measures	(e.g.,	Euler	number,	Qi1),	other	measures	were	less	consistent.		
For	example,	measures	such	as	SNR,	CNR,	and	FBER	had	only	weak	associations	in	the	two	
PNC	datasets,	but	had	stronger	associations	in	the	external	testing	dataset	that	was	
acquired	on	a	different	scanner.		
	
Euler	number	successfully	identifies	unusable	images		

	 Next,	we	used	the	quantitative	metrics	to	build	an	“inclusion”	model	that	
discriminated	unusable	images	(rated	“0”)	from	usable	images	(rated	“1”	or	“2”).	We	began	
by	measuring	the	classification	capacity	of	each	quantitative	metric	to	identify	a	usable	
image	(Figure	5A-C).	Notably,	the	Euler	number	proved	to	be	the	most	predictive	feature	
across	datasets	(training:	AUC	=	0.99;	internal	testing:	AUC	=	0.98;	external	testing:	AUC	=	
0.99;	Figure	5D-F).	The	Euler	number	value	used	for	the	classification	threshold	criteria	
were	calculated	using	the	training	sample	(accuracy	=	0.94),	and	then	applied	to	each	test	
set.	In	the	internal	test	set,	accuracy	remained	quite	high	(accuracy	=	0.92),	but	
performance	was	somewhat	lower	in	the	external	test	set	(accuracy	=	0.76).		Lower	
accuracy	in	the	external	test	set	was	the	result	of	very	high	sensitivity,	but	lower	specificity	
(Table	3).		As	expected,	the	Euler	number	showed	similar	relationships	to	age	and	sex	as	
the	manual	quality	ratings	(see	Supplementary	Figure	1).	

Notably,	when	the	classification	threshold	criteria	were	allowed	to	vary	by	dataset,	
accuracy	was	quite	high	across	all	samples	(range:	0.93-0.98;	see	Table	4).		However,	even	
when	the	threshold	was	varied	by	dataset,	the	inclusion	model	using	the	Euler	number	
tended	to	be	more	sensitive	than	specific,	with	more	false	positives	than	false	negatives.		In	
this	case,	false	positives	were	images	flagged	as	unusable	which	were	rated	as	usable	by	
the	manual	raters.		Post-hoc	examination	of	these	images	revealed	that,	although	they	were	
not	flagged	as	unusable	by	raters,	these	images	did	have	a	lower	manual	quality	rating	than	
those	images	which	were	marked	as	usable	by	both	raters	and	the	logistic	model	(training:	
n	=	64,	W	=	35286,	p	<	.1;	internal	testing:	n	=	40,	W	=	12452,	p	<	0.01;	external	testing:	n	
=	57,	W	=	6952,	p	<	0.0001).		
	
	
Limits	of	proxy	measures	from	functional	sequences		
	 Based	on	prior	reports	that	motion	in	functional	sequences	acquired	in	the	same	
scanning	session	can	provide	a	useful	proxy	of	structural	image	quality,	we	next	compared	
such	proxy	measures	to	those	derived	directly	from	the	structural	image.		Specifically,	we	
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compared	the	Euler	number	to	frame	displacement	from	the	four	functional	scans	acquired	
as	part	of	the	PNC.		As	expected,	motion	within	each	sequence	increased	as	the	scanning	
session	progressed	(Figure	6A).	Many	participants	did	not	complete	all	functional	
sequences,	with	more	missing	data	for	sequences	acquired	later	in	the	session.	Perhaps	
more	importantly,	attrition	over	the	scanning	session	scaled	directly	with	the	data	quality	
on	the	structural	scan,	such	that	those	with	lower	structural	image	quality	were	less	likely	
to	have	completed	the	subsequent	functional	sequences	(Figure	6B).	Furthermore,	
measures	of	motion	during	the	functional	sequences	were	less	able	to	successfully	identify	
unusable	image	compared	to	the	Euler	number	(Figure	6C).		
	
Quantitative	estimates	of	data	quality	are	related	to	cortical	thickness		

Having	demonstrated	that	the	Euler	number	can	effectively	identify	unusable	
images	(rated	“0”),	we	next	examined	if	this	measure	was	related	to	cortical	thickness	in	
images	that	were	considered	usable	(rated	“1”	or	“2”).			To	do	this,	we	conducted	mass-
univariate	linear	regression	analyses	evaluating	the	relationship	between	data	quality	(as	
summarized	by	the	mean	Euler	number)	with	regional	cortical	thickness	estimated	using	
FreeSurfer.	Across	all	three	samples,	highly	consistent	effects	were	observed.		Overall,	
there	was	an	FDR-corrected	relationship	with	data	quality	in	53%	of	cortical	regions	
(Figure	7A)	in	the	training	dataset,	44%	of	regions	in	the	internal	testing	dataset	(Figure	
7B),	and	39%	of	regions	in	the	external	testing	dataset	(Figure	7C).	However,	the	
directionality	of	this	association	was	regionally	heterogeneous.	In	regions	including	the	
dorsolateral	prefrontal	cortex,	superior	parietal	cortex,	and	lateral	temporal	cortex,	higher	
data	quality	was	associated	with	thicker	cortex.		In	contrast,	in	occipital	and	posterior	
cingulate	cortex,	higher	data	quality	was	associated	with	thinner	cortex.		
	
Data	quality	systematically	biases	associations	with	age	in	youth	
	 The	above	results	demonstrate	that	the	Euler	number	aligns	with	manual	ratings,	is	
related	to	age,	and	is	related	to	cortical	thickness	even	among	images	considered	usable.		
As	a	final	step,	we	evaluated	the	degree	to	which	data	quality	might	bias	inference	
regarding	cross-sectional	associations	with	age.	Accordingly,	we	conducted	mediation	
analyses	to	examine	the	degree	to	which	data	quality	might	mediate	the	relationship	
between	age	and	brain	structure	(see	schematics	in	Figure	9A	&	B).	As	expected	given	
regionally	heterogeneous	effects	of	data	quality	on	cortical	thickness,	data	quality	had	a	
bidirectional	impact	on	associations	with	age	(Figures	9C	&	D).	For	most	regions	(shown	
in	red),	the	relationship	with	data	quality	resulted	in	a	masking	of	age	effects,	with	
observed	associations	with	age	becoming	more	significant	when	controlling	for	data	
quality.		This	reflects	the	fact	that	lower	data	quality	makes	the	thick	cortex	of	younger	
participants	appear	thinner,	reducing	estimates	of	thinning	with	age.	In	contrast,	in	several	
regions	(shown	in	blue)	including	the	posterior	cingulate	cortex	and	occipital	cortex,	data	
quality	had	the	opposite	effect,	and	inflated	apparent	age	effects.		Results	were	highly	
concordant	in	the	training	and	internal	testing	datasets.	
	
	
DISCUSSION	
	
	 In	this	paper,	we	demonstrate	that	a	single	quality	measure	derived	from	a	T1-
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weighted	volume	–	the	Euler	number	–	effectively	recapitulates	results	from	visual	
inspection	with	high	accuracy.	Furthermore,	we	demonstrate	that	image-based	measures	
of	data	quality	show	differential	relationships	to	several	common	measures	of	brain	
structure,	and	that	data	quality	systematically	biases	associations	between	cortical	
thickness	and	age	in	youth.		
	
Manual	raters	can	achieve	a	high	level	of	concordance	in	a	large-scale	sample	
	 It	is	increasingly	recognized	that	data	quality	may	be	the	primary	confound	in	brain	
imaging	studies	of	individual	difference,	lifespan	development,	or	clinical	populations	(Ciric	
et	al.,	2017;	Power	et	al.,	2015).	In-scanner	motion	is	usually	the	single	biggest	determinant	
of	data	quality,	especially	in	individuals	who	are	young,	elderly,	or	ill.	While	summary	
measures	of	motion	can	be	easily	derived	from	the	realignment	parameters	of	functional	
time	series,	motion	cannot	be	easily	estimated	for	most	existing	structural	imaging	data.	A	
variety	of	motion-tracking	and	–correction	systems	have	been	developed	(Zaitsev	et	al.,	
2015)		However,	such	technologies	have	not	been	used	for	the	vast	majority	of	already-
collected	imaging	data,	which	represents	a	huge	societal	investment.	Due	to	the	absence	of	
a	known	ground	truth,	one	of	the	first	challenges	for	any	study	attempting	to	estimate	
image-derived	measures	of	data	quality	for	structural	images	is	to	create	manual	ratings,	
which	are	necessary	to	validate	subsequent	quantitative	models.	This	problem	is	quite	
analogous	to	studies	of	psychiatric	or	neurologic	illness,	where	several	clinicians	evaluate	
information	from	a	patient	and	arrive	at	consensus	diagnosis.		

With	limited	training	utilities	available,	we	pursued	an	approach	analogous	to	
established	procedures	for	training	on	clinical	interviews	and	rating	scales	(Forbes	et	al.,	
2010;	Kaufman	et	al.,	1997).	A	panel	of	experts	initially	created	a	small	set	of	anchors.	
Notably,	while	we	originally	piloted	a	rating	system	with	5	levels	similar	to	that	used	in	one	
recent	study	(Pardoe	et	al.,	2016),	we	found	that	even	highly	trained	experts	could	not	
reach	a	high	level	of	concordance	across	5	levels.	Accordingly,	we	limited	the	quality	rating	
to	three	levels,	akin	to	previous	efforts	(Reuter	et	al.,	2015;	Savalia	et	al.,	2017).	Using	these	
anchors,	a	larger	training	set	of	100	images	was	then	rated	by	two	faculty	experts.		This	set	
of	100	images	was	then	used	to	train	three	experienced	staff	members	to	>85%	accuracy.	
After	this	degree	of	reliability	was	established,	the	full	set	of	images	was	evaluated.		
Following	such	training,	concordance	remained	relatively	good	in	both	the	training	and	
testing	samples.		The	pairwise	correlation	between	raters	was	even	higher,	reflecting	that	
when	raters	were	not	concordant	it	was	usually	due	to	a	small	but	significant	between-
individual	rater	bias.		

	
The	Euler	number	aligns	with	manual	ratings	and	can	identify	unusable	images	
	 Having	established	a	reliable	set	of	manual	ratings,	we	next	derived	quantitative	
measures	of	data	quality	using	summary	statistics	from	the	structural	image	alone.	Most	of	
the	measures	we	evaluated	were	produced	using	the	Quality	Assurance	Pipeline	
(QAP)(Shehzad	et	al.,	2015)	included	in	the	Configurable	Pipeline	for	Analysis	of	
Connectomes	(C-PAC)(Sikka	et	al.,	2013).		In	addition	to	this	suite	of	measures,	we	also	
evaluated	the	Euler	number,	a	measure	of	topological	complexity	of	the	cortical	surface	as	
reconstructed	by	FreeSurfer	(Fischl,	2012).	Using	these	measures,	we	examined	the	
correspondence	with	the	average	quality	rating	across	our	three	raters.		Notably,	the	Euler	
number	showed	the	highest	correlation	with	the	manual	ratings	across	all	three	samples,	
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suggesting	it	is	a	robust,	dimensional	measure	of	data	quality.			
	 In	addition	to	being	correlated	with	manual	ratings,	we	also	found	that	the	Euler	
number	was	effective	in	identifying	images	that	were	so	corrupted	by	artifact	as	to	be	
unusable.	This	is	a	common	step	in	sample	construction	in	any	imaging	study.		Notably,	the	
Euler	number	had	excellent	performance	across	all	three	samples,	with	an	AUC	of	0.98-
0.99.		While	AUC	provides	a	good	description	of	the	overall	predictive	performance	across	
all	thresholds,	a	more	stringent	test	of	generalizability	is	whether	a	specific	classification	
threshold	from	a	model	trained	on	one	dataset	can	be	applied	to	a	different	one.		We	found	
that	a	classification	threshold	which	had	excellent	performance	in	the	training	data	also	
performed	quite	well	on	the	independent	test	set	from	the	same	study	and	scanner.		

However,	when	this	specific	threshold	was	applied	to	an	external	test	set,	
classification	accuracy	was	substantially	lower	despite	a	near-perfect	AUC	(0.99).		This	
reflects	the	fact	that	the	specific	classification	threshold	criteria	from	the	training	dataset	of	
adolescents	was	not	optimal	for	an	adult	sample	acquired	on	a	different	scanner,	and	
resulted	in	a	very	high	sensitivity	but	lower-than-optimal	specificity.			However,	when	the	
threshold	criteria	were	tailored	to	each	dataset,	performance	was	uniformly	high.	This	
suggests	that	the	Euler	number	may	be	an	effective	measure	of	data	quality	across	samples	
and	scanners,	but	that	the	specific	value	used	for	flagging	volumes	for	exclusion	may	need	
to	be	specified	individually	at	each	scanning	site.				
	
Proxy	measures	of	structural	data	quality	from	functional	scans	have	important	limits		
	 One	recently	proposed	approach	is	to	use	motion	estimated	from	a	functional	time	
series	acquired	within	the	same	session	as	a	proxy	of	structural	image	quality.	Several	prior	
reports	have	shown	that	this	is	a	fruitful	approach	(Alexander-Bloch	et	al.,	2016;	Pardoe	et	
al.,	2016;	Savalia	et	al.,	2017),	demonstrating	associations	between	this	proxy	measure	of	
data	quality	and	cortical	thickness.	One	clear	limitation	of	this	approach	is	that	it	requires	a	
functional	scan	to	be	acquired	in	the	same	scanning	session.		Furthermore,	even	when	a	
functional	scan	is	scheduled	to	be	part	of	the	imaging	session,	such	data	may	be	missing	
due	to	attrition.	We	demonstrated	that	motion	increases	over	the	course	of	the	scanning	
session,	and	that	participants	with	low-quality	T1	volumes	are	more	likely	to	be	missing	
subsequent	functional	scans.		Furthermore,	our	results	show	that	frame	displacement	from	
functional	scans	are	less	able	to	identify	unusable	scans	than	the	Euler	number,	which	is	
calculated	from	the	T1	volume	itself.				
	
Measures	of	brain	structure	are	differentially	impacted	by	data	quality	

Previous	work	has	shown	that	cortical	thickness	is	systematically	biased	by	in-
scanner	motion,	whether	quantified	by	manual	rating	(Pardoe	et	al.,	2016;	Savalia	et	al.,	
2017),	motion	estimated	from	functional	sequences	acquired	in	the	same	scanning	session	
(Alexander-Bloch	et	al.,	2016;	Pardoe	et	al.,	2016;	Savalia	et	al.,	2017),	or	volumetric	
navigators	embedded	in	the	T1	sequence	(Reuter	et	al.,	2015).	Here,	we	demonstrate	that	
an	index	of	image	quality	derived	directly	from	the	structural	image	itself	shows	a	similar	
relationship.	Importantly,	the	association	between	data	quality	and	cortical	thickness	had	
notable	regional	heterogeneity.		In	somatomotor,	temporal,	parietal,	and	many	frontal	
regions,	higher	data	quality	was	associated	with	greater	thickness.		However,	in	other	
regions	including	the	visual	cortex	and	posterior	cingulate,	higher	data	quality	was	
associated	with	thinner	estimated	cortical	thickness.	These	results	are	strikingly	
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convergent	with	prior	reports	using	other	indices	of	data	quality,	which	have	demonstrated	
that	while	in	general	higher	data	quality	is	associated	with	thicker	cortex,	specific	regions	
show	the	opposite	effect	(Alexander-Bloch	et	al.,	2016;	Pardoe	et	al.,	2016;	Reuter	et	al.,	
2015).			
	
Data	quality	biases	estimates	of	structural	brain	development	in	youth	

Accurate	measurement	of	cortical	thickness	is	critical	to	understanding	typical	and	
atypical	trajectories	of	the	developing	brain.	The	extant	literature	indicates	robust	age-
related	cortical	thinning	in	adolescence	(Gennatas	et	al.,	2017;	Gogtay	et	al.,	2004;	Sowell	et	
al.,	2003,	2004;	Tamnes	et	al.,	2010).	Moreover,	there	are	regional-specific	patterns	of	
cortical	maturation	throughout	development,	with	delayed	maturation	of	higher-order	
association	cortex	(Giedd	et	al.,	1999;	Giedd,	2004;	Gogtay	et	al.,	2004;	Shaw	et	al.,	2008;	
Sowell	et	al.,	2004;	Tamnes	et	al.,	2010).	While	most	of	these	studies	use	validated	methods	
to	reduce	in-scanner	head	motion	during	acquisition,	few	if	any	systematically	evaluated	or	
controlled	for	data	quality.	Importantly,	several	recent	reports	described	significant	
relationships	between	age	and	in-scanner	head	motion	in	a	variety	of	MRI	protocols	
(Power	et	al.,	2012;	Roalf	et	al.,	2016;	Satterthwaite	et	al.,	2016).	

To	determine	if	previously	reported	developmental	trends	are	resilient	to	the	
impact	of	data	quality,	we	performed	region-wise	mediation	analyses.	Notably,	associations	
between	cortical	thickness	and	age	were	significantly	mediated	by	data	quality.	This	bias	
introduced	by	data	quality	was	bidirectional	and	regionally	heterogeneous.		Several	regions	
in	frontal,	temporal,	parietal	cortices	showed	more	prominent	developmental	effects	once	
T1	data	quality	was	considered,	suggesting	that	noise	associated	with	data	quality	may	
partially	mask	associations	with	age.	In	contrast,	regions	such	as	the	posterior	cingulate,	
precuneus,	and	occipital	cortex	showed	less	prominent	associations	with	age	after	
controlling	for	data	quality.	These	results	emphasize	that	accurate	delineation	of	cortical	
development	is	predicated	upon	data	quality,	which	can	both	obscure	important	
developmental	effects	in	some	regions	and	inflate	effects	in	others.			Notably,	because	data	
quality	is	likely	to	be	collinear	with	other	subject-level	variables	including	cognitive	
performance	(Siegel	et	al.,	2017),	symptom	burden,	and	group	status	(Yendiki	et	al.,	2014),	
this	effect	has	the	potential	to	similarly	confound	a	wide	variety	of	studies	of	brain	
structure.				
	
Limitations	

	 	 Several	important	limitations	of	the	current	study	should	be	noted.		As	discussed	
above,	the	Euler	number	provided	an	accurate	image-based	index	of	data	quality	across	
three	datasets	from	two	different	scanners.		However,	the	best	exact	classification	
threshold	for	accurate	identification	of	unusable	data	did	vary	by	scanner.	Thus,	one	
limitation	of	the	current	approach	is	that	it	is	unlikely	that	a	single	Euler	number	exclusion	
threshold	will	apply	to	all	studies.		Second,	in	contrast	to	the	measures	provided	by	QAP,	
calculating	the	Euler	number	at	present	requires	cortical	surface	reconstruction	with	
FreeSurfer.	This	process	is	both	time	and	computationally	intensive,	requiring	12-24	hours.		
This	may	limit	the	deployment	of	this	index	in	certain	settings.		Moving	forward,	further	
investigation	of	other,	simpler,	registration-based	methods	may	reveal	that	much	of	the	
same	information	can	be	gleaned	from	processes	that	are	much	less	computationally	
demanding.		However,	given	the	widespread	popularity	of	the	FreeSurfer	platform,	it	is	also	
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quite	likely	that	many	investigators	have	already	calculated	the	Euler	number	for	much	of	
their	data,	allowing	for	immediate	use	in	ongoing	studies.		Third,	it	is	unknown	at	present	
how	the	test-retest	reliability	of	automated	measures	of	data	quality	(such	as	the	Euler	
number)	compare	to	manual	ratings.			However,	in	contrast	to	manual	ratings,	automated	
measures	are	100%	reproducible	for	a	single	image,	and	thus	may	also	be	more	stable	over	
time.		Fourth,	our	quantitative	quality	metrics	were	selected	according	to	their	agreement	
with	manual	ratings.	However,	it	should	be	acknowledged	that	manual	ratings	are	not	
“ground	truth”	regarding	image	quality,	and	thus	may	be	limited	in	their	ability	to	inform	
and	select	quantitative	quality	measures.		Fifth,	due	to	our	focus	on	cortical	thickness,	we	
did	not	evaluate	the	impact	of	data	quality	on	sub-cortical	or	cerebellar	regions.	Finally,	it	
should	be	noted	that	our	use	of	the	relatively	coarse	parcellation	provided	by	the	
commonly-used	Desikan-Killiany	atlas	precludes	mapping	the	impact	of	data	quality	onto	
functional	sub-systems	(Gordon	et	al.,	2016;	Yeo	et	al.,	2011).	
	
Conclusions		
	 In	this	paper,	we	demonstrate	that	data	quality	can	be	estimated	directly	from	
structural	images	that	lack	volumetric	navigators.	Such	image-based	indices	of	data	quality	
such	as	the	Euler	number	can	be	used	to	exclude	unusable	images	in	a	reproducible	
fashion.	Furthermore,	these	continuous	measures	of	image	quality	have	the	potential	to	be	
used	as	covariates	in	group-level	analyses	of	structural	imaging	data.	The	ability	to	derive	a	
measure	of	data	quality	directly	from	the	structural	image	may	obviate	the	need	for	use	of	
proxy	measures	from	functional	sequences.		
	 More	broadly,	the	present	data	emphasize	the	degree	to	which	data	quality	should	
be	appreciated	as	an	important	confound	in	structural	imaging	studies.	Investigators	are	
encouraged	to	report	measures	of	data	quality	for	all	structural	imaging	studies,	especially	
those	that	evaluate	individual	or	group	differences.	This	is	particularly	relevant	for	studies	
where	data	quality	is	likely	to	be	systematically	related	to	the	primary	subject-level	
variable	of	interest,	such	as	age,	cognitive	performance,	clinical	group	status,	or	disease	
severity.	We	provide	one	such	example,	demonstrating	that	data	quality	can	systematically	
bias	associations	between	cortical	thickness	and	age	in	youth.	While	it	is	now	common	
practice	to	report	summary	measures	of	motion	and	image	quality	for	fMRI	research,	it	is	
less	common	for	studies	using	T1-weighted	imaging.	The	present	results	underscore	a	need	
for	transparent	reporting	of	such	data.	We	urge	investigators	to	report	associations	
between	data	quality	and	both	subject	level	variables	of	interest	(e.g.,	age,	group)	as	well	as	
the	primary	imaging	measure	evaluated.	Moving	forward,	quantitative	estimates	of	motion	
during	the	T1	scan	provided	by	motion-tracking	and	–correction	technologies	may	obviate	
the	need	for	post-hoc	calculation	of	quality	indices.	However,	we	anticipate	that	the	
strategy	outlined	here	may	prove	to	be	useful	for	the	massive	amount	of	structural	imaging	
data	that	has	already	been	collected	at	great	effort	and	cost.	
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TABLES	
	
Table	1:	Demographic	information	of	the	training	and	validation	datasets.	
 
Study N %	Female Age	Mean Age	SD 

Training 1065 51 14.90 3.70 

Testing	1 533 44 15.10 3.68 

Testing	2 242 48 41.36	 16.99	 

 

Table	2:	Quantitative	image	quality	metrics.	
	

Quantitative	Metric Abbreviation Citation 

Signal-to-noise	ratio SNR Magnotta	and	Friedman,	2006 

Contrast-to-noise	ratio CNR Magnotta	and	Friedman,	2006 

Foreground-to-background	energy	ratio FBER NA 

Quality	index	1 Qi1 Mortamet	et	al.,	2009 

Image	smoothness FWHM Friedman	et	al.,	2006 

Entropy	focus	criterion EFC Atkinson	et	al.,	1997 

Euler	number Euler	 Dale	et	al.,	1999 
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Table	3:	Inclusion	model	performance,	using	classification	threshold	criterion	derived	from	
training	sample. 
 

Study Threshold Sensitivity Specificity Accuracy	

Training -217 0.97 0.94 0.94	

Internal	
Testing 

-217 1 0.93 0.92	

External	
Testing 

-217 1 0.76 0.76	

 
 
Table	4:	Inclusion	model	performance,	using	classification	threshold	criterion	calculated	
separately	for	each	dataset	
	
 

Study Threshold Sensitivity Specificity Accuracy 

Training -217 0.97 0.94 0.94 

Internal	
Testing 

-224.5 1 0.93 0.93 

External	
Testing 

-380 1 0.98 0.98 
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FIGURE	LEGENDS	
	

 
 
 
	
Figure	1:	Training	protocol	for	manual	raters.	There	were	4	phases	of	training.	Phase	1:	5	
neuroimaging	experts	reviewed	20	PNC	images	selected	to	have	various	levels	of	artifact.	These	
images	were	used	to	establish	rating	anchors,	which	were	then	used	for	Phase	2.	Phase	2:	Two	
experts	(TDS	&	DRR)	rated	100	images.	100%	concordance	was	achieved	through	consensus.	
Phase	3:	Three	new	raters	were	trained	on	the	100	images	used	in	Phase	2,	until	the	raters	
achieved	85%	concordance	after	two	rounds.	Phase	4:	All	3	trained	raters	manually	rated	1,840	
images	across	the	PNC	and	the	external	test	dataset	(see	Table	1).	 
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Figure	2:	Results	of	manual	ratings.	A-C:	Frequency	of	average	manual	rating	for	the	training,	
internal	testing,	and	external	testing	datasets.	D-F:	The	pairwise	weighted-κ	between	each	rater	in	
dataset	was	moderate	and	consistent	across	datasets.	G-I:	The	pairwise	polychoric	correlation	for	
each	rater	in	all	of	the	datasets	was	high. 
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Figure	3:	Manual	quality	rating	varies	by	age	but	not	by	sex.		No	sex	differences	in	median	
quality	rating	was	observed	in	any	of	the	three	datasets	(A-C);	bars	represent	the	median	z-scored	
quality	rating,	error	bars	denote	the	inter-quartile	range.	Image	quality	improves	with	age	during	
adolescence	in	both	training	(D)	and	internal	testing	samples	(E)	using	PNC	data,	whereas	data	
quality	declines	with	aging	over	the	adult	lifespan	in	the	external	test	dataset	(F).		In	D-F,	dark	line	
represents	a	linear	fit;	shaded	envelope	represents	95%	confidence	intervals;	reported	significance	
values	are	calculated	using	partial	Spearman’s	correlations	after	regressing	out	gender	trends.		 
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Figure	4:	Quantitative	metrics	of	image	quality	show	heterogeneous	alignment	with	manual	
ratings.	A:	The	standardized	mean	(+/-	S.E.M.)	for	each	quantitative	metric	is	displayed	by	average	
manual	rating	class.	B:	Partial	Spearman	correlation	coefficients	between	average	manual	quality	
rating	and	the	T1	derived	quantitative	metrics;	covariates	included	sex,	age,	and	age	squared.	
Across	all	datasets,	Euler	number	showed	the	strongest	association	with	manual	quality	ratings. 
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Figure	5:	Inclusion	model	to	identify	unusable	images.	A-C:	Logistic	models	in	training	(A),	
internal	testing	(B),	and	external	testing	(C)	datasets	were	used	to	evaluate	the	ability	of	each	
quantitative	measure	of	image	quality	to	discriminate	usable	(rated	1-2)	and	unusable	(rated	0)	
images.	Area	under	the	curve	(AUC)	was	used	to	summarize	model	performance.	In	all	datasets,	the	
Euler	number	was	the	best-performing	metric;	adding	additional	metrics	to	the	Euler	number	did	
not	improve	model	performance.	D-F:	Receiver	Operator	Characteristic	(ROC)	curves	for	the	Euler	
number	in	each	dataset.		
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Figure	6:	Limits	of	motion	from	functional	scans	as	a	proxy	measure	of	T1	volume	
quality.		A:	Mean	in-scanner	motion	during	functional	sequences	acquired	as	part	of	the	
PNC	increased	over	the	course	of	the	scanning	session.	Sequences	are	plotted	in	order	of	
acquisition	after	the	T1	scan;	time	from	the	T1	scan	is	reported	in	minutes:	seconds	within	
each	bar.		B:		Individuals	with	lower-quality	T1	images	had	differential	attrition	over	the	
course	of	the	of	the	scanning	session.	Thus,	individuals	with	a	lower-quality	T1-images	
were	less	likely	to	complete	the	functional	sequences	which	were	subsequently	acquired.		
Attrition	scaled	with	quality	of	the	T1	image.		C:		In	participants	for	whom	complete	data	
was	available	(n=1275),	motion	estimated	from	the	functional	sequence	did	not	perform	as	
well	as	the	Euler	number	in	identifying	unusable	images	(rated	“0”).		
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Figure	7:	Quantitative	measure	of	image	quality	is	associated	with	cortical	thickness.	
In	usable	images	that	were	not	excluded	due	to	gross	artifact,	cortical	thickness	was	
significantly	related	to	the	Euler	number	in	a	regionally	heterogeneous	pattern.	Higher	data	
quality	was	associated	with	thicker	cortex	over	much	of	the	brain,	but	was	conversely	
associated	with	thinner	cortex	in	occipital	and	posterior	cingulate	cortex.		This	pattern	was	
present	across	all	datasets.	Image	displays	z-scores	from	a	mass-univariate	linear	
regression,	where	regional	cortical	thickness	was	the	outcome	and	Euler	number	was	the	
predictor	of	interest;	covariates	included	age,	age	squared,	and	sex.	All	results	corrected	for	
multiple	comparisons	using	the	False	Discovery	Rate	(q	<	0.05).	
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Figure	8:	Data	quality	significantly	mediates	observed	associations	with	age	in	youth.		
Having	found	that	data	quality	is	associated	with	both	age	and	cortical	thickness,	we	
evaluated	whether	data	quality	might	systematically	bias	inference	regarding	brain	
development.		To	do	this,	a	mediation	analysis	was	performed	for	each	cortical	region	(A),	
where	we	evaluated	if	the	Euler	number	mediated	the	apparent	relationship	between	age	
and	cortical	thickness.	At	each	region,	Sobel	z-scores	were	calculated	as	the	test	statistic	for	
the	mediation	analysis.		A	positive	Sobel’s	value	indicates	that	when	controlling	for	data	
quality	an	increased	effect	of	age	was	revealed;	a	negative	Sobel’s	value	indicates	that	when	
controlling	for	data	quality	a	diminished	association	with	age	was	present	(B).	This	
procedure	was	applied	to	both	the	training	(C)	and	internal	test	set	(D)	from	the	PNC,	
which	revealed	consistent	mediation	effects	in	both	samples.	Data	quality	significantly	
mediated	the	relationship	between	age	and	cortical	thickness	in	a	bidirectional,	regionally	
heterogeneous	manner.	After	controlling	for	data	quality,	the	apparent	age	effect	was	
increased	in	many	regions	(regions	in	warm	colors),	where	higher	data	quality	was	
associated	with	thicker	cortex	(see	Figure	7).		However,	in	a	subset	of	regions	including	the	
occipital	and	posterior	cingulate	cortex,	controlling	for	data	quality	resulted	in	a	
diminished	association	with	age	(cool	colors).		Multiple	comparisons	were	accounted	for	
using	FDR	(q	<0.05).	
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Supplemental	Figure	1:	Mean	Euler	number	varies	by	age	and	sex.		Sex	differences	in	median	
quality	rating	was	observed	in	all	three	datasets	with	females	displaying	higher	Euler	numbers	(A-
C);	bars	represent	the	median	z-scored	quality	rating,	error	bars	denote	the	inter-quartile	range.	
Image	quality	improves	with	age	during	adolescence	in	both	training	(D)	and	internal	testing	
samples	(E)	using	PNC	data.	However	in	the	adult	external	testing	sample	a	nonsignificant	
relationship	between	age	and	the	Euler	was	observed	although	a	negative	trend	was	observed	(F).		
In	D-F,	dark	line	represents	a	linear	fit;	shaded	envelope	represents	95%	confidence	intervals;	
reported	significance	values	are	calculated	using	partial	Spearman’s	correlations	after	regressing	
out	gender	trends.		 
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