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 15 

Abstract 16 

Large-scale human genetics studies are ascertaining increasing proportions of 17 

populations as they continue growing in both number and scale. As a result, the amount 18 

of cryptic relatedness within these study cohorts is growing rapidly and has significant 19 

implications on downstream analyses. We demonstrate this growth empirically among 20 

the first 92,455 exomes from the DiscovEHR cohort and, via a custom simulation 21 

framework we developed called SimProgeny, show that these measures are in-line with 22 

expectations given the underlying population and ascertainment approach. For example, 23 
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we identified ~66,000 close (first- and second-degree) relationships within DiscovEHR 1 

involving 55.6% of study participants. Our simulation results project that >70% of the 2 

cohort will be involved in these close relationships as DiscovEHR scales to 250,000 3 

recruited individuals. We reconstructed 12,574 pedigrees using these relationships 4 

(including 2,192 nuclear families) and leveraged them for multiple applications. The 5 

pedigrees substantially improved the phasing accuracy of 20,947 rare, deleterious 6 

compound heterozygous mutations. Reconstructed nuclear families were critical for 7 

identifying 3,415 de novo mutations in ~1,783 genes. Finally, we demonstrate the 8 

segregation of known and suspected disease-causing mutations through reconstructed 9 

pedigrees, including a tandem duplication in LDLR causing familial hypercholesterolemia. 10 

In summary, this work highlights the prevalence of cryptic relatedness expected among 11 

large healthcare population genomic studies and demonstrates several analyses that are 12 

uniquely enabled by large amounts of cryptic relatedness. 13 

 14 
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Introduction/Background 1 

The number and scale of large human sequencing projects is rapidly growing, 2 

including DiscovEHR1, UK Biobank2, the US government’s All of Us (part of the 3 

Precision Medicine Initiative)3, TOPMed (Web Resources), ExAC/gnomAD4, and many 4 

others. Many of these studies are collecting samples from integrated healthcare 5 

populations that have accompanying phenotype-rich electronic health records (EHRs) 6 

with a goal of combining the EHRs and genomic sequence data to catalyze translational 7 

discoveries and precision medicine1. These large-scale healthcare population-based 8 

genomic (HPG) studies are recruiting participants through healthcare systems where 9 

volunteers donate DNA and provide medically relevant metrics recorded in their EHRs. 10 

A major difference between the new HPG study design and traditional population-based 11 

studies is ascertainment, both in how participants are recruited and in the proportion of 12 

the population within in a geographical area that participates (Figure 1A). Traditionally, 13 

the high-expense of large-scale genetic studies and the limited resources of individual 14 

investigators has generated study populations exhibiting shallow ascertainment of 15 

individuals from a variety of geographical areas. To improve statistical power, samples 16 

from many different collection centers are combined into a larger cohort, and these 17 

cohorts are often merged into a much larger consortium consisting of tens to hundreds of 18 

thousands of individuals. While the total number of individuals sampled is often high, 19 

these studies typically only sample a relatively small portion of individuals in any given 20 

geographic area. In contrast, planned and on-going HPG studies are sampling tens to 21 

hundreds of thousands of participants from individual healthcare systems1.  22 
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The difference in these two ascertainment approaches results in different patterns of 1 

genetic relatedness among individuals in these cohorts. Relatedness is a continuum that 2 

manifests itself within a cohort in a variety of ways depending on the population and how 3 

individuals are sampled from it. Because traditional population-based studies have 4 

generally collected samples from multiple geographical areas, they most commonly 5 

exhibit the broadest “class” of relatedness: population structure. Population structure 6 

(often referred to as “substructure” or “stratification”) within a genetic study results from 7 

it containing different ancestral groups or “genetic demes” in which allele frequencies are 8 

more similar within genetic demes than between demes. Genetic demes arise due to 9 

more recent genetic isolation, drift, and migration patterns. Classic examples of 10 

homogenous genetic demes include founder populations such as the Ashkenazi Jewish5,6 11 

and Old Order Amish7, but they also occur at many levels of genetic isolation such as 12 

continental, sub-continental6,8,9, and even within the same urban community5,10. When 13 

genetic demes begin to mix, they create genetically admixed populations. Studies that 14 

contain an admixed population or more than one genetic deme are likely to contain 15 

population structure. Ascertainment of individuals within genetic demes can generate 16 

distant cryptic relatedness5,6, the second “class” of relatedness11, defined here as third- to 17 

ninth-degree relatives. These distant relatives are unlikely to be identifiable from the 18 

EHR but are important because usually one or more large segments of their genomes are 19 

identical-by-descent (IBD), depending on their degree of relatedness and the 20 

recombination and segregation of alleles12. Distant cryptic relatedness is usually limited 21 

in study cohorts built from small samplings of large populations, but the level of cryptic 22 

relatedness increases substantially as the effective population size decreases and the 23 
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sample size increases. Finally, unless designed to collect families, traditional population-1 

based studies typically have very little family structure: the third “class” of relatedness, 2 

consisting of first- and second-degree relationships2,4,13-15 (Figure 1B, C). 3 

In contrast, the HPG study design enriches for family structure in several ways. First, 4 

HPG studies heavily sample from specific healthcare system regions, and the number of 5 

pairs of related individuals ascertained increases combinatorially as more individuals are 6 

sampled from a single region (Figure 1A). Second, families who live in the same 7 

geographic area likely receive medical care from the same doctors at the same healthcare 8 

system due to referrals, shared insurance coverage, and convenience. Third, families who 9 

have visited a healthcare system for many years with multiple encounters will have 10 

extensive medical records, making them more likely to be included in a study compared 11 

to transient residents with brief medical records and fewer encounters. Both family 12 

structure and distant cryptic relatedness are more pronounced in populations with low 13 

migration rates5. Conversely, confounding population substructure may be less of a factor 14 

in HPG studies if the sampled healthcare system’s population is a single homogenous 15 

genetic deme1. As a result, we expect to see an enrichment of family structure in HPG 16 

studies compared to random ascertainment of a population. In this article, we focus on 17 

family structure and its prevalence in a HPG study using both simulated and real data. 18 

The increase in family structure within HPG studies has significant implications when 19 

choosing and executing downstream analyses and must be considered thoughtfully16-22. 20 

Some tools assume all individuals are unrelated (e.g. PCA), some effectively handle 21 

estimates of pairwise-wise relationships (e.g. linear mixed models), and others can 22 

directly leverage pedigree structures (e.g. linkage and TDT analyses). The following is a 23 
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description of some common analysis tools and their use cases based on the varying 1 

levels of family structure within large population-based datasets (Figure 1D). 2 

Removal of family structure (i.e. selectively excluding samples to eliminate 3 

relationships) is a viable option if a dataset has few closely related samples4,13-15 and if 4 

the size of the unrelated subset is acceptable for the statistical analysis being performed. 5 

For example, principal components (PCs) can be computed on an unrelated subset of the 6 

data, and then all samples can be projected onto these PCs1. A number of methods exist 7 

to compute the maximally sized unrelated set of individuals23,24. However, this strategy 8 

reduces the sample size and power while discarding potentially valuable relationship 9 

information. In practice, the degree of information loss is unacceptable for many analyses 10 

if the dataset has even a moderate level of family structure. 11 

Several statistical methods have been developed that explicitly model estimates of 12 

pairwise relationships. For example, mixed models provide better power for genome-13 

wide association studies and reduce type-one error compared to methods that do not 14 

model the confounding relatedness19,25-27, but mixed models become computationally 15 

expensive when applied at scale. Pairwise relationships can also be used in a pedigree-16 

free QTL linkage analysis28. Additional software packages exist that model population 17 

structure and family structure for pairwise relationship estimation (PCrelate)29 and 18 

principal component analysis (PC-AiR)30.  19 

Extensive family structure can be used to reconstruct informative pedigree structures 20 

directly from the genetic data with tools like PRIMUS31 and CLAPPER32, opening the 21 

door to a number of pedigree-based methods and analyses that are particularly useful for 22 

investigating the correlation between rare variation and disease33. Methods that use 23 
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pedigree structures to aid in identifying the genetic cause of a given phenotype typically 1 

involve innovative variations on association mapping, linkage analysis, or both, including 2 

MORGAN34, pVAAST17, FBAT (Web Resources), QTDT (Web Resources), 3 

ROADTRIPS35, rareIBD36, and RV-GDT37. The appropriate method to use depends on 4 

the phenotype, mode of inheritance, ancestral background, pedigree structure/size, 5 

number of pedigrees, and size of the unrelated dataset38. Genetically reconstructed 6 

pedigrees and estimated relationships can be used in a number of other ways beyond 7 

association analyses, including pedigree-aware imputation, pedigree-aware phasing, 8 

Mendelian error checking, compound heterozygous knockout detection, de novo mutation 9 

calling, empirical validation of variant calling methods, and rare variant family-based 10 

segregation analysis. 11 

We demonstrate the value of identifying family structure in a large clinical cohort as 12 

part of the DiscovEHR study. This cohort of 92,455 exomes originated from a 13 

collaborative, ongoing study by the Regeneron Genetics Center (RGC) and the Geisinger 14 

Health System (GHS) initiated in 20141.  DiscovEHR is a dense sample of patient-15 

participants from a single healthcare system that serves a largely rural population in 16 

central Pennsylvania with low migration rates. We identify a tremendous amount of 17 

family structure within the DiscovEHR cohort, and our simulations project that 70%-80% 18 

of the individuals in our sequenced cohort will have a first- or second-degree relative as 19 

we continue sequencing up to 250K individuals. This has significant implications on 20 

downstream analyses, but also affords us the opportunity to leverage the rich family 21 

structure through pedigree reconstruction, phasing compound heterozygous mutation 22 

(CHM), and detecting de novo mutations (DNM). 23 
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 1 

 2 

 3 

Figure 1. Ascertaining a high proportion of the population in a geographical area increases 4 

family structure and impacts statistical analysis approaches that should be used. (A) Traditional 5 

population-based studies (gray boxes) typically sample a small portion of individuals from 6 

several populations. HPG studies (green box) more densely sample individuals from one or more 7 
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populations. Family-based studies (yellow box) heavily sample within extended families, but do 1 

not sample nearly as many individuals as the other two study designs. (B) The three study designs 2 

result in very different levels of individuals with one or more close relatives in the dataset. (C) 3 

These three ascertainment approaches result in very different amounts of family structure. Red 4 

and blue lines indicate first- and second-degree pairwise relationships, respectively. HPG studies 5 

are expected to contain a level of family structure between the other two designs. (D) For this 6 

study, statistical analysis approaches were binned into four categories based on the level of 7 

family structure required to effectively use the approach (first column): “Linkage” refers to 8 

traditional linkage analyses using one or more informative pedigrees; “Pedigree-based analysis” 9 

refers to statistical methods beyond linkage that use pedigree structures within a larger cohort 10 

that includes unrelated individuals; “IBD modeling” refers to analysis that model the pairwise 11 

relationships between individuals without using the entire pedigree structure; “Analysis of 12 

Unrelateds” refers to analyses that assume all individuals in the cohort are unrelated. The 13 

amount of family structure impacts the approaches that can be used, and the arrows indicate the 14 

analysis ranges for which the three study designs are best suited. 15 

 16 

Subjects and Methods 17 

Patients and samples 18 

We sequenced the exomes of 93,368 de-identified patient-participants from the 19 

Geisinger Health System (GHS). Participants were consented into the MyCodeÒ 20 

Community Health Initiative38 and contributed DNA samples for genomic analysis as 21 

part of the Regeneron-GHS DiscovEHR collaboration1. Each patient has their exome 22 

linked to a corresponding de-identified electronic health record (EHR). A more detailed 23 

description of the first 50,726 sequenced individuals has been previously published1,39. 24 
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 The DiscovEHR Study did not specifically target families to participate in the 1 

study, but implicitly enriched for adults with chronic health problems who interact 2 

frequently with the healthcare system (and may be related to each other), as well as 3 

participants from the Coronary Catheterization Laboratory and the Bariatric Service from 4 

GHS. 5 

Sample preparation, sequencing, variant calling, and sample QC 6 

 Sample prep and sequencing for the first ~61K samples have been previously 7 

described1 and this set of samples are referred to in this manuscript as the “VCRome set”. 8 

The remaining set of ~31K samples were prepared in the same process, except in place of 9 

the NimbleGen probed capture we used a slightly modified version of IDT’s xGen probes; 10 

supplemental probes were added to capture regions of the genome well-covered by the 11 

NimbleGen VCRome capture reagent but poorly covered by the standard xGen 12 

probes. Captured fragments were bound to streptavidin-conjugated beads and non-13 

specific DNA fragments were removed by a series of stringent washes according to the 14 

manufacturer’s recommended protocol (IDT). We refer to this second set of samples as 15 

the “xGen set”. Variant calls were produced using the Genome Analysis Toolkit (GATK; 16 

Web Resources). GATK was used to conduct local realignment of the aligned, duplicate-17 

marked reads of each sample around putative indels. GATK’s HaplotypeCaller was then 18 

used to process the INDEL-realigned, duplicate-marked reads to identify all exonic 19 

positions at which a sample varied from the genome reference in the genomic VCF 20 

format (GVCF). Genotyping was accomplished using GATK’s GenotypeGVCFs on each 21 

sample and a training set of 50 randomly selected samples outputting a single- sample 22 

VCF file identifying both SNVs and indels as compared to the reference. The single 23 
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sample VCF files were used to create a pseudo-sample that contained all variable sites 1 

from the single sample VCF files in both sets. Independent pVCF files were created for 2 

the VCRome set by joint calling 200 single-sample gVCF files with the pseudo-sample to 3 

force a call or no-call for each sample at all variable sites across the two capture sets. All 4 

200-sample pVCF files were combined to create the VCRome pVCF file. This process 5 

was repeated to create the xGen pVCF file. The VCRome and xGen pVCF files were 6 

then combined to create the union pVCF. We aligned sequence reads to GRCh38 and 7 

annotated variants using Ensembl 85 gene definitions. We restricted the gene definitions 8 

to 54,214 transcripts that are protein-coding with an annotated start and stop, 9 

corresponding to 19,467 genes. After the previously described sample QC process, 10 

92,455 exomes remained for analysis.  11 

 12 

Principal components and ancestry estimation 13 

 We used PLINKv1.924 to merge the union datasets with HapMap340 and kept only 14 

SNPs that were in both datasets based on rsID. We also applied the following PLINK 15 

filters: --maf 0.1 --geno 0.05 --snps-only --hwe 0.00001 to obtain a set of high-quality 16 

common variants. We calculated principal component (PC) analysis for the HapMap3 17 

samples and then projected each sample in our dataset onto those PCs using PLINK. We 18 

used the PCs for the HapMap3 samples to train a kernel density estimator (KDE) for each 19 

of the five ancestral super classes: African (AFR), admixed American (AMR), east Asian 20 

(EAS), European (EUR), and south Asian (SAS). We used the KDEs to calculate the 21 

likelihood that each sample belongs to each of the super classes. For each sample, we 22 

assigned the ancestral superclass based on the likelihoods. If a sample has two ancestral 23 
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groups with a likelihood > 0.3, then we assigned AFR over EUR, AMR over EUR, AMR 1 

over EAS, SAS over EUR, AMR over AFR; otherwise “UNKNOWN” (this was done to 2 

provide stringent estimates of the EUR and EAS populations and inclusive estimates for 3 

the more admixed populations in our dataset). If zero or more than two ancestral groups 4 

had a high enough likelihood, then the sample was assigned “UNKNOWN” for ancestry. 5 

Samples with unknown ancestry were excluded from the ancestry-based identity-by-6 

descent (IBD) calculations. 7 

  8 

IBD estimation 9 

Genome-wide identity-by-descent (IBD) estimates are a metric to quantify the 10 

level of relatedness between pairs of individuals28. We applied the same Hardy-Weinberg 11 

equilibrium, minor allele frequency, and variant level missingness that we applied during 12 

the PCA analysis. Next, we used a two-pronged approach to obtain accurate IBD 13 

estimates from the DiscovEHR cohort exomes. First, we calculated IBD estimates among 14 

individuals within the same ancestral superclass (e.g. AMR, AFR, EAS, EUR, and SAS) 15 

as determined from our ancestry analysis. We used the following PLINK flags to obtain 16 

IBD estimates out to second-degree relationships: --genome --min 0.1875. This allows 17 

for more accurate relationship estimates because all samples share similar ancestral 18 

alleles; however, this approach is unable to predict relationships between individuals with 19 

different ancestral backgrounds, e.g. a child of a European father and Asian mother.  20 

Second, in order to catch the first-degree relationships between individuals with 21 

different ancestries, we calculated IBD estimates among all individuals using the --min 22 

0.3 PLINK option. We then grouped individuals into first-degree family networks where 23 
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network nodes are individuals and edges are first-degree relationships. We ran each first-1 

degree family network through the prePRIMUS pipeline31, which matches the ancestries 2 

of the samples to appropriate ancestral minor allele frequencies to improve IBD 3 

estimation. This process accurately estimates first- and second-degree relationships 4 

among individuals within each family network (minimum PI_HAT of 0.15). 5 

Finally, we combined the IBD estimates from the two previously described 6 

approaches by adding in any missing relationships from family network derived IBD 7 

estimates to the ancestry-based IBD estimates. This approach resulted in accurate IBD 8 

estimates out to second-degree relationships among all samples of similar ancestry and 9 

first-degree relationships among all samples.  10 

IBD proportions for third-degree relatives are challenging to accurately estimate 11 

from large exome sequencing dataset with diverse ancestral backgrounds because the 12 

analysis often results in an excess number of predicted 3rd degree relationships due to 13 

artificially inflated IBD estimates. We used a --min 0.09875 cutoff during the ancestry 14 

specific IBD analysis to get a sense of how many third-degree relationships we may have 15 

in the DiscovEHR cohort, but these were not used in any of the phasing or pedigree-16 

based analyses. Rather for the relationships-based analyses reported in this paper, we 17 

only used high-confidence third-degree relationships we identified within first- and 18 

second-degree family networks. 19 

During QC prior to creating the final set of 92,455 individuals, we removed all 20 

identical pairs of samples (PI_HAT > 0.9) unless GHS was able to find evidence through 21 

a chart review that the two corresponding individuals appear to be different people, share 22 
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the same birthdate, and had one or more additional pieces of information that they were 1 

related (e.g. same last name, shared parent, same address, or listed the other as a relative). 2 

 3 

Pedigree reconstruction 4 

 We reconstructed all first-degree family networks identified within the 5 

DiscovEHR cohort with PRIMUSv1.9.031. The combined IBD estimates were provided 6 

to PRIMUS along with the genetically derived sex and EHR reported age. We specified a 7 

relatedness cutoff of PI_HAT > 0.375 to limit the reconstruction to first-degree family 8 

networks, and a minimum cutoff of 0.1875 to define second-degree networks. 9 

 10 

Allele-frequency-based phasing 11 

 We phased all bi-allelic variants from the VCRome and xGen exome datasets 12 

separately using EAGLEv2.341. In order to parallelize our analysis, we divided the 13 

genome into overlapping segments of ~40K variants with a minimum overlap of 500 14 

variants and 250K base-pairs. Since our goal was to phase putative compound 15 

heterozygous mutations within genes, we took care to have the segment break points 16 

occur in intergenic regions.  17 

We used the UCSC LiftOver program to lift-over EAGLE’s provided 18 

genetic_map_hg19.txt.gz file from hg19 to GRCh38 and removed all variants that 19 

switched chromosomes or changed relative order within a chromosome resulting in the 20 

cM position to not be increasing when sorting on increasing chromosome position. In 21 

most cases, this QC step removed inversions around centromeres. We also removed all 22 

SNPs that mapped to an alternate chromosome. In total, only 2,783 of the 3.3 million 23 
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SNPs were removed from the genetic map file. We provided the data for each segment to 1 

EAGLE as PLINK formatted files and ran it on DNAnexus with the following EAGLE 2 

command line parameters: 3 

--geneticMapFile=genetic_map_hg19_withX.txt.GRCh38_liftover.txt.gz 4 

--maxMissingPerIndiv 1 5 

--genoErrProb 0.01 6 

--numThreads=16 7 

 8 

Compound heterozygous calling 9 

 Our goal was to obtain high confidence compound heterozygous mutation (CHM) 10 

calls of putative loss-of-function (pLoF) variants to identify humans with both copies of 11 

genes potentially knocked out or disrupted. We classify variants as pLoFs if they result in 12 

a frameshift, stop codon gain, stop codon loss, start codon gain, start codon loss, or 13 

splicing acceptor or donor altering variant. We created a second, expanded set of 14 

potentially harmful variants that included the pLOFs as well as likely disruptive missense 15 

variants, which are variants predicted to be deleterious by all five of the following 16 

methods: SIFT41 (damaging), PolyPhen2 HDIV42 (damaging and possibly damaging), 17 

PolyPhen2 HVAR (damaging and possibly damaging), LRT43 (deleterious), and 18 

MutationTaster44 (disease causing automatic and disease causing). 19 

 We identified rare (alternate allele frequency < 1%) potential compound 20 

heterozygous mutations (pCHMs) by testing all possible combinations of heterozygous 21 

pLoFs and/or deleterious missense variants within a gene of the same person. We 22 

excluded all variants that were out of Hardy-Weinberg equilibrium (p-value < 10-15 23 
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calculated with PLINKv1.924), that exceeded 10% missingness within the individuals 1 

capture specific dataset (i.e. VCRome or xGen sets), or that had another variant within 10 2 

base-pairs in the same individual. We also excluded SNPs with quality by depth (QD) < 3, 3 

alternate allele balance (AB) < 15%, and read depth < 7, and we excluded indels with QD 4 

< 5, AB < 20%, and read depth < 10. After filtering, we had 57,355 high-quality pCHMs 5 

distributed among 36,739 individuals that could knockout or disrupt the function of both 6 

copies of a person’s gene if the pCHM variants are phased in trans. 7 

 The next step was to phase the pCHMs. We used a combination of population 8 

allele-frequency-based phasing with EAGLE and pedigree/relationship-based phasing to 9 

determine if the pCHMs were in cis or trans. Figure 2 diagrams the pCHM phasing 10 

workflow we employed to obtain the most accurate phasing for each pCHM. Trios and 11 

relationships with individuals in both the VCRome and xGen datasets were used only if 12 

both variants in the pCHM were on both the VCRome and our modified xGen capture 13 

designs. Trio and relationship phasing proved to be more accurate than EAGLE phasing 14 

(Table S1), so we preferentially used the pedigree and relationship data for phasing. 15 

Table S2 describes our logic used to determine phase of the pCHMs for the different 16 

types of familial relationships. For all remaining pCHMs, we used the EAGLE phased 17 

data described above. We excluded any EAGLE phased pCHM where one or both of the 18 

variants was a singleton because EAGLE phasing accuracy with singletons was not 19 

significantly different than random guessing (Table S3). We found that if the two variants 20 

in the pCHM have the same minor allele count (MAC) less than 100, then they are in cis 21 

(22 out of 22 occurrences in child of trios) in our dataset.  22 
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We used the trio-phased pCHMs as the truth set to evaluate the overall phasing 1 

accuracy of EAGLE. However, if we included the parents of the children of trios in the 2 

EAGLE phasing dataset, then EAGLE will use their haplotypes to more accurately phase 3 

the children’s variants. Having the parental haplotypes in the dataset improves the 4 

phasing accuracy of the children’s pCHMs but does not provide an accurate estimate of 5 

phasing accuracy across the entire dataset. To obtain a good measure of accuracy for the 6 

EAGLE pCHM phasing across the entire cohort, we reran EAGLE on the entire dataset 7 

as before but excluded all first-degree relatives of one child in each nuclear family before 8 

phasing. We then compared the EAGLE phased pCHMs to the trio-phased pCHMs to 9 

estimate the overall EAGLE phasing accuracy. 10 

Finally, if there were more than one pCHM within the same gene of an individual, 11 

then only the pCHM with the most deleterious profile was retained (Table S4). Using the 12 

approach outlined above, we were able to phase >99% of all pCHMs, and identify 20,947 13 

rare compound heterozygous mutations (CHMs) that are predicted to be function altering. 14 
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 1 

Figure 2. Decision cascade for determining the phase of potential compound heterozygous 2 

mutations (pCHMs) among the 92K DiscovEHR participants. 25.1% of pCHMs and 33.8% of the 3 

CHMs (trans) were phased with trios or relationships data.  4 

 5 

Compound heterozygous mutation validation 6 

 We evaluated phasing accuracy by comparing phasing predictions to phasing 7 

done with trios and with Illumina reads. We performed Sanger validation on a subset of 8 

the incorrectly phased pCHMs to see if the variants were false positive calls. 9 

First, phasing accuracy of the pCHMs was evaluated by using the trio phased 10 

pCHMs as truth. Since the phasing approach of each familial relationship is performed 11 

independently from the trio phasing, we can get a good measure of phasing accuracy of 12 

each of the relationship classes as long as the pCHM carrier is a child in a trio. Table S1 13 

shows that the accuracy of family-based phasing was 99.6% (1060/1064 pCHMs) for rare 14 
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pCHMs. EAGLE phasing was less accurate at 89.1% (766/860 pCHMs; Table S1). We 1 

evaluated the accuracy of EAGLE at phasing pCHMs in different minor allele frequency 2 

ranges, and found that it consistently attains an accuracy greater than 90% with a MAC 3 

greater than 9 and ~77% for a MAC between 2-9 (Table S3). EAGLE phasing performed 4 

poorly with singletons. 5 

Second, we attempted to validate 200 pCHMs with short Illumina reads (~75 bp) 6 

by looking at the read stacks in the Integrative Genomics Viewer (IGV)45 to see if the two 7 

variants occur on the same read or independently. We were able to decisively phase 190 8 

(115 cis and 79 trans; 126 EAGLE phased and 74 pedigree/relationship phased) selected 9 

pCHMs using short reads. The remaining ten showed read evidence of both cis and trans 10 

phasing, most likely due to one or both of the variants being a false positive call. Visual 11 

validation showed an overall accuracy of 95.8% and 89.9% for pedigree/relationships and 12 

EAGLE phasing, respectively (Table S5). While the Illumina read-based validation 13 

results are in line with the trio validation results, we do note that the Illumina read-based 14 

validation accuracy results are lower than the phasing accuracy determined by phasing 15 

with trios. The difference is likely due to the enrichment for false positive pCHMs in 16 

small problematic regions of exons prone to sequencing and variant calling errors.  17 

 18 

19 
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De novo mutation (DNM) detection 1 

We merged the results from two different approaches for detecting DNMs. The first 2 

method is TrioDeNovo46, which reads in the child’s and parents’ genotype likelihoods at 3 

each of the child’s variable sites. These likelihoods are input into a Bayesian framework 4 

to calculate a posterior likelihood that a child’s variant is a DNM. The second program is 5 

DeNovoCheck (Web Resources), which is described in the supplemental methods of de 6 

Ligt, et al.47. DeNovoCheck takes in a set of candidate DNMs identified as being called 7 

in the child and not in either parent. It then verifies the presence of the variant in the child 8 

and absence in both of the parents by examining the BAM files. We filter these potential 9 

DNMs and evaluate a confidence level for each DNM in the union set using a variety of 10 

QC metrics. Figure S1 illustrates this DNM calling process, shows the variant filters we 11 

applied, and provides the criteria we used to classify each DNM as either low-confidence, 12 

moderate-confidence, or high-confidence. We excluded all low-confidence and non-13 

exonic DNMs from the summary results of this paper, but we considered them when 14 

doing visual validation to estimate the false negative rate of excluding them. We also 15 

excluded the DNM calls for one extreme outlying participant who had an order of 16 

magnitude more DNMs called than any other sample. 17 

 18 

LDLR tandem duplication distant pedigree estimation 19 

Although we cannot know the true family history of the de-identified individuals 20 

in our cohort, we have used PRIMUS31 reconstructed pedigrees, ERSA12 distant 21 

relationship estimate, and PADRE48 to connect the pedigrees to identify the best pedigree 22 

representation of the mutation carriers of a novel tandem duplication in LDLR49. We used 23 
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HumanOmniExpress array data (available for 25 out of the 37 carriers) to estimate the 1 

more distant relationships and used the method as described in the PADRE to connected 2 

the PRIMUS reconstructed pedigrees.  3 

 4 

SimProgeny  5 

 We developed a forward simulation framework (SimProgeny) to simulate a wide 6 

variety of populations, including a population served by a healthcare system like GHS. 7 

SimProgeny also simulates sample ascertainment used by HPG studies (Figure S2). 8 

SimProgeny can simulate populations of millions of people dispersed across one or more 9 

sub-populations based on user specified population parameters (Table S6). The 10 

simulation progresses year-to-year simulating couplings, births, separations, migrations, 11 

deaths, and movement between sub-populations based on specified parameters. This 12 

process generates realistic pedigree structures and populations that represent a wide 13 

variety of HPG studies. The default values have been tuned to model the DiscovEHR 14 

cohort, but these parameters can be easily customized to model different populations by 15 

modifying the configuration file included with the SimProgeny code available at (Web 16 

Resources). See Supplemental Methods for a detailed description of SimProgeny.  17 

In addition to modeling populations, SimProgeny simulates two ascertainment 18 

approaches to model selecting individuals from a population for a genetic study: random 19 

ascertainment and clustered sampling. Random ascertainment gives each individual in the 20 

population an equal chance of being ascertained without replacement. Clustered sampling 21 

is an approach to enrich for close relatives, and it is done by selecting an individual at 22 

random along with a number of their first- and second-degree relatives. The number of 23 
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first-degree relatives is determined by sampling a value from a Poisson distribution with 1 

a user specified first-degree ascertainment lambda (default is 0.2). The number of second-2 

degree relatives is determined in the same way and the default second-degree 3 

ascertainment lambda is 0.03. See Supplemental Methods for additional information on 4 

SimProgeny’s ascertainment options. 5 

 6 

Simulation of the underlying DiscovEHR population and its ascertainment 7 

Our DiscovEHR simulations contained individual populations with starting sizes of 8 

200K, 300K, 350K, 400K,475K, 500K, and 550K. We tuned the SimProgeny parameters 9 

(Table S6) with publically available country, state, and county level data as well as our 10 

own understanding of how individuals were ascertained through GHS consenting and 11 

sample collection. Sources for the selected parameters are available in supplemental file 12 

Simulation_parameters.xls. We reduced the immigration and emigration rates from the 13 

state-wide Pennsylvania (PA) average given that GHS primarily serves rural areas that 14 

tend to have lower migration rates than more urban areas. Simulations were run with a 15 

burn-in period of 120 years and then progressed for 101 years. Simulated populations 16 

grew by ~15%, which is similar to the growth of PA since the mid-20th century. 17 

We performed both random and clustered ascertainment. For both ascertainment 18 

approaches, we shuffled the ascertainment order of the first 5% of the population 19 

(specified with the ordered_sampling_proportion parameter) to model the random 20 

sequencing order of the individuals in GHS biobank at the beginning of our collaboration. 21 

While the selection of this parameter has no effect on random ascertainment and a 22 

negligible effect on the accumulation of pairwise relationships in clustered ascertainment, 23 
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it does affect the proportion of individuals with one or more relatives in the clustered 1 

sampling dataset by creating an inflection point at 5% population ascertainment in the 2 

simulation results plots (Figure S3B, D). This inflection point would be less pronounced 3 

if we were to model the freeze process of the real data or model a smoother transition 4 

between sequencing samples from the biobank and newly ascertained individuals. 5 

Notably, the inflection point is more pronounced with higher values of lambda from the 6 

Poisson distribution. 7 

 8 

 9 

Results 10 

Relationship estimation and relatedness in DiscovEHR 11 

In the current dataset of 92,455 individuals, we identified 43 monozygotic twins, 12 

16,476 parent-child relationships, 10,479 full-sibling relationships, and ~39,000 second-13 

degree relationships (Figure 3A). Next, we treated individuals as nodes and relationships 14 

as edges to generate undirected graphs. Using only first-degree relationships, we 15 

identified 7,684 connected components, which we refer to as first-degree family networks. 16 

Figure 3B shows the distribution in size of the first-degree family networks, which range 17 

from 2 to 25 sequenced individuals. Similarly, we found 10,173 second-degree family 18 

networks; the largest containing 19,968 individuals (~22% of the overall dataset; Figure 19 

3C). We were able to identify ~5,300 third-degree relationships within the second-degree 20 

family networks. Using a lower IBD cutoff (PI_HAT > 0.09875) for the IBD estimations 21 

within ancestral groups without consideration of second-degree family networks, we 22 

found well over 100,000 third-degree relationships within the DiscovEHR cohort. Given 23 
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that 95.9% of DiscovEHR individuals are of European ancestry (Table S7), it is not 1 

surprising that the vast majority (98.6%) of the pairwise relationships found are between 2 

two individuals of European ancestry (Table S8). Nonetheless, we identified many 3 

relationships between people of the same, non-European ancestry and between 4 

individuals with different ancestries; for example, there are several trios having one 5 

European parent, one East Asian parent, and a child whose ancestry is unassigned to a 6 

super-population given the ad-mixed nature of his/her genome. 7 

 Importantly, we show both empirically (Figure 4A) and through simulation 8 

(Figure 5) that the rate of accumulating relatives far exceeds the rate of ascertaining 9 

samples. This is expected since there are combinatorially increasing numbers of possible 10 

pairwise relationships within the dataset as the size increases, and the likelihood that a 11 

previously unrelated individual in the dataset becomes involved in a newly identified 12 

relationship also increases. Currently, 39% of individuals in the DiscovEHR cohort have 13 

at least one first-degree relative in the dataset, and 56% of the participants have one or 14 

more first- or second-degree relatives in the dataset (Figure 4B).  15 

 16 

 17 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2017. ; https://doi.org/10.1101/197889doi: bioRxiv preprint 

https://doi.org/10.1101/197889
http://creativecommons.org/licenses/by-nc-nd/4.0/


 1 

Figure 3. First 92K sequenced individuals from the DiscovEHR cohort contain an extensive 2 

amount of relatedness. (A) IBD0 vs IBD1 plot shows pairwise relationships segregating into 3 

different familial relationship classes. The IBD sharing distributions of second- and third-degree 4 

relationships overlap with each other, so a hard cutoff halfway between the two expected means 5 

was selected. (B) The distribution of size of first-degree family networks ranges between 2 and 34 6 
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sequenced individuals, with a vast majority of smaller family networks. (C) More than 99.98% of 1 

the first-degree family networks’ pedigree structures were reconstructed using the pairwise-IBD 2 

estimates, including this pedigree of 34 sequenced individuals. (D) The largest second-degree 3 

family network of 19,968 (~22% of the dataset) shows 4,062 first-degree family networks (red 4 

boxes proportionally sized to the number of individuals in the network; including the pedigree 5 

shown in C) and 5,584 additional individuals (black nodes) connected by 11,430 second-degree 6 

relationships (blue edges). *Third-degree relationships are challenging to accurately estimate 7 

due to technical limitations of exome data as well as the widening and overlapping variation 8 

around the expected mean IBD proportions of more distant relationship classes (e.g. fourth-9 

degree and fifth degree). We provided a lower bound estimate of the number of third-degree 10 

relationships. 11 

  12 

 13 

 14 

Figure 4. Accumulation of relatedness within the DiscovEHR cohort at consecutive data freezes. 15 

A) The number of pairwise relationships has grown rapidly. B) The proportion of individuals in 16 

the cohort having a first- or second-degree relative identified in the cohort. 17 

18 
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 Simulations with SimProgeny and relatedness projections 1 

Prior to the launch of the DiscovEHR collaboration, it was unclear how much 2 

relatedness we should expect to see and whether it would follow the levels of relatedness 3 

seen in previous population-based genomic studies. However, it became clear early on 4 

that the cohort contained far more family structure than typically seen in population-5 

based studies, and projections estimated that the proportion of the cohort involved in 6 

close relationships would eventually involve the majority of our dataset. Given the 7 

impact of this relatedness on downstream analyses, we set out to determine whether this 8 

amount of relatedness is expected, whether it is unique to our dataset, and how much it 9 

would grow as the sequenced cohort expands. 10 

To answer these questions, we developed a flexible simulation framework 11 

(SimProgeny) to model a wide variety of study populations and sampling approaches to 12 

estimate the amount of relatedness researchers should expect to find for a given set of 13 

populations and sampling parameters. While we apply this framework to the DiscovEHR 14 

cohort, it is flexible enough that it also can be applied to modeling shallower 15 

ascertainment of more transient populations. 16 

We used SimProgeny to simulate the DiscovEHR population and the ascertainment of 17 

the first 92,455 participants. As expected, the simulations show that DiscovEHR 18 

participants were not randomly sampled from the population, but rather the dataset is 19 

enriched for close relatives (Figure S4). Therefore, we used a clustered ascertainment 20 

approach (see Methods) that more accurately models ascertainment from a healthcare 21 

system study population and the subsequent enrichment of close relatives observed in the 22 

real data (Figure 5). These simulation results suggest that the effective population size for 23 
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the first 60K participants was ~475K individuals, and a Poisson distribution having 1 

lambda of 0.2 most closely matches the enrichment of first-degree relatives. However, 2 

the departure of the real data line (Figure 4, faint red line) from the ~475K simulation 3 

line (solid green line) at 90K ascertained samples suggests that the DiscovEHR cohort’s 4 

effective population size may have increased after ascertaining the first 60K samples. 5 

These estimates are consistent with our knowledge that the majority of the first 30K-60K 6 

DiscovEHR participants reside in the counties surrounding the GHS headquarters in 7 

Danville, and the participant base subsequently expanded to more heavily include pockets 8 

of individuals from north-central and northeast rural Pennsylvania (Figure S5). Most 9 

notably, ascertainment was not evenly distributed across the entire GHS catchment area 10 

(>2.5 million individuals). 11 

After identifying simulation parameters that reasonably fit the real data, we used 12 

SimProgeny to obtain a projection of the amount of first degree relationships we should 13 

expect as DiscovEHR expands to our goal of 250K participants. If we continue to 14 

ascertain participants in the same way, we expect to obtain ~150K first-degree 15 

relationships (Figure 5C) involving ~60% of DiscovEHR participants (Figure 5D). We 16 

then expanded our simulation analysis to include second-degree relationships, and the 17 

simulation results suggest that with 250K participants we should expect well over 200K 18 

combined first- and second-degree relationships involving over 70% of the individuals in 19 

DiscovEHR (Figure S3). 20 

These projections of relatedness in DiscovEHR assume that we continue ascertaining 21 

participants in the same way we did for the first 60K-90K participants. However, if 22 

DiscovEHR expands ascertainment of participants to additional GHS clinics and 23 
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hospitals in other regions, then these relatedness estimates are likely to drop, because 1 

expanding the participant base increases the size of the effective sampling population and 2 

taps into new genetic demes or distant branches of the same demes. The level of the 3 

relatedness will depend on the proportion of the total population we ascertain and the 4 

underlying population demographics of the regions, both of which can be simulated with 5 

SimProgeny. 6 

While SimProgeny is designed to reasonably model a real population, it has its 7 

limitations. For example, the Poisson distribution accurately models the clustered 8 

sampling of first-degree relationships we observe in our real data, but it underestimates 9 

the clustering of second-degree relationships compared to what is observed in 10 

DiscovEHR. Thus, there are bound to be nuances that cannot be easily modeled with a 11 

fixed distribution, and there are likely to be other confounding aspects to how participants 12 

were ascertained in the real dataset. 13 

Regardless, our simulation results demonstrate a clear enrichment of relatedness in 14 

the DiscovEHR HPG study as well as provide key insights into the tremendous amount of 15 

relatedness we expect to see as we continue to ascertain additional participants, assuming 16 

future ascertainment is reasonably well modeled by SimProgeny. These observations can 17 

also be extrapolated to other large HPG studies, and the flexibility built into the model 18 

provides the ability to tune the model to a wide variety of different populations and 19 

ascertainment approaches. 20 

 21 
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 1 

Figure 5. Simulated population and ascertainment fit to the accumulation of first-degree 2 

relatedness in the DiscovEHR cohort. The real data was calculated at periodic “freezes” 3 

indicated with the punctuation points connected by the faint red line. Most simulation parameters 4 

were set based on information about the real population demographics and the DiscovEHR 5 

ascertainment approach. However, two parameters were unknown and selected based on fit to 6 

the real data: 1. the effective population size from which samples were ascertained and 2. the 7 

increased chance that someone is ascertained given a first-degree relative previously ascertained, 8 

which we call “clustered ascertainment”. All panels show the same three simulated population 9 
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sizes spanning the estimated effective population size. We simulated clustered ascertainment by 1 

randomly ascertaining an individual along with a Poisson-distributed random number of 1st 2 

degree relatives (distributions’ lambdas are indicated in the legends). (A) The accumulation of 3 

pairs of first-degree relatives as additional samples are ascertained. (B) The proportion of the 4 

ascertained participants that have one or more first-degree relatives that have also been 5 

ascertained. (C) Simulated ascertainment projections with upper and lower bounds of the number 6 

of first-degree relationships we expect with our current DiscovEHR ascertainment approach as 7 

we scale to our goal of 250K participants. (D) Simulated projections with upper and lower 8 

bounds of the proportion of the ascertained participants that have 1 or more first-degree relatives 9 

that have also been ascertained. 10 

 11 

Leveraging relatedness instead of treating it like a nuisance 12 

We have reconstructed pedigree structures for 12,574 first-degree family networks in 13 

the DiscovEHR data set using the pedigree reconstruction tool PRIMUS31, and found that 14 

98.9% of these pedigrees reconstructed unambiguously to a single pedigree structure 15 

when considering IBD estimates and reported participant ages. These pedigrees include 16 

2,192 nuclear families (1,841 trios, 297 quartets, 50 quintets, 3 sextets, and 1 septet). 17 

Table S9 shows a breakdown of the trios by ancestry. Figure 3C shows the largest first-18 

degree pedigrees, which contains 34 sequenced individuals. We have used these 19 

relationships and pedigrees in several ways, and we highlight three main applications in 20 

this section.  21 

 22 

 23 

 24 
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Compound Heterozygous mutations 1 

A major goal of human genetics is to better understand the function of every gene in 2 

the human genome. Homozygous loss-of-function mutations (LoFs) are a powerful tool 3 

to gain insight into gene function by analyzing the phenotypic effects of these “human 4 

knockouts” (KOs). Rare (MAF < 1%) homozygous LoFs have been highlighted in recent 5 

large-scale sequencing studies and have been critical in identifying many gene-phenotype 6 

interactions1,4,50,51. While rare compound heterozygous mutations (CHMs) of two 7 

heterozygous LoFs are functionally equivalent to rare homozygous KOs, they are more 8 

difficult to identify (particularly with short-read sequencing) and are rarely interrogated 9 

in large sequencing studies1,4,50. 10 

We performed a survey of rare CHMs in the DiscovEHR cohort. First, we identified 11 

57,355 high-quality potential CHMs (pCHMs) consisting of pairs of rare heterozygous 12 

variants that are either putative LoFs (pLoF, i.e., nonsense, frameshift, or splice-site 13 

mutations) or missense variants with strong evidence of being deleterious (see Methods). 14 

Second, we phased the pCHMs using a combination of allele-frequency-based phasing 15 

using EAGLE and pedigree-based phasing using the reconstructed pedigrees and 16 

relationship data (Figure 2). EAGLE phased the pCHMs with an average of 89.1% 17 

accuracy based on trio validation (Table S1). However, because we had extensive 18 

pedigree and relationship data within this cohort, we were able to use it to phase 25.2% of 19 

the pCHMs and 33.8% of the trans CHMs with highly accurate trio and relationship 20 

phasing data (>98.0%; Table S1), reducing inaccurate phasing of trans CHMs by 21 

approximately a third. The phased pCHMs spanned the entire frequency range from 22 

singletons to 1% MAF (Table S10). 23 
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After processing, 40.3% of the pCHMs were phased in trans, yielding a high-1 

confidence set of 20,947 rare, deleterious CHMs distributed among 17,533 of the 92K 2 

individuals (mean = 0.23 per person; max = 10 per person; Figure 6A). The median 3 

genomic distance between pCHM variants in cis (5,955 bps) was a little more than half 4 

the median distance between the pCHMs variants in trans (11,600 bps; Figure S6). 5 

Nearly a third of the CHMs involved at least one pLoF and 8.9% of the of CHMs 6 

consisted of two pLoF variants (Table S11). Over 4,216 of the 19,467 targeted genes 7 

contain one or more CHM carriers (Table S12), and 2,468 have more than one carrier 8 

(Figure 6B). The ten genes with more than 125 CHM carriers are estimated to be among 9 

the most LoF tolerant in the genome based on ExAC pLI scores4 (Table S13), so it is no 10 

surprise that these genes would contain a higher number of CHMs. 11 

In order to get a more robust set of human knockout genes and demonstrate the added 12 

value of CHMs, we combined the CHMs with the 6,560 rare (MAF < 1%) homozygous 13 

pLoFs found among the 92K DiscovEHR participants. pLoF-pLoF CHMs increased the 14 

number of genes with >1 and >20 individuals with a putative KO by 15% and 61%, 15 

respectively (Table S12). The benefit of including CHMs in a KO analysis is even more 16 

significant when we consider missense variants that are predicted to disrupt protein 17 

function. We found a combined 20,364 rare homozygous pLOF and deleterious missense 18 

variants among the 92K participants. CHMs provided 26% more genes with >1 carriers 19 

and 397% more genes with >20 carriers where both copies of the gene are predicted to be 20 

completely knocked out or disrupted (Table S12). 21 

 22 
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 1 

Figure 6. DiscovEHR results for compound heterozygous mutations (CHMs) and de novo 2 

mutations (DNMs). (A) Distribution of the number of CHMs per individual in the DiscovEHR 3 

cohort. (B) Distribution of the # of CHMs per gene. Names of genes with more than 125 CHMs 4 

are listed. (C) Distribution of 3,415 exonic high and moderate confidence DNMs among the 5 

children of trios in the DiscovEHR cohort. (D) The distribution non-synonymous DNMs across 6 

the 2,802 genes with 1 or more. 7 

 8 
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De novo mutations 1 

De novo mutations (DNMs) are a class of rare variation that is more likely to produce 2 

extreme phenotypes in humans due to sporadic occurrence and lack of purifying selection. 3 

Many recent sequencing studies have shown that DNMs are a major driver in human 4 

genetic disease47,53,54, demonstrating that DNMs are a valuable tool to better understand 5 

gene function. 6 

We used the nuclear families reconstructed from the 92K DiscovEHR participants to 7 

confidently call 3,415 moderate- and high-confidence exonic DNMs distributed among 8 

1,783 of the 2,602 available children in trios (mean = 1.31; max = 48; Figure 6C). 9 

PolyPhen2 predicts 29.1% (N=995) of the DNMs as “probably damaging” and an 10 

additional 9.2% (N=316) as possibly damaging. The DNMs are distributed across 2,802 11 

genes (Figure 6D) with TTN receiving the most at nine. The most common type of DNM 12 

is nonsynonymous SNVs (58.5%) followed by synonymous SNVs (24.3%). Table 1 13 

provides a complete breakdown of DNM types and shows that our proportions of DNMs 14 

falling into the different functional classes generally match those found in a recent study 15 

of DNMs in children with development disorders53. We also observed an increase in the 16 

number of exonic DNMs with respect to both maternal (0.011 DNMs/year, p=7.3x10-4; 17 

Poisson regression; Figure S7) and paternal age at birth (0.010 DNMs/year; p=5.6x10-4), 18 

consistent with other reports53,55-57. Notably, maternal and paternal age at birth are highly 19 

correlated in our dataset (rho=0.79; Figure S8), thus the rates are not additive and no 20 

significant difference was identified to distinguish either as a driving factor (see 21 

Supplemental Methods). 22 
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We attempted to perform visual validation of 23 high- and 30 moderate- and 47 low-1 

confidence DNMs spanning all functional classes. Eight moderate- and two low-2 

confidence variants could not be confidently called as true or false positive DNMs. Of 3 

those remaining, 23/23 (100%) high-confidence, 19/22 (86%) moderate-confidence, and 4 

12/43 (28%) low-confidence DNMs validated as true positives. Visual validation also 5 

confirmed that the majority (40/49) of potential DNM in individuals with >10 DNMs are 6 

likely false positive calls. 7 

 8 

Table 1. Breakdown by functional class of moderate- and high-confidence exonic DNMs found in 9 

the DiscovEHR cohort compared to a recent developmental delay exome study of 4,293 trios. 10 

Type of DNM # of DNMs % of DNMs # in DDD 
studya 

% in DDD 
studya 

nonsynonymous 
SNV 

1,996 58.5% 4,797 57.8% 

synonymous 
SNV 

831 24.3% 1,629 19.6% 

splicing 153   4.5% 671   8.1% 
non-frameshift 
deletion 

78   2.3% 167   2.0% 

non-frameshift 
insertion 

55   1.6% 28   0.3% 

frameshift 187   5.5% 603   7.3% 
stop-gain SNV 112   3.3% 402   4.8% 
stop-loss SNV 3   0.1% 7   0.1% 
aThe Deciphering Developmental Disorders Study (DDD)53. The DDD paper also reported 57 11 

DNMs of other classes that were not included in our analysis nor in this table; percentages were 12 

adjusted accordingly. 13 

 14 
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Variant and phenotype segregation in pedigrees 1 

We have used the reconstructed pedigree data from among the 92K DiscovEHR 2 

participants to distinguish between novel/rare population variation and familial variants 3 

and have leveraged it to identify highly penetrant disease variants segregating in families. 4 

While this is not intended to be a survey of all known Mendelian disease-causing 5 

variation transmitted through these pedigrees, we have identified a few illustrative 6 

examples including familial aortic aneurysms (Figure 7A), long QT syndrome (Figure 7 

7B), thyroid cancer (Figure 7C), and familial hypercholesterolemia (FH; Figure 8)49. The 8 

FH example is particularly interesting as we previously reported a novel FH-causing 9 

tandem duplication in LDLR49. We have updated the CNV calls and found 37 carriers of 10 

the FH-causing tandem duplication among the 92K exomes, and we have reconstructed 11 

30 out of the 37 carriers into a single extended pedigree. The carriers’ shared ancestral 12 

history provides evidence that they all inherited this duplication event from a common 13 

ancestor approximately six generations back. While two of the seven remaining carriers 14 

are second-degree relatives to each other, genotyping array data was not available to 15 

confirm that the remaining seven carriers are also distantly related to the other carriers in 16 

Figure 8. 17 

 18 
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 1 

Figure 7. Reconstructed pedigree from DiscovEHR demonstrating the segregation of known 2 

disease-causing variants, including variants for (A) aortic aneurysms, (B) long QT syndrome, 3 

and (C) thyroid cancer. 4 

 5 

 6 

 7 

Figure 8. Image of the reconstructed pedigree prediction containing 25/37 carriers of the novel 8 

FH-causing tandem duplication in LDLR and 20 non-carrier, related (first- or second-degree) 9 
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individuals from the sequenced cohort. Carrier and non-carrier status was determined from the 1 

exome data from each individual. Elevated max LDL levels (value under symbols) as well as 2 

increased prevalence of coronary artery disease (CAD, red fill) and pure hypercholesterolemia 3 

(ICD 272.0; blue) segregate with duplication carriers. Five additional carriers (not drawn) were 4 

found to be distant relatives (seventh- to ninth-degree relatives) of individuals in this pedigree. 5 

 6 

 7 

Discussion 8 

Sequencing studies continue to collect and sequence increasing proportions of 9 

human populations and are uncovering the extremely complex, intertwined nature of 10 

human relatedness. In the first 92K sequenced participants of the DiscovEHR cohort, we 11 

have identified ~66K first- and second-degree relationships, reconstructed 12,574 12 

pedigrees, and uncovered a second-degree family network of nearly 20,000 participants. 13 

Studies in founder populations have already highlighted the complexity of relationships 14 

(Old Order Amish58, Hutterites59, and Ashkenazi Jews60), and recent studies of non-15 

founder populations are reporting extensive levels of family structure (UK Biobank61, 16 

NHANES62, and AncestryDNA6). We observed family structure (first- and second-degree 17 

relationships) involving 55.6% of the DiscovEHR participants, and we expect family 18 

structure will involve a large proportion, if not a majority, of individuals in other large 19 

HPG studies. We have demonstrated through simulations and observations within our 20 

own data that we can obtain a large number of close familial relationships, nuclear 21 

families, and informative pedigrees within HPG studies. While underlying population 22 

structure and depth of ascertainment will vary between studies, we do believe that our 23 
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observations in DiscovEHR will be applicable to other HPG studies since families tend to 1 

visit the same healthcare system and have similar genetic and environmental disease risks. 2 

The days of only having a handful of closely related individuals or samples in large 3 

sequencing cohorts are over, and we can no longer simply remove closely related pairs of 4 

individuals for our association studies knowing that it is only a small fraction of the 5 

overall cohort. Instead, we need to continue developing methods that are capable of 6 

leveraging the extensive relatedness of these rich cohorts and that can scale to 7 

accommodate growing HPG study population sizes and phenotype diversity. 8 

In this study, we have demonstrated several ways to leverage family structure. 9 

First, we improved the phasing accuracy of rare compound heterozygous mutations 10 

(CHMs). While we did obtain accurate phasing of CHMs with EAGLE, our pedigree- 11 

and relationship-based phasing was far more accurate, reducing the pCHM phasing error 12 

by approximately a third. We expect that the accuracy of the relationship-based phasing 13 

of pCHMs will be lower for variants with >1% MAF because phasing using the pairwise 14 

relationships assumes that if two variants appear together in two relatives, then they are 15 

in cis and have segregated together from a common ancestor. There is a higher chance 16 

that two independently segregating common variants will appear together in multiple 17 

people, resulting in being incorrectly phased as cis by the algorithm. Therefore, common 18 

variants may be better phased using population allele frequencies with programs like 19 

EAGLE rather than phased using pairwise relationships. 20 

Second, pedigree reconstruction within HPG studies provides trios and other 21 

informative pedigree structures that can be leveraged for many use-cases. We used the 22 

2,602 reconstructed trios to find 3,415 DNMs and tracked known disease-causing 23 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2017. ; https://doi.org/10.1101/197889doi: bioRxiv preprint 

https://doi.org/10.1101/197889
http://creativecommons.org/licenses/by-nc-nd/4.0/


mutations through extended pedigrees. Pedigrees and relationships are also particularly 1 

useful for tracking transmission of rare variants, providing increased confidence in 2 

variant calls and allowing for the use of more traditional Mendelian genetic analyses. 3 

Pedigrees can be particularly useful when combined with follow-up chart reviews and the 4 

ability to recontact patients and their family members. 5 

 We show that cryptic family structure in a large sequencing dataset presents an 6 

opportunity to harness a valuable, untapped source of genetic insights rather than a 7 

nuisance that must be managed during downstream analyses. As we enter the era of 8 

genomic-based precision medicine, we see a critical need for additional innovative 9 

methods and tools that are capable of effectively mining the familial structure and distant 10 

relatedness contained within the ever-growing sequencing cohorts. 11 

 12 

 13 
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