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Abstract 25 

Visual analysis of histopathology slides of lung cell tissues is one of the main methods used by 26 

pathologists to assess the stage, types and sub-types of lung cancers. Adenocarcinoma and 27 

squamous cell carcinoma are two most prevalent sub-types of lung cancer, but their distinction 28 

can be challenging and time-consuming even for the expert eye. In this study, we trained a deep 29 

learning convolutional neural network (CNN) model (inception v3) on histopathology images 30 

obtained from The Cancer Genome Atlas (TCGA) to accurately classify whole-slide pathology 31 

images into adenocarcinoma, squamous cell carcinoma or normal lung tissue. Our method slightly 32 

outperforms a human pathologist, achieving better sensitivity and specificity, with ~0.97 average 33 

Area Under the Curve (AUC) on a held-out population of whole-slide scans. Furthermore, we 34 

trained the neural network to predict the ten most commonly mutated genes in lung 35 

adenocarcinoma. We found that six of these genes – STK11, EGFR, FAT1, SETBP1, KRAS and 36 

TP53 – can be predicted from pathology images with an accuracy ranging from 0.733 to 0.856, 37 

as measured by the AUC on the held-out population. These findings suggest that deep learning 38 

models can offer both specialists and patients a fast, accurate and inexpensive detection of 39 

cancer types or gene mutations, and thus have a significant impact on cancer treatment.  40 
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Introduction 47 

According to the American Cancer Society1, over 150,000 lung cancer patients succumb to their 48 

disease each year, while another 200,000 new cases are diagnosed on a yearly basis. It is one 49 

of the most widely spread cancers in the world, due mostly to smoking, but also exposure to toxic 50 

chemicals like radon, asbestos and arsenic. Non-small cell lung cancers represent 85% of the 51 

cases and three sub-types are distinguished: Adenocarcinoma (LUAD), Squamous Cell 52 

carcinoma (LUSC) and, most rarely, large-cell carcinoma. Lung biopsies are typically used to 53 

diagnose lung cancer subtype and stage. Targeted therapies are applied depending on the type 54 

of cancer, stage and the presence of sensitizing mutations1,2. For example, EGFR (epidermal 55 

growth factor receptor) mutations, present in about 20% of LUAD, and ALK mutations (anaplastic 56 

lymphoma receptor tyrosine kinase), present in less than 5% of LUAD3, both have currently 57 

targeted therapies approved by the Food and Drug Administration (FDA)4. Mutations in other 58 

genes, such as KRAS and TP53 are very common (about 25% and 50% respectively), but have 59 

proven particularly challenging drug-targets so far3,5.  60 

Virtual microscopy of stained images of tissues are typically acquired at magnifications of x20 to 61 

x40, generating very large two-dimensional images (10,000 to over 100,000 pixels in each 62 

dimension) that can be tricky to visually analyze in an exhaustive way. Furthermore, accurate 63 

interpretation can be difficult and the distinction between LUAD and LUSC is not always clear, 64 

particularly in poorly-differentiated tumors, where ancillary studies is recommended for accurate 65 

classification. To assist experts, automatic analysis of lung cancer whole-slide images has been 66 

recently studied for survival prognosis6 and classification7. In these studies, Yu et al. combined 67 

conventional thresholding and image processing techniques with machine learning methods, 68 

such as random forest classifiers, SVM or Naïve Bayes classifiers, achieving an Area Under the 69 

Curve (AUC) of ~0.85 in distinguishing normal from tumor slides, and ~0.75 in distinguishing 70 

LUAD from LUSC slides. Here, we demonstrate how the field can greatly benefit from deep 71 
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learning, by presenting a strategy based on Convolutional Neural Networks (CNNs) that not only 72 

outperforms previously published work, but also achieves accuracies that are at least comparable, 73 

if not superior, to human pathologists. The development of new inexpensive and more powerful 74 

technologies with higher computing power (in particular Graphics Processing Units, GPUs) has 75 

made possible the training of larger and more complex systems8-10. This resulted in the design of 76 

several deep CNNs, capable of accomplishing complex visual recognition tasks. Such algorithms 77 

have already been successfully used for segmentation11 or classification of medical images12 and 78 

cancers such as breast13-15, colon cancers16 or osterosarcoma17. CNNs have also been studied 79 

for classifying lung patterns on CT (Computerized Tomography) scans, achieving a f-score of 80 

~85.5%18. Here, to study the automatic classification of lung cancer tissues, we used the inception 81 

v3 architecture19 and whole-slide images of hematoxylin and eosin stained histopathology images 82 

from TCGA obtained by excision. In 2014, Google won the ImageNet Large-Scale Visual 83 

Recognition Challenge by developing the GoogleNet architecture20, derived from the work from 84 

Lin et. al21, which increased the robustness to translation and non-linear learning abilities by using 85 

multi-layer perceptrons and global averaging pooling. Inception architecture is particularly useful 86 

for processing the data in multiple resolutions, a feature that makes this architecture suitable for 87 

pathology tasks. This network has already been successfully adapted to other specific types of 88 

classifications like skin cancers22 and diabetic retinopathy detection23.  89 

 90 

Results 91 

We are here comparing several approaches for the classification of tumor slides. First, we 92 

employed a strategy similar to the one used by Yu et al.7, consisting of a two-step binary 93 

classification of normal versus tumor slides, followed by a classification of LUAD versus LUSC 94 

slides. We then explored a direct classification of the three types of whole-slide images. Finally, 95 

we further analyzed LUAD slides to identify which gene mutations could be predicted from those 96 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 3, 2017. ; https://doi.org/10.1101/197574doi: bioRxiv preprint 

https://doi.org/10.1101/197574


images: we modified and trained the inception v3 architecture on the 10 most common mutations 97 

found in the TCGA dataset and related to lung cancer. In this study, we also compare two training 98 

approaches: transfer learning versus fully training the inception architecture. In the first case, most 99 

of the network keeps the weights learned after the network was trained on object recognition task 100 

on the ImageNet dataset, while only the last layer (fully connected layer) of the network is trained. 101 

In the second case, the weights are reinitialized randomly, and the network is trained end-to-end, 102 

using exclusively lung cancer images.  103 

 104 

Fully-trained inception v3 network provides accurate diagnosis (AUC=0.97) of lung 105 

histopathology images 106 

The TCGA dataset characteristics and our overall computational strategy are summarized in 107 

Figure 1 (see method section for details). We used 1634 whole-slide images from the Genomic 108 

Data Commons database: 1176 tumor tissues and 459 normal (Figure 1a). These whole-slide 109 

images were split into three sets: training, validation and testing (Figure 1d). Because the sizes 110 

of the whole-slide images are too large to be used as direct input to a neural network (sometimes 111 

over 100,000 pixels wide, Figure 1b), the network was instead trained, validated and tested using 112 

512x512 pixel tiles, obtained from non-overlapping windows of the whole-slide images. This 113 

resulted in tens to thousands of tiles per slide depending on the original size (Figure 1c). These 114 

tiles were first processed individually by the network, and then, per-slide aggregation (see 115 

Methods for details) of the results generated a diagnosis for each slide.  116 
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 117 

Figure 1. Data and strategy: (a) Number of whole-slide images per class. (b) Size distribution 118 
of the images widths (gray) and heights (black). (c) Distribution of the number of tiles per slide. 119 
(d) Strategy: (d1) Images of lung cancer tissues were first downloaded from the Genomic Data 120 
Common database; (d2) slides were then separated into a training (70%), a validation (15%) and 121 
a test set (15%); (d3) slides were tiled by non-overlapping 512x512 pixels windows, omitting those 122 
with over 50% background; (d4) the Inception v3 architecture was used and partially or fully re-123 
trained using the training and validation tiles; (d5) classifications were run on tiles from an 124 
independent test set and the results were finally aggregated per slide to extract the heat-maps 125 
and the AUC statistics. 126 
 127 

Our deep learning approach effectively distinguishes tumor from normal tissue, resulting in a 128 

96.1% per tile accuracy. To assess the accuracy on the test set, the per-tile results were 129 

aggregated on a per-slide basis either by averaging the probabilities obtained on each tile, or by 130 

counting the percentage of tiles positively classified (Figure 2a). This process resulted in an Area 131 

Under the Curve (AUC) of 0.990 and 0.993 (Table 1) respectively, outperforming the AUC of 132 

~0.85 achieved by the feature-based approach of Yu et al.7. Next, we tested the performance of 133 

our approach on the more challenging task of distinguishing LUAD and LUSC. First, we tested 134 
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whether convolutional neural networks can outperform the published feature-based approach, 135 

even when plain transfer learning is used. For this purpose, the weights of the last layer of 136 

inception v3 – previously trained on the ImageNet dataset to identify 1,000 different classes – 137 

were initialized randomly and then trained for our classification task. After aggregating the 138 

statistics on a per slide basis (Figure 2b), this process resulted in an Area Under the Curve (AUC) 139 

of 0.847 (Table 1), i.e. a gain of ~0.1 in AUC compared to the best results obtained by Yu et al7. 140 

using image features combined with random forest classifier7. The performance can be further 141 

improved by fully training inception v3 leading to AUC of 0.947 when aggregation is done by 142 

computing the percentage of tiles positively classified, and to AUC of 0.950 when the aggregation 143 

is done by averaging the per-tile probabilities (Figure 2c). These AUC values are improved by 144 

another 0.002 when the tiles previously classified as “normal” by the first classifier are not included 145 

in the aggregation process (Table 1 and Figure 2d). The ROC of such a classifier shows 146 

performance better than that of a specialist who was asked to classify the images in the test set, 147 

independently of the classification provided in TCGA (Figure 2d, red cross). About a third of the 148 

slides wrongly classified by the algorithm were also misclassified by the specialist, while 85% of 149 

those incorrectly classified by the specialist were properly classified by the algorithm (Figure 2e). 150 
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 151 

Figure 2. Accurate classification of lung cancer histopathology images: (a) Per-slide 152 
Receiver Operating Characteristic (ROC) curves after classification of normal versus tumor 153 
images resulted in an almost error-free classification. Aggregation was either done by averaging 154 
the probability scores (purple ROC curves in a to d) or by counting the percentage of properly 155 
classified tiles (green ROC curves in a to d). (b) The ROC curves obtained after transfer learning 156 
for LUAD vs LUSC images classification shows poorer results than when (c) the same network 157 
has been fully trained. The red crosses correspond to the manual classification by a specialist. 158 
(d) The ROC curves from (c) is only slightly improved once the tiles classified initially as “normal” 159 
have been removed. (e) Proportion of slides misclassified by the specialist as a function of the 160 
true positive probability assigned in (d). The number of slides are indicated on the bars. (f) Multi-161 
class ROC of the Normal vs LUAD vs LUSC classification shows the best result for overall 162 
classification of cancer type. Dotted lines are negative control trained and tested after random 163 
label assignments. (g) Comparison of AUCs obtained with different techniques for classification 164 
of cancer type and (h) of normal slides.  165 
 166 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 3, 2017. ; https://doi.org/10.1101/197574doi: bioRxiv preprint 

https://doi.org/10.1101/197574


Figure 3a-r show heatmap examples for LUAD and LUSC, comparing transfer-learning results 167 

with the fully trained network. In the second case, more tiles are true positive and the distribution 168 

is more homogeneous, showing for LUSC that almost all of the tiles display LUSC-like features, 169 

while for the LUAD, two regions are more prominent with LUAD-like features (one horizontal at 170 

the top, one vertical on the left) and some patches showing lower probabilities. Interestingly, most 171 

of the LUSC tiles were previously classified as tumor by the first classifier (Figure 3t) while for 172 

LUAD, the regions with patches having probability near 0.5 in the LUAD/LUSC classification are 173 

also those classified as normal with higher probability by the first classifier (Figure 3s). We 174 

investigated further the use of the deep-learning model by training and testing the network for a 175 

direct classification of the three types of images (Normal, LUAD, LUSC in Figure 2f). Such an 176 

approach resulted in the highest performance with all the AUCs improved to at least 0.968 (Table 177 

1). Figure 4 shows how the heat-maps are affected by such an approach: the LUSC image shows 178 

most of its tiles with a strong true positive probability of LUSC while in the LUAD image, some 179 

regions have strong LUAD features, with normal cells on the side (as confirmed by a specialist), 180 

and some light blue tiles where LUSC probability is slightly leading.  181 

 182 

Table 1. Area Under the Curve (AUC) achieved by the different classifiers 183 

Classification Information 

AUC after aggregation by… 

… average 

predicted 

probability 

… percentage 

of positively 

classified tiles 

Normal vs 

Tumor 

a) Inception v3, fully-trained 0.993 0.990 

LUAD vs LUSC 
b) Inception v3, transfer learning  0.847 0.847 

c) Inception v3, fully-trained 0.950 0.947 
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d) Same as (c) but aggregation done 

solely on tiles classified as “tumor” by 

A 

0.952 0.949 

3 classes. 

Normal vs 

LUAD vs LUSC 

Normal 0.991    NA 

LUAD 0.968    NA 

LUSC 0.971    NA 

Micro-average 0.971    NA 

Macro-average 0.978    NA 

Mutations 

STK11 0.856 0.842 

EGFR 0.826 0.782 

SETBP1 0.775 0.752 

TP53 0.760 0.754 

FAT1 0.750 0.750 

KRAS  0.733 0.716 

KEAP1 0.675 0.659 

LRP1B  0.656 0.657 

FAT4 0.642 0.640 

NF1 0.640 0.632 

 184 

 185 

 186 
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 187 

Figure 3. Examples of heatmaps for different binary classifications strategies: (a) Typical 188 
slide of Lung Adenocarcinoma (LUAD) tissue. (b) Zoom region corresponding to the yellow box 189 
in (a). (c) Tile corresponding to the green box in (b). (d) and (e) are the heat-maps corresponding 190 
to images (a) and (b), with probability assigned to each tile from brown (false positive) to green 191 
(true positive). (f) Per-tile heat-map generated after having applied a rolling mask on part of the 192 
tile. Yellow pixels show regions not affected by masking while the pink pixels show regions where 193 
features were important for proper classification. Images (d) to (f) were obtained after transfer 194 
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learning while images (g) to (i) were obtained after fully training inception v3. Images (j) to (r) 195 
show similar examples for a Lung Squamous Cell (LUSC) tissues. (s) and (t) show the results of 196 
the “normal vs tumor” tiles classifier.  197 

 198 

 199 

 200 

Figure 4. Heatmaps for classification of Normal vs LUAD vs LUSC: (a) and (b) Heatmaps 201 
corresponding to images of (Figure 3a) and (Figure 3b) with probabilities of the winning class 202 
assigned to each tile such as: red for tiles classified as LUAD, blue for LUSC and grey for Normal. 203 

 204 

 205 

Whole-slide images can predict 6 mutations with an AUC above 0.74  206 

The LUAD whole-slide images were further trained to predict gene mutations. Inception v3 was 207 

modified to allow multi-output classification and tests were conducted using around 44,000 tiles 208 

from 62 slides. Box plot and ROC curves analysis (Figure 5a-b and Figure supp 1) show that at 209 

least six frequently mutated genes seem predictable using our deep learning approach: AUC 210 

values for STK11, EGFR, FAT1, SETBP1, KRAS and TP53 were found between 0.733 and 0.856 211 

(Table 1). As mentioned earlier, EGFR already has targeted therapies. STK11 (Serine/Threonine 212 

protein Kinase 11), also known as Liver Kinase 1 (LKB1), is a tumor suppressor inactivated in 15-213 

30% of non-small cell lung cancers24 and is also a potential therapeutic target: it has been shown 214 

on mice that phenformin, a mitochondrial inhibitor, increases survival25. Also, it has been shown 215 

that STK11 mutations may play a role in KRAS mutations which, combined, result in more 216 

aggressive tumors26. FAT1 is an ortholog of the Drosophila fat gene involved in many types of 217 
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cancers and its inactivation is suspected to increase cancer cell growth27. Mutation of the tumor 218 

suppressor gene TP53 is thought to be more resistant to chemotherapy leading to lower survival 219 

rates in small-cell lung cancers28. As for SETBP1 (SET 1 binding protein), like KEAP1 and STK11, 220 

has been identified as one of the signature mutations of LUAD29. Finally, for each gene, we 221 

compare the classification achieved by the deep learning approach with the allele frequency 222 

(Figure 5c). Among the gene mutations predicted with a high AUC, four of them seem to show 223 

probabilities related to the allele frequency: FAT1, KRAS, SETBP1 and STK11. 224 

 225 

Figure 5. Gene mutation prediction from histopathology slides give promising results for 226 
at least 6 genes: (a) Mutation probability distribution for slides where each mutation is present 227 
and absent after tile aggregation done by averaging output probability. (b) ROC curves associated 228 
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with (a). (c) Allele frequency as a function of slides classified by the deep-learning network as 229 
having a certain gene mutation (P≥0.5), or the wild-type (P<0.5). p-values estimated with Mann-230 
Whitney U-test are shown as ns (p>0.05), * (p≤0.05), ** (p≤0.01) or *** (p≤0.001). 231 

 232 

Discussion 233 

The analysis of lung cancer slide images using the inception v3 convolutional neural network 234 

shows a clear improvement over classification techniques combining random forest classifiers, 235 

SVM or Naïve Bayes classifiers with conventional image processing tools7 (Figure 2g-h). For 236 

LUAD vs LUSC classification, while transfer learning outperforms this previous approach by about 237 

10% and another ~10% is gained by fully training the network, at the expense of a much longer 238 

training period. Finally, another ~2.8% is gained on cancer type classification when “normal” 239 

tissues are immediately considered and binary classification is replaced by a direct three-class 240 

analysis. This latest approach results in performances slightly better than those achieved by a 241 

specialist. It is interesting to notice that around a third of the slides misclassified by the algorithms 242 

have also been misclassified by the specialist, showing the intrinsic difficulty to distinguish LUAD 243 

from LUSC in some cases. However, 22 out of 26 of the slides misclassified by the specialist were 244 

assigned to the correct cancer type by the algorithm showing that it could be beneficial in assisting 245 

the specialist in their prognosis. As for classification of normal versus tumor cells, the classification 246 

is nearly unambiguous with CNN. Per-slide heat-maps (Figure 3) show that true positive tiles 247 

appear with a stronger probability when the network has been fully trained. For the LUAD sample, 248 

it also shows more consistency with tiles in the same adjacent regions being assigned similar 249 

probabilities while the bottom right side of the slide seems to contain less LUAD-like tumor cells 250 

according to the classification (Figure 3g) and is consistent with visual inspection of that region 251 

by a specialist. An example of the important features used for classification of individual is shown 252 

for LUAD (Figure 3f,i) and LUSC (Figure 3o,r). In both cases, the per-tile heat-map of the fully 253 

trained network shows a more varied gradient of colors while the tests done after transfer-learning 254 

shows more of a binary-like heat-map with regions either very yellow or very pink. The 255 
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development of appropriate tools for visualizing deep learning models will help in the future to 256 

better understand the features used by the classifier30.  In the current strategy, the only selection 257 

used for early tile removal is to make sure that there are enough information and the portion of 258 

background present is low. Afterwards, all the remaining tiles belonging to a given slide are used 259 

for training and all are associated with the label associated with it. This assumption gives good 260 

result since AUCs of 0.95 to 0.97 performance is achieved for LUSC vs LUAD, but it is unlikely 261 

that 100% of the tiles are indeed representative of the labelled cancer type. Oftentimes, the tumor 262 

is only local and some regions of the slides are not affected by the tumor. Performing an initial 263 

classification of “normal” vs “tumor” partially addresses this issue removing normal-like tiles. The 264 

fact that these are excisions of lung cancer, the tumor cells spread over the whole slide images 265 

available and not a small portion of which has clearly been beneficial for this classification. Finally, 266 

it is surprising to note the high AUCs achieved considering that several slides present artifacts 267 

inherent to freezing techniques used to prepare those samples. However, it should be noted that 268 

the available images may not fully represent the diversity that specialists have to deal with and it 269 

may be interesting in the future to assess how the network performs under the less than ideal 270 

circumstances that can occur (poor staining quality, focus not optimal or autofocus failure, lack of 271 

homogeneity in the illumination, etc). Before this study, it was a priori unclear if and how a given 272 

gene mutation would affect the pattern of tumor cells on a whole-slide image but the training of 273 

the network using mutated genes as a label lead to very promising prediction results for 6 genes: 274 

EGFR, STK11, FAT1, SETBP1, KRAS and TP53. STK11 mutation leads to the highest prediction 275 

rate with AUC above 0.85 using aggregation by averaging tile probabilities. Though the number 276 

of cases is low (44,000 tiles from 62 test slides), it is interesting to see that our training protocol 277 

gives non-random values for several genes, showing that mutation of these particular genes could 278 

be predicted from whole-slide images. Hopefully, these predictions will be confirmed once more 279 

data are made available. It means that those mutations somehow affect the way the tumor cells 280 

look like. Future work on deep-leaning models visualization tools 30 would help identifying those 281 
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features. These probabilities could be reflecting the percentage of cells effectively affected by the 282 

mutation, the allele frequency being significantly higher for at least 4 genes when they were 283 

predicted as mutated by the neural network (Figure 5c). Looking, for example, at the predictions 284 

done on the whole-slide image from Figure 3a, our process successfully identifies TP53 (allele 285 

frequency of 0.33) and STK11 (allele frequency of 0.33) are two gene most likely mutated (Figure 286 

supp 2a). The heatmap shows that almost all the LUAD tiles are highly predicted as showing 287 

TP53-mutatant-like features (Figure supp 2b), and two major regions with STK11-mutatant-like 288 

features (Figure supp 2c). Interestingly, when the classification is applied on all tiles, it shows 289 

that even tiles classified as LUSC present TP53 mutations (Figure supp 2d) while the STK11 290 

mutant is confined to the LUAD tiles (Figure supp 2e). These results are realistic since, as 291 

mentioned earlier, STK11 is a signature mutations of LUAD 29 while TP53 is more common in 292 

human cancers. Being able to predict gene mutations at this stage could be beneficial regarding 293 

the importance and impact of those mutations4,24-29. This study shows that using deep-learning 294 

convolutional neural networks for cancer analysis greatly improve the state-of-the-art automatic 295 

classification and could be a very promising tool to assist the specialist in their classification of 296 

whole-slide images of lung tissues. Histopathology slides are very large, they usually contain 297 

artifacts and be noisy with features of cancer type ambiguous, and making a prognosis manually 298 

based on every single region of it can be challenging. Those new techniques can efficiently 299 

highlight regions associated with a certain cancer type. Finally, we have shown for the first time 300 

the potential to use deep-learning on histopathology images to predict some gene mutations at 301 

an early stage.  302 

 303 

Methods 304 

The overall steps described in this section are summarized in Figure 1 and described in the 305 

following sections. 306 
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 307 

Dataset of 1,634 whole-slide images 308 

Our dataset comes from the NCI Genomic Data Commons31 which provides the research 309 

community with an online platform for uploading, searching, viewing and downloading cancer-310 

related data. All freely available slide images of Lung cancer were uploaded from this source. We 311 

studied the automatic classification of “solid tissue normal” and “primary tumor” slides using a set 312 

of respectively 459 and 1175 eosin stained histopathology whole-slide images. Then, the “primary 313 

tumor” were classified between LUAD and LUSC types using a set of respectively 567 and 608 314 

of those whole-slide images. 315 

 316 

Image pre-processing generates 987,931 tiles 317 

The slides were tiled in non-overlapping 512x512 pixel windows at a magnification of x20 using 318 

the openslide library32 (533 of the 2167 slides initially uploaded were removed because of 319 

compatibility and readability issues at this stage). The slides with a low amount of information 320 

were removed, that is all the tiles where more than 50% of the surface is covered by background 321 

(where all the values are below 220 in the RGB color space). This process generated nearly 322 

1,000,000 tiles.  323 

 324 

Table 2. Dataset information for normal vs tumor classification: number of tiles / slides in each 325 

category. 326 

 Training Validation Testing 

Normal 132,185 / 332   28,403 /   53   28,741 /   74 

Primary tumor 556,449 / 825 121,094 / 181 121,059 / 180 

 327 

 328 
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Table 3. Dataset information for LUAD vs LUSC classification: number of tiles / slides in each 329 

category. 330 

 Training Validation Testing 

LUAD 255,975 / 403 55,721 / 85 55,210 / 79 

LUSC 300,474 / 422 65,373 / 96 65,849 / 91 

 331 

 332 

Deep learning with Convolutional Neural Network 333 

We used 70% of those tiles for training, 15% for validation, and 15% for final testing (Table 2 and 334 

Table 3). The tiles associated with a given slide were not separated but associated as a whole to 335 

one of these sets to prevent overlaps between the three sets. Typical CNN consist of several 336 

levels of convolution filters, pooling layers and fully connected layers. We based our model on 337 

inception v3 architecture19. This architecture makes use of inception modules which are made of 338 

a variety of convolutions having different kernel sizes and a max pooling layer. The initial 5 339 

convolution nodes are combined with 2 max pooling operations and followed by 11 stacks of 340 

inception modules. The architecture ends with a fully connected and then a softmax output layer. 341 

For “normal” vs “tumor” tiles classification, we fully trained the entire network. For the classification 342 

of type of cancer, we followed and compared different approaches to achieve the classification: 343 

transfer learning, which includes training only the last fully-connected layer, and training the whole 344 

network. Tests were implemented using the Tensorflow library (tensorflow.org).  345 

 346 

Transfer learning on inception v3 347 

We initialized our network parameters to the best parameter set that was achieved on ImageNet 348 

competition. We then fine-tuned the parameters of the last layer of the network on our data via 349 

back propagation. The loss function was defined as the cross entropy between predicted 350 
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probability and the true class labels, and we used RMSProp33 optimization, with learning rate of 351 

0.1, weight decay of 0.9, momentum of 0.9, and epsilon of 1.0 method for training the weights. 352 

This strategy was tested for the binary classification of LUAD vs LUSC. 353 

 354 

Training the entire inception v3 network 355 

The inception v3 architecture was fully trained using our training datasets and following the 356 

procedure described in 34. Similar to transfer learning, we used back-propagation, cross entropy 357 

loss, and RMSProp optimization method, and we used the same hyperparameters as the transfer 358 

learning case, for the training. In this approach, instead of only optimizing the weights of the fully 359 

connected layer, we also optimized the parameters of previous layers, including all the 360 

convolution filters of all layers. This strategy was tested on three classifications: normal vs tumor, 361 

LUAD vs LUSC and Normal vs LUAD vs LUSC. The training jobs were run for 500,000 iterations. 362 

We computed the cross-entropy loss function on train and validation dataset, and used the model 363 

with best validation score as our final model. We did not tune the number of layers or hyper-364 

parameters of the inception network such as size of filters.  365 

 366 

Identification of gene mutations 367 

To study the prediction of gene mutations from histopathology images, we modified the inception 368 

v3 to perform multi-task classification rather than a single task classification. Each mutation 369 

classification was treated as a binary classification, and our formulation allowed multiple 370 

mutations to be assigned to a single tile. We optimized the average of the cross entropy of each 371 

individual classifier. To implement this method, we replaced the final softmax layer of the network 372 

with a sigmoid layer, to allow each sample to be associated with several  binary labels 35. We 373 

used RMSProp algorithm for the optimization, and fully trained this network for 500k iterations 374 

using only LUAD whole-slide images, each one associated with a 10-cell vector, each cell 375 
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associated to a mutation and set to 1 or 0 depending on the presence or absence of the mutation. 376 

Only the most common mutations were used (Table 4), leading to a training set of 223,185 tiles. 377 

Training and validation were done over 500,000 iterations (Figure supp 3). The test was then 378 

achieved on the tiles, and aggregation on the 62 test-slides where at least one of these mutations 379 

is present was done only if the tile was previously classified as “LUAD” by the Normal/LUAD/LUSC 380 

3-classes classifier.  381 

 382 

Table 4. Gene included in the multi-output classification and the percentage of patients with LUAD 383 

in the database where the genes are mutated. 384 

Gene 

mutated 
TP53 LRP1B KRAS KEAP1 FAT4 STK11 EGFR FAT1 NF1 SETBP1 

%Patients  50 34 28 18 16 15 12 11 11 11 

 385 

 386 

Results analysis 387 

Once the training phase was finished, the performance was evaluated using the testing dataset 388 

which is composed of tiles from slides not used during the training. We then aggregated the 389 

probabilities for each slide using two methods: either average of the probabilities of the 390 

corresponding tiles, or percentage of tiles positively classified. The ROC (Receiver Operating 391 

Characteristic) curves and the corresponding AUC (Area Under the Curve) were computed in 392 

each case. Tumor slides could contain a certain amount of “normal” tiles. Therefore, we also 393 

checked how the ROC & AUC were affected when tiles classified as “normal” were removed from 394 

the aggregation. Heat-maps were also generated for some tested slide to visualize the differences 395 

between the two approaches and identify the regions associated with a certain cancer type. To 396 

visualize the regions of a given tile which were important for the algorithm to take a decision, a 397 

rolling mask was applied to the tile. The masked tile was then fed to the network to analyze how 398 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 3, 2017. ; https://doi.org/10.1101/197574doi: bioRxiv preprint 

https://doi.org/10.1101/197574


the classification is affected. 128x128 pixel overlapping masks were generated over the whole tile 399 

with 87.5% overlapping between adjacent masks. 400 
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