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Abstract 33	

This preprint has been reviewed and recommended by Peer Community 34	

In Evolutionary Biology (http://dx.doi.org/10.24072/pci.evolbiol.100034).  35	

Despite being able to conclusively demonstrate local adaptation, we are still often 36	

unable to objectively determine the climatic drivers of local adaptation. Given the 37	

rapid rate of global change, understanding the climatic drivers of local adaptation is 38	

vital. Not only will this tell us which climate axes matter most to population fitness, 39	

but such knowledge is critical to inform management strategies such as translocation 40	

and targeted gene flow. While simple assessments of geographic trait variation are 41	

useful, geographic variation (and its associations with environment) may represent 42	

plastic, rather than evolved, differences. Additionally, the vast number of trait–43	

environment combinations makes it difficult to determine which aspects of the 44	

environment populations adapt to. Here we argue that by incorporating a measure of 45	

landscape connectivity as a proxy for gene flow, we can differentiate between trait–46	

environment relationships underpinned by genetic differences versus those that reflect 47	

phenotypic plasticity. By doing so, we can rapidly shorten the list of trait– 48	

environment combinations that may be of adaptive significance. We demonstrate how 49	

this reasoning can be applied using data on geographic trait variation in a lizard 50	

species from Australia’s Wet Tropics rainforest. Our analysis reveals an 51	

overwhelming signal of local adaptation for the traits and environmental variables we 52	

investigated. Our analysis also allows us to rank environmental variables by the 53	

degree to which they appear to be driving local adaptation. Although encouraging, 54	

methodological issues remain: we point to these issue in the hope that the community 55	

can rapidly hone the methods we sketch here. The promise is a rapid and general 56	

approach to identifying the environmental drivers of local adaptation. 57	
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Introduction 59	

It is only recently that we have begun to appreciate the speed with which evolution 60	

can happen; not only over relatively short timespans (e.g., 1, 2-4), but also at small 61	

spatial scales (5). Rapid local adaptation has been recorded in response to a wide suite 62	

of environmental drivers, including invasive species, and pollution (6). We expect 63	

climate to also be a major driver of local adaptation (e.g., 7, 8), and understanding the 64	

way in which species respond to climate is of increasing importance because 65	

anthropogenic climate change is proceeding at such a rate that there are concerns that 66	

many species will be unable to evolve rapidly enough to avoid extinction (9, 10). 67	

 68	

Evolution typically optimizes phenotypes, but the optimum will vary through both 69	

time and space (11, 12), in turn leading to populations ('demes') that have, on average, 70	

higher fitness in their home environment than an immigrant would: local adaptation. 71	

While adaptive optima for traits almost always vary geographically, it does not follow 72	

that all geographic trait variation is due to local adaptation. Geographic trait variation 73	

can arise due to other factors, such as phenotypic plasticity (including developmental 74	

plasticity and maternal effects), neutral clines, and environmental factors (such as 75	

geographic variation in fitness-reducing parasites). These factors can give the 76	

appearance of local adaptation (10, 11), complicating our identification of climate-77	

relevant adaptive variation. 78	

 79	

To circumvent these issues, evolutionary biologists use experimental approaches to 80	

demonstrate local adaptation (12, 13). Experiments designed to detect local adaptation 81	

typically utilise one of two techniques: 1) reciprocal transplants, which are done in 82	

situ, and are considered the gold standard for demonstrating local adaptation; or 2) 83	
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common garden experiments, which are usually done in the lab where it is easier to 84	

control each environmental variable (12). Both of these techniques can be difficult, 85	

for reasons of time, expense, logistics, or ethics. This difficulty increases as the 86	

number of separate demes and environmental variables to be tested increases and as 87	

the generation time of the organism increases (12). Additionally, although reciprocal 88	

transplants will detect signs of local adaptation, they are not necessarily suited to 89	

identifying the environmental drivers of that local adaptation (14). This is because in 90	

situ reciprocal transplants necessarily encompass all the environmental variables that 91	

differ between the transplant locations. Lab-based common garden approaches may, 92	

in principle, be more suited to identifying environmental drivers (because the 93	

environment may be under a degree of control), but in practice it often remains 94	

impossible to identify the environmental drivers of trait variation seen in the wild. 95	

Thus, the best experimental tools we have for studying local adaptation are 96	

demanding in terms of time and cost, and are unsuitable for assigning environmental 97	

drivers (such as climate variables) to adaptive variation. If we are looking for climate-98	

driven local adaptation, this is a problem: we want to know which climate variable or 99	

variables are the main drivers of adaptation, and we urgently need this information for 100	

many species. 101	

 102	

By definition, local adaptation has a genetic basis and is consequently weakened by 103	

high levels of gene flow (11, 15, 16). Demes with excessive inward gene flow are 104	

therefore likely to be less optimally adapted, causing an observable mismatch between 105	

optimal and actual phenotypes. Some examples of this are birds dispersing and 106	

producing clutch sizes that are not optimised for the habitat quality in which they are 107	

now nesting (17), larval salamander colouration not matching streambed colouration 108	
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due to high levels of gene flow from nearby but predator-free streams (18), and stick 109	

insects in smaller habitat patches having non-cryptic colouration when the 110	

surrounding patches are larger and environmentally dissimilar (19). These 111	

observations of "migrant load" suggest an alternative technique for identifying and 112	

assessing local adaptation. First, we look across populations for relationships between 113	

the environment (e.g., mean annual temperature) and traits (e.g., morphology, 114	

physiology). By themselves, these relationships are not sufficient evidence of local 115	

adaptation — they could also be caused by phenotypic plasticity. Second, knowing 116	

that local adaptation is hindered by gene flow, we can look at whether gene flow 117	

diminishes the environmental effect. With some caveats (discussed below), in cases 118	

where data on gene flow are absent (which is often the case), habitat connectivity can 119	

be used as a substitute for gene flow. Trait–environment relationships that are strong, 120	

but which are also weakened by connectivity, are indicative of trait–environment 121	

relationships that have a genetic basis.  In a statistical model, this idea would be 122	

represented as follows: 123	

Traiti = A + Benv×Env + Bconn×Conn + Bint×Env×Conn + errori 124	

Where: 125	

traiti = trait value for individual i 126	

A = intercept 127	

Benv = coefficient of the environmental variable 128	

Env = environmental variable (e.g., annual mean temperature) at the 129	

individual’s site 130	

Bconn = coefficient of connectivity 131	

Conn = connectivity at the individual’s site 132	

Bint = coefficient of the interaction between Env and Conn 133	
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errori = deviation between expected value and trait value of individual i 134	

Which, with slight rearrangement, can also be expressed as: 135	

Traiti = A + (Benv+ Bint×Conn)×Env + Bconn×Conn + errori 136	

showing that the slope of the relationship between the trait and the environment now 137	

depends on the connectivity value. When the signs of Benv and Bint are in opposition, 138	

then we have a situation in which the relationship between the trait and the 139	

environment diminishes as connectivity increases. 140	

 141	

If we now collect data on a large number of trait–environment relationships, and their 142	

interaction with connectivity, we can imagine several possible patterns emerging. 143	

These possibilities are depicted in Figure 1. Each panel represents a possible 144	

relationship between trait–environment coefficients (along the x-axis) and the 145	

interaction between environment and connectivity (y-axis). Panel A shows a set of 146	

trait–environment relationships that vary in strength, but that are not influenced by 147	

connectivity (i.e., no environment–connectivity interaction). This pattern is indicative 148	

of a system in which trait–environment relationships are predominantly driven by 149	

plastic responses of traits to their environment (i.e., traits always match the local 150	

environment, regardless of the level of inward gene flow). Panel B shows a system in 151	

which trait–environment relationships are eroded by connectivity: increased 152	

connectivity diminishes the relationship between the environment and the trait. In this 153	

situation, the interaction between the environmental variable and connectivity is 154	

negative when the environmental coefficient is positive (i.e., greater connectivity 155	

causes the environmental coefficient to decrease towards zero; bottom-right 156	

quadrant), and positive when the environmental coefficient is negative (i.e., greater 157	

connectivity causes the environmental coefficient to increase towards zero; top-left 158	
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quadrant). This is the pattern we would expect if there is a genetic basis to the trait–159	

environment relationship, such as is exhibited by local adaptation. Panel C shows the 160	

situation where the effect of the environment tends to be enhanced by connectivity. 161	

This pattern might arise in organisms that are highly mobile and can actively move to 162	

their ideal environment, thus avoiding the selective pressures that would lead to local 163	

adaptation. 164	

 165	
Understanding how species respond to specific aspects of their environment is vital if 166	

we are to have any hope of halting the current rapid loss of biodiversity. Climate 167	

change is undoubtedly one of the biggest threats to global biodiversity (20, 21), and 168	

conservation biologists are looking to a variety of techniques to assess and help 169	

mitigate the impacts of climate change on vulnerable species (22-24). One technique 170	

that is likely to see increasing use is targeted, or assisted, gene flow [TGF; for review, 171	

see (22, 25)]. This technique involves the spatial redistribution of long-standing 172	

adaptations, and acts to increase genetic diversity in recipient populations, thereby 173	

bolstering capacity for evolutionary adaptation (10, 22, 24, 25). When applying TGF 174	

to help species adapt to climate change, we need to find an existing location that 175	

matches the future climate at our recipient site, and then translocate animals from that 176	

source location. It is a simple idea, but climate is multidimensional and species will 177	

not be adapting equally to each climate axis: is a difference of 0.5°C in mean 178	

temperature more important than a difference of 100mm in annual rainfall? The 179	

answer depends upon which aspects of climate (hereafter “climatic axes”) have the 180	

strongest influence on fitness. 181	

 182	

Here we explore the idea of using connectivity to infer local adaptation. To do this we 183	

develop a case study of a lizard species from northern Australia. We use this system 184	
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to examine the relationship, across sites, between traits and climatic variables. We 185	

assess how habitat connectivity affects these relationships and use the interaction 186	

between the environmental variable and connectivity to rank trait–environment 187	

combinations. In doing so, we reveal a set of trait–environment relationships that 188	

appears to be dominated by local adaptation. 189	

 190	

 191	

Methods 192	

Study species and site selection 193	

The Rainforest Sunskink (Lampropholis coggeri) is a small (snout–vent length up to 194	

45 mm), diurnal scincid lizard restricted to the rainforests of the Wet Tropics region 195	

of northeastern Australia (26). The rainforests of this region cover a wide range of 196	

environmental conditions, spanning significant elevation (0–1600 m ASL), 197	

precipitation (annual mean precipitation of 1432–8934 mm, not including input from 198	

cloud stripping), and temperature (annual mean temperature of 16.3–25.8˚C) 199	

gradients. This heliothermic skink is active year-round, often seen basking in patches 200	

of sunlight on the rainforest floor. Lizards were captured by hand from sites that were 201	

selected to maximize the environmental heterogeneity sampled (Fig. 2). 202	

 203	

Morphological measurements were obtained from 532 skinks from 32 sites. 204	

Physiological measurements were obtained from a smaller subset of these lizards: 259 205	

skinks from 12 sites. At each site, 8–20 skinks were caught per collecting trip. 206	

Following capture, skinks were transported to James Cook University (JCU) in 207	

Townsville for trait measurement. All procedures involving lizards were approved by 208	

the JCU animal ethics committee (projects A1976 and A1726). 209	
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 210	
Physiological trials 211	

Physiological trials commenced within seven days of skinks being collected from the 212	

field; skinks being used only for morphology were measured and released back at 213	

their point of capture within seven days. The following measures were taken from 214	

each skink (n = 259) during laboratory trials: critical thermal minimum (CTmin), 215	

critical thermal maximum (CTmax), thermal-performance breadth for sprinting 216	

(breadth80), maximum sprint speed (Rmax), temperature at which sprint speed is 217	

optimized (Topt), active body temperature as measured in a thermal gradient 218	

(Tactive), and desiccation rate (des) (see Table S1 for further details). Details of trait 219	

measurement procedures are detailed elsewhere (see 27, 28). 220	

  221	
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Morphological measurements 222	

The following measurements were taken from each skink (n = 532) using digital 223	

calipers: head width (HeadW); head length (HeadL); interlimb length (ILimbL); 224	

hindlimb length (HindLL). Left and right measurements were averaged to obtain one 225	

measurement for that trait. We also recorded snout–vent length (SVL), total length, 226	

and mass (see Table S1 for further details). All measurements were taken by one 227	

person (SLM) to minimize observer bias. All morphological variables were log-228	

transformed prior to regression analyses. 229	

 230	

Climatic variables, and connectivity 231	

Because our study aimed to assess adaptation to local climate, various temperature 232	

and precipitation variables were extracted for each site (see Table S2 for details). We 233	

considered both means and extremes. It is important to consider climatic extremes, 234	

because temperature extremes may be increasing faster than mean temperatures (29), 235	

and selection may often occur during extreme weather events (30). Many 236	

environmental variables are highly correlated (27), so only the less-derived variables 237	

were used in analyses, specifically: annual mean precipitation (AMP); seasonality of 238	

precipitation (Pcov); precipitation of the driest quarter (Pdry); annual mean 239	

temperature (AMT); coefficient of variation of temperature (Tcov); average minimum 240	

daily temperature (Tmin); average maximum daily temperature (Tmax); average 241	

variance of daily maximum temperature (TmaxVar); and average variance of daily 242	

Tmin (TminVar).  243	

 244	

  245	
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Our connectivity index was designed to capture the flux of individuals through a 246	

location and is detailed in (31). Briefly, it is a measure of habitat suitability for our 247	

focal skink species, averaged over space using a species-specific estimate of dispersal 248	

potential. This approach is reasonable for any species exhibiting diffusive dispersal, 249	

and similar techniques (though different spatial-weighting functions) can be used for 250	

species exhibiting non-diffusive dispersal. As our species is an obligate rainforest-251	

dweller, grid cells in the landscape that are rainforest and that are surrounded by 252	

rainforest have high connectivity indices, while grid cells of rainforest surrounded by 253	

non-rainforest matrix have low indices. See Table S2 for further details on all 254	

variables, and Figure S1 for correlations between all variables. 255	

 256	
Analysis 257	

Our analysis aimed to assess: 1) the relationship, across sites, between each trait and 258	

each environmental variable; and 2) how connectivity affected each of these 259	

relationships (i.e., the interaction between connectivity and environment). To allow 260	

comparison of coefficients across variables, and to make interaction effect-sizes 261	

meaningful, all trait and environmental variables were standardized so they had a 262	

mean of 0 and a standard deviation of 1. Linear models were fitted for each pair of 263	

environment–trait variables, with all models including the effect of lizard body size 264	

and sex, as well as the interaction between environment and connectivity: 265	

traiti = A + Bsvl×SVLi + Bsex×Sexi + Benv×Env + Bconn×Conn + Bint×Env×Conn + errori 266	

Where: 267	

traiti = standardized trait value of interest for lizard i 268	

A = intercept 269	

Bsvl = coefficient of SVL 270	

SVL = lizard snout–vent length, to control for effect of body size 271	
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Bsex = coefficient of Sex 272	

Sex = lizard sex (this species is sexually dimorphic in some morphological 273	

traits)  274	

Benv = coefficient of environmental variable 275	

Env = environmental variable (e.g., annual mean temperature) at the lizard’s 276	

site 277	

Bconn = coefficient of connectivity 278	

Conn = connectivity index at the lizard’s site 279	

Bint = coefficient of interaction between Env and Conn 280	

errori = deviation between expected value and trait value of lizard i 281	

282	
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A score for ranking the strength of local adaptation (L) was then calculated as: 283	

L = -Benv × Bint  284	

If the signs of the two coefficients (Benv and Bint) are opposite (which indicates an 285	

trait–environmental relationship that is diminished by increasing connectivity, i.e., 286	

evidence for local adaptation), L will be positive. If the signs are the same (which 287	

indicates an environmental effect being enhanced by increased connectivity, a 288	

situation not consistent with local adaptation), L will be negative. Thus, higher 289	

numbers on this scale equate to stronger evidence for local adaptation in that 290	

environment–trait pair. This score can, in theory, range from –∞ to +∞. Once many 291	

environment–trait combinations have been assessed, the coefficients for all pairs can 292	

be plotted (see Fig. 1). As described in the Introduction, in a system dominated by 293	

local adaptation, we expect to see a negative relationship between Benv and Bint (Fig. 294	

1B). All analyses were conducted in R v3.2 (32). 295	

 296	

Results 297	

There was substantial variation in the effect of environment (Benv) and its interaction 298	

with connectivity (Bint) across climate and trait variables, with Benv ranging from -1.8 299	

to 1.61, and Bint ranging from -0.73 to 0.78 (Fig. 3). Despite this variation, a clear 300	

pattern is evident, with most points in Figure 3 appearing in the top-left or bottom-301	

right quadrants: the quadrants in which the two coefficients have opposing signs, and 302	

where we would expect points to fall if trait–environment relationships have a genetic 303	

basis. Across these trait–environment combinations there is a distinct negative linear 304	

trend (slope= -0.36, p < 0.001). It is especially noteworthy that the trait–environment 305	

pairs with the largest coefficients are in the two quadrants indicative of local 306	

adaptation. 307	
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 308	

Overall, physiological traits showed substantially stronger environmental effects (i.e., 309	

larger values of Benv) than did morphological traits, with the largest environmental 310	

effects being exhibited by CTmin (AMP: -1.80; Tmax: 1.35; Pdry: -1.55) and CTmax 311	

(Pdry: 1.61; AMP: 1.21). Physiological traits also showed stronger interactions 312	

between environmental effects and connectivity, again with CTmin and CTmax 313	

showing the largest interactions. These trends are apparent when we examine our 314	

index of local adaptation, L.  Figure 4 shows a heatmap of all trait–environment pairs, 315	

ranked via reciprocal averaging according to the strength of their local adaptation 316	

index. The trait–environment pairs that show the strongest signature of local 317	

adaptation appear at the top-left in red. There is a rough divide, with most of the 318	

physiological traits on the left and most of the morphological traits on the right. The 319	

exceptions are the physiological traits Topt and Rmax, which appear at the far right of 320	

the figure. 321	

 322	

The two environmental variables that produced the strongest effects (topmost rows in 323	

Fig 4) were both precipitation related: annual mean precipitation (AMP) and 324	

precipitation of the driest quarter (Pdry). In our system, AMP and Pdry are both 325	

highly correlated with connectivity (see Fig. S1). This is expected, because our 326	

connectivity index is largely a measure of where rainforest is, and the distribution of 327	

rainforest in our study region is driven to a large degree by rainfall. 328	

 329	
 330	
Discussion 331	

Understanding relationships between traits and the environment will help us plan 332	

management strategies, such as targeted gene flow (TGF), that can mitigate the 333	
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impact of climate change on vulnerable species. Numerous studies have looked for 334	

(and found) trait–environment relationships (e.g., 18, 19, 33, 34-36), but the 335	

interpretation of these associations is plagued with uncertainty: are they associations 336	

due to local adaptation, neutral clines, habitat choice, or plasticity? By acknowledging 337	

that gene flow undermines adaptation, we can incorporate connectivity (a proxy for 338	

the flux of genes) into our analysis, and in doing so, separate those relationships due 339	

to fixed genetic differences, from those due to plasticity or habitat choice. 340	

 341	

Local adaptation 342	

In the trait–environment combinations we assessed, physiological traits typically 343	

showed a substantially stronger effect of environment (Benv) than did morphological 344	

traits, with the largest environmental effects shown in CTmax and CTmin (Figs. 3 & 345	

4). Physiological traits also generally showed stronger environment–connectivity 346	

interactions (Bint), again with CTmin and CTmax showing the largest interactions. 347	

Overall, physiological traits generally showed stronger evidence of local adaptation 348	

than did morphological traits. This result is intuitive: we would expect an ectotherm’s 349	

physiological traits to be under strong selection from climate (37-39), but the fitness 350	

link between morphology and climate is much less clear. Had we also included some 351	

environmental variables that had a clearer bearing on morphology, we might have 352	

detected stronger trait–environment relationships for morphology. For example, 353	

skinks that occur in rockier habitats show various morphological adaptations to that 354	

environment (40). Including a measure of rockiness in our set of environmental 355	

variables might have allowed us to detect a signal of local adaptation for limb length.  356	

Here, however, our focus is on climatic aspects of the environment. 357	

 358	
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Of the environmental variables used, our analysis suggests that precipitation is a very 359	

strong driver of local adaptation, even in thermal traits that might not seem obviously 360	

related to precipitation (e.g., CTmin, CTmax). Although this may seem a surprising 361	

result, precipitation has been shown to directly affect growth rate, body temperature, 362	

activity patterns, and thermoregulatory opportunities in lizards (38, 41-45). Wetter 363	

areas also have higher thermal inertia (and so lower cyclical thermal fluctuations 364	

(46)), and changed environmental variance in temperature potentially has a strong 365	

influence on thermal limits (47). Additionally, Bonebrake and Mastrandrea (48) found 366	

that changes in precipitation can significantly affect modeled fitness and performance 367	

curves. Finally, comparative analyses also suggest that precipitation can influence 368	

thermal traits in many species (38). Thus, although the mechanisms linking 369	

precipitation to thermal limits are diffuse and poorly resolved, they do exist, and our 370	

analyses suggest that precipitation is a strong driver of local adaptation at thermal 371	

physiological traits. 372	

 373	

Our analysis also suggests that temperature is an important driver of local adaptation 374	

in this system, but that extremes of temperature (encapsulated in minimum and 375	

maximum temperatures) are at least as strongly associated with local adaptation as is 376	

mean temperature. Again, this result is intuitive (natural selection from climate is 377	

likely stronger during extreme events than during normal daily temperatures) and 378	

agrees with results of empirical studies (38). Finally, the environmental variables with 379	

the weakest signals of local adaptation are Tcov (temperature seasonality), TminVar, 380	

and TmaxVar (variance of minimum and maximum daily temperatures, respectively). 381	

These variables represent predictable environmental variation occurring within an 382	

individual’s lifespan and so are variables to which we might expect individuals to 383	
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develop plastic responses, rather than fixed differences; local adaptation to these 384	

variables would likely be reflected in reaction norms, rather than point values for 385	

traits. (49-51). 386	

 387	

System-wide signal of local adaptation 388	

The clear negative linear trend displayed in Fig. 3 is precisely what we would expect 389	

in a set of trait–environment combinations dominated by local adaptation. Migrant 390	

load (the negative effect of the immigration of less-locally adapted individuals) scales 391	

positively with immigration as well as with the strength of selection [see equation 5 in 392	

Polechová, Barton and Marion (52)]. The reason for this is that, when the strength of 393	

selection is moderately high, the environment will have a large effect on relevant 394	

traits, and therefore any immigrants coming from differing environments will be 395	

particularly maladapted and will therefore have a large and negative impact on the 396	

local phenotype. Thus, we expect trait–environment combinations with strong local 397	

adaptation to show strong effects of connectivity on the trait–environment relationship 398	

(52). 399	

 400	

By setting up a statistical model in which the trait–environment relationship is altered 401	

by connectivity, we have allowed the possibility that the trait–environment 402	

relationship could be reversed as connectivity increases. Such an outcome is absurd 403	

from a theoretical perspective. In practice, however, our interaction coefficients were 404	

typically estimated to be around 0.36 times as strong as the main effect of 405	

environment. In this situation, reversal would only happen when connectivity values 406	

were more than 2.7 standard deviations beyond the mean (a situation that is 407	

exceedingly rare). Thus, encouragingly, our system wide analysis consistently 408	
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provides parameter estimates that are theoretically sensible, despite there being no 409	

constraint within the model for them to be so. 410	

 411	

We used long-term climatic averages and found strong evidence that local adaptation 412	

dominates over plasticity in our trait–environment set. If we had included different 413	

environmental variables, such as the conditions the lizards had recently encountered, 414	

signals of plasticity may have been more apparent. Clearly environmental variables 415	

that are similar across generations should lead to local adaptation, while 416	

environmental variables that fluctuate within generations should have a strong 417	

influence on phenotypic plasticity. 418	

 419	

Phenotypic plasticity 420	

The importance of accounting for phenotypic plasticity is, however, exemplified in 421	

our dataset by the relatively strong effect of precipitation of the driest quarter (Pdry) 422	

on the temperature at which maximum sprint speed is achieved (Topt) and on 423	

maximum sprint speed (Rmax) itself. On their own, these strong trait–environment 424	

relationships might be interpreted as evidence for local adaptation. Our analysis, 425	

however, suggests that the environmental effect is largely independent of 426	

connectivity, implying that variation in these traits is due to plasticity rather than 427	

genetic differentiation. Other work (27) has shown little temporal variation in Topt 428	

(within generations) despite clear geographic variation and this, together with our 429	

results, suggests that this trait undergoes developmental plasticity, but is fixed in adult 430	

lizards. In principle, this non-effect of connectivity could also arise due to selection 431	

that is so strong that it maintains local adaptation despite high levels of gene flow 432	

[i.e., immigrants are selected against so strongly that they do not contribute to the 433	
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recipient population (11)]. The trait–environment relationships for Topt and Rmax 434	

are, however, weaker than those for some other traits (e.g., CTmax and CTmin) that 435	

show clear effects of connectivity, so extremely strong selection seems an unlikely 436	

explanation for the pattern we see here. 437	

 438	

The generally weak evidence for plasticity in our dataset should not be considered 439	

weak evidence for plasticity in these traits. Indeed many of the physiological traits we 440	

use (e.g., CTmax) are notoriously plastic, responding reversibly on timescales ranging 441	

from hours to months (53, 54). That we do not see signals of plasticity in these traits 442	

here reflects our choice of environmental variables: long-term climatic variables, 443	

rather than short-term weather variables (such as the temperature in the week before 444	

an animal was collected). We chose these long-term variables precisely because we 445	

are interested in unearthing patterns of local adaptation, rather than patterns due to 446	

rapid, reversible plasticity.  447	

 448	

Caveats and challenges 449	

Our intent here has been to point out the additional inference that can be drawn from 450	

data on geographic trait variation if we account for the effect of gene flow on trait 451	

differentiation. The idea that local adaptation is eroded by gene flow offers a novel 452	

way to identify the environmental drivers of local adaptation. Such a capacity is of 453	

fundamental interest, and is also sorely needed if we are to effectively manage the 454	

impacts of climate change. The methods we use here are, however, embryonic, and in 455	

the following we point out caveats and challenges for future work. 456	

 457	

Gene flow and connectivity 458	
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Our approach requires a measure of gene flow across a landscape. Here we have used 459	

environmental connectivity as a proxy for gene flow. We chose connectivity because 460	

it can be calculated relatively easily for many species by using broad scale habitat 461	

mapping datasets [e.g., vegetation mapping from DERM (55)]. Of course, these 462	

measures of connectivity should be calculated at a scale relevant to the scale of 463	

dispersal of the species in question [as ours was, using dispersal rate data for 464	

Lampropholis coggeri from Singhal and Moritz (56)]. While connectivity measures 465	

will often correlate with gene flow, e.g., (57)], a measure of gene flow, rather than the 466	

flow of individuals, would be preferable. Such measures are increasingly becoming 467	

available with the rise of landscape genomics tools (e.g., 58), but may still be cost-468	

prohibitive in many cases. 469	

 470	

While there may be better measures of gene flow, our inference might also be 471	

improved by taking into account landscape heterogeneity in the environment. Gene 472	

flow, per se, does not erode local adaptation. Rather it is an influx of maladapted 473	

genes that erodes local adaptation. Thus, a better index of this “migrant load” may 474	

well be one in which connectivity is multiplied by a measure of environmental 475	

heterogeneity, where connectivity and heterogeneity are calculated over the same 476	

spatial scale (e.g., 31). An index such as this should, in principle be a better measure 477	

of migrant load than our simple measure of connectivity. The cost, however, is that 478	

this index would need to be calculated in a standardized manner for every 479	

environmental variable under consideration. 480	

 481	

Clearly connectivity is an imperfect measure of migrant load. By using it, we 482	

implicitly assume that all migrants are equally maladapted and have equal fitness in 483	
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the recipient population. Nonetheless, connectivity should scale positively with 484	

migrant load, and our analysis using simple connectivity generated a coherent and 485	

intuitively sensible result. This is encouraging, suggesting that, in the absence of 486	

precise estimates of migrant load, a readily calculable connectivity metric may suffice 487	

to elucidate broad patterns. 488	

 489	

Linear trait–environment relationships, and covariation with connectivity 490	

Our method assumed that traits have a linear relationship to the environment (at least 491	

at the environmental scale across which we are looking). In many instances, this will 492	

be a reasonable null assumption: it seems unlikely, for example, that a trait such as 493	

desiccation resistance would be high in dry environments, low in moderately wet 494	

environments, and then high again in very wet environments. The assumption bears 495	

particular mention, however, in the situation where the connectivity index is strongly 496	

correlated with one or more of the other environmental variables being used. In our 497	

system, for example, AMP and Pdry are correlated with connectivity (Fig. S1). Where 498	

the environment–connectivity correlation is very strong, the interaction term in our 499	

model (Conn×Env) could be interpreted as a quadratic term for environment (i.e., 500	

Env2). In these cases, it is possible that a strong connectivity interaction is, in fact, 501	

pointing to a non-linear trait–environment relationship. Thus, for environmental 502	

variables that correlate with connectivity (and there will always be some), careful 503	

consideration needs to be given to the possibility of a quadratic fitness function 504	

between trait and environment. In our case, it remains possible, for example, that the 505	

strong influence of precipitation on local adaptation in our system is spurious, and 506	

instead reflects non-linear relationships between optimal trait values and precipitation. 507	

We can, however, think of no obvious reason why thermal limits should respond 508	
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quadratically to precipitation, nor why desiccation rates and other physiological traits 509	

should also do so. Thus, in our case, we are inclined to accept the importance of this 510	

environmental variable in driving local adaptation in our system. 511	

 512	

Covariation between explanatory variables 513	

As in any multiple regression analysis, our capacity to make precise coefficient 514	

estimates diminishes if there is substantial covariation between our explanatory 515	

variables. If a sampling regime is being designed de novo, care should be taken to 516	

sample sites in such a way that covariation between environmental variables 517	

(including connectivity) is avoided as far as possible. Such an aim can be achieved by, 518	

for example, strategically exploiting latitudinal and altitudinal gradients. 519	

 520	

Multivariate traits and environments 521	

Here we examined one trait–environment combination at a time. Doing so may 522	

potentially miss relationships that only appear in multivariate analyses. For example, 523	

if two environmental variables are negatively correlated but both have a positive 524	

effect on a trait, it is possible that these countergradients can obscure the univariate 525	

relationship. Similar problems are encountered when examining response to selection 526	

over time (59) and, with our approach, may lead us to underestimate the number of 527	

important environmental drivers of local adaptation. Analysis incorporating multiple 528	

environmental predictors is possible, but such a model will rapidly become saturated 529	

with parameters. To minimize the problem of countergradients, again, care should be 530	

taken to sample environmental spaces in such a way as to minimize correlations 531	

between environmental variables. 532	

 533	

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/145169doi: bioRxiv preprint first posted online Jun. 2, 2017; 

http://dx.doi.org/10.1101/145169
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

An additional analytical challenge is to treat traits as multivariate. Here we have 534	

treated each measured trait as independent. In reality, however, traits covary and this 535	

covariance can have both genetic and environmental origins (60). As a corollary, 536	

selection acts on the multivariate trait, and causes populations to move in multivariate 537	

trait space (61). Consequently, local adaptation perhaps should be measured in a 538	

multivariate trait space rather than on a univariate basis. Such an aim, however, 539	

requires considerable theoretical development and may well require substantially 540	

more data. For now, however, we should be aware that we are collapsing our trait 541	

space, and each of our measured traits is not independent. For example, in our system 542	

there is a strong correlation between CTmin and CTmax, thus we should be aware 543	

that these two traits should not get equal weighting when we use our traits to rank 544	

environmental variables by their importance to local adaptation. 545	

 546	

Neutral clines 547	

Finally, our approach should allow us to identify when geographic variation is a result 548	

of genetic variation. That is, it can weed out relationships that are driven by plasticity 549	

or habitat choice. Covariation between genotype and environment will often be the 550	

result of local adaptation, but can also arise for non-adaptive reasons, the most 551	

obvious being trait clines caused by the historical spread of population (62). In 552	

principle, and again, with careful attention to sample design (i.e., a sample design 553	

which minimizes the covariation between space and environment), it should be 554	

possible to separate spatial from environmental patterns. 555	

 556	

Conclusion 557	
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There is increasing urgency to identify populations that will act as suitable sources for 558	

targeted gene flow efforts in the face of climate change. To identify these populations, 559	

we need to know which traits influence sensitivity to climate and are locally adapted. 560	

Traditional approaches to unearthing local adaptation (reciprocal transplants and 561	

common garden experiments) are time consuming, and often cannot attribute 562	

adaptation to any particular environmental driver. Local adaptation is, however, 563	

undermined by gene flow, and we should be able to use this fact to sort patterns of 564	

local adaptation from patterns with other causes. Here we have demonstrated this 565	

approach: using connectivity as a proxy for gene flow, and looking for its effect on 566	

trait–environment relationships. Our analysis, using a species of lizard from 567	

Australia’s Wet Tropics rainforest, suggests the approach has merit: the results we 568	

achieve are coherent and suggest local adaptation is the overwhelming signal in the 569	

set of trait–environment relationships tested. As well as implying a strong role for 570	

local adaptation, we have effectively ranked environmental drivers of local 571	

adaptation, finding evidence that precipitation and temperature are important 572	

environmental variables with regard to local adaptation in our system. Our analysis 573	

also suggests that some traits exhibit strong plastic responses to the environment, 574	

particularly in response to precipitation of the driest quarter and the seasonality of 575	

temperature and precipitation. These specific results will likely apply to other species 576	

that are phylogenetically or ecologically similar to our focal species, but the method 577	

has the potential to apply much more broadly. Analytical and sampling challenges 578	

remain, however, and we point to avenues whereby the method can be improved. 579	

Given the potential of this method to provide evidence of local adaptation, and to 580	

provide rapid ranking of the climatic drivers of local adaptation, assessment of the 581	

method in a broader array of systems is warranted. 582	
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Figure Captions 766	
 767	
Figure 1. Graphs showing the concepts illustrated by plotting a set of trait–environment 768	
coefficients (e.g., the coefficient from a linear model examining the effect of annual mean site 769	
temperature on the sprint performance of organisms from that site: Benv, x-axis) and the 770	
corresponding environment–connectivity interaction coefficients (Bint, y-axis). Broad grey 771	
line represents the approximate area in which these points would fall. A) Phenotypic plasticity 772	
is suggested when trait–environment relationships are strong, but are not influenced by 773	
connectivity. B) Local adaptation is suggested when increasing connectivity diminishes the 774	
relationship between the environment and the trait. C) The effect of the environment is 775	
enhanced by connectivity. This latter pattern might arise in organisms that are highly mobile 776	
and can actively move to their ideal environment, thus avoiding the selective pressures that 777	
would lead to local adaptation. 778	
 779	

Figure 2. Map of the southern Australian Wet Tropics bioregion, showing the distribution of 780	
rainforest in green and the sampling locations as black dots. 781	
 782	

Figure 3. Scatterplot showing the results of 99 linear models run to assess the relationship 783	
between each trait–environment pair, and the environment–connectivity interaction. Trait–784	
environment coefficients (Benv) are on the x-axis, and environment–connectivity interaction 785	
coefficients (Bint) are on the y-axis. Local adaptation is suggested when these two parameters 786	
are opposite in sign: in trait–environment pairs in which a strong environmental effect is 787	
eroded by increasing connectivity. 788	
 789	

Figure 4. Heatmap showing the relative rankings of climate variables (rows) and 790	
morphological and physiological traits (columns). The matrix has been sorted (by reciprocal 791	
averaging) and coloured according to the strength of local adaptation, with higher values 792	
coloured red and being sorted to the top/left. See Tables S1 and S2 for explanations of the 793	
trait and environmental variables used. 794	
L = local adaptation index: -Benv × Bint 795	
 796	
 797	
 798	

 799	
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