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ABSTRACT

By following the evolution of populations that are initially genetically homogeneous, much
can be learned about core biological principles. For example, it allows for detailed studies
of the rate of emergence of de novo mutations and their change in frequency due to drift
and selection. Unfortunately, in multicellular organisms with generation times of months
or years, it is difficult to set up and carry out such experiments over many generations. An
alternative is provided by ‘‘natural evolution experiments’’ that started from colonizations
or invasions of new habitats by selfing lineages. With limited or missing gene flow from
other lineages, new mutations and their effects can be easily detected. North America has
been colonized in historic times by the plant Arabidopsis thaliana, and although multiple
intercrossing lineages are found today, many of the individuals belong to a single lineage,
HPGI. To determine in this lineage the rate of substitutions — the subset of mutations that
survived natural selection and drift —, we have sequenced genomes from plants collected
between 1863 and 2006. We identified 73 modern and 27 herbarium specimens that
belonged to HPGI. Using the estimated substitution rate, we infer that the last common

HPGI ancestor lived in the early |7th

century, when it was most likely introduced by
chance from Europe. Mutations in coding regions are depleted in frequency compared to
those in other portions of the genome, consistent with purifying selection. Nevertheless, a
handful of mutations is found at high frequency in present-day populations. We link these
to detectable phenotypic variance in traits of known ecological importance, life history and
growth, which could reflect their adaptive value. Our work showcases how, by applying

genomics methods to a combination of modern and historic samples from colonizing

lineages, we can directly study new mutations and their potential evolutionary relevance.
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SUMMARY

A consequence of an increasingly interconnected world is the spread of species outside their native
range — a phenomenon with potentially dramatic impacts on ecosystem services. Using population
genomics, we can robustly infer dynamics of colonization and successful population establishment. We
have compared hundred genomes of a single Arabidopsis thaliana lineage in North America, including
genomes of contemporary individuals as well as |9th century herbarium specimens. These differ by an
average of about 200 mutations, and calculation of the nuclear evolutionary rate enabled the dating of
the initial colonization event to about 400 years ago. We also found mutations associated with
differences in traits among modern individuals, suggesting a role of new mutations in recent adaptive

evolution.

INTRODUCTION

Colonizing or invasive populations sampled through time (1,2) constitute “natural experiments” where it
is possible to study evolutionary processes in action (3). Colonizations, which are dramatically increasing
in number (4,5), sometimes are characterized by strong bottlenecks and genetic isolation (6,7), and thus
greatly facilitate the observation of new mutations and potentially their effects under natural population
dynamics and selection (8). Colonizations thus offer a complementary approach to other studies of new
mutations, which often minimize natural selection, for example in laboratory mutation accumulation
experiments (9) and parent-offspring comparisons (10). The study of colonizations is also
complementary to the investigation of genetic divergence over long time scales, e.g., between distant

species (I 1), where the results are largely independent of short-term demographic fluctuations. There is
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broad interest in understanding how genetic diversity is generated (12),(12)and how new mutations can
provide a path for rapid adaptive evolution (13—15). Additionally, accurate evolutionary rates permit

dating historic population splits, which is fundamental to the study of population history (16).

The analysis of colonizing populations can also contribute to resolving the “genetic paradox of
invasion” (17). This paradox comes from the observation that colonizing populations can be surprisingly
successful and spread very widely even when strongly bottlenecked, suggesting some level of adaptation
to new environments that goes beyond the exploitation of unoccupied ecological niches (17). Much of
the work in plant ecology and evolution has focused on evidence that populations can rapidly adapt from
standing variation (18). In invasive lineages, initial standing variation may originate from incomplete
bottlenecks, multiple introductions, or admixture with local relatives (19). Much less work has been
done with respect to the role of de novo mutations as a solution to the genetic paradox of invasion,
although this has been proposed as an alternative explanation for rapid adaptation by colonizing lineages

(3,17,20).

The self-fertilizing plant Arabidopsis thaliana is native to Africa and Eurasia (21,22) but has
recently colonized N. America, where it likely experienced a strong founder effect (23). At nearly half of
N. American sites sampled during the 1990s and early 2000s, more than 80% of plants belong to a single
haplogroup, HPGI, as inferred from genotyping with 149 intermediate-frequency markers evenly spread
throughout the genome (23). The HPGI lineage has been reported from many sites along the East Coast
and in the Midwest as well as at a few sites in the West (23) (Figure |, Table SI). The great ubiquity of
HPGI in comparison to any other haplogroup could be due to either some adaptive advantage, or, more
parsimoniously, be the result of HPGI being derived from one of the first arrivals of A. thaliana in the

continent.
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92 Here, we focus on 100 HPGI individuals that do not show any evidence of outcrossing with
93 other lineages. We combine genomes from herbarium specimens and live individuals, collectively
94 covering the time span from 1863 to 2006, to infer mutation rates, to date the birth of the HPGI
95 lineage, and to investigate the evolutionary forces that shape genetic diversity. Our analyses of this
96 lineage serves as a model for future studies of similar colonizing or otherwise recently bottlenecked
97 plant populations, in order to better understand how diversity is generated and to which extent it

98  contributes to adaptation in nature.

99  RESULTS AND DISCUSSION

100 Historic and modern genomes

101 In a self-fertilizing species, a single individual can give rise to an entire lineage of millions of offspring,
102 which then diversify through new mutations and eventually intra-lineage recombination. If
103 self-fertilization is much more common than outcrossing, the founder is likely to have been homozygous
104 throughout almost the entire genome. Because it is so wide spread, HPGI presents an opportunity to
105 sample many natural populations that have been potentially derived from a common, very recent
106 ancestor with such characteristics. In the best possible case, this would allow for new mutations to be
107 directly observed through time. To test these assumptions and to better understand the evolution of
108 HPGI, we sequenced two different groups of plants. The first group were live descendants of 87 plants
109 that had been collected between 1993 and 2006 (Fig. |; Table SI), and which had been identified as likely
110 members of the HPGI lineage with 149 genome-wide markers spaced at roughly |-Mb-intervals (23).
11 We aimed for broad geographic representation, with at least two accessions per collection site, where
12 available. The second group comprised 35 herbarium specimens, collected between 1863 and 1993, for

113 which we had no a priori information whether they may or may not belong to the HPGI lineage, but
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114 which were selected from the herbarium records to cover the full historical geographic range and

115 overlap with modern samples when possible (Fig. 1).

116 The DNA from the herbarium specimens showed biochemical features typical of ancient DNA
"7 (aDNA) from plants, which we have previously described in detail (24). Such DNA damage included a
118 median fragment length of 60 bp, an excess of C-to-T substitutions of about 2.5% at the first base of
119 sequencing reads and a 1.5 to 1.8 fold enrichment of purines at DNA breakpoints (Fig. Sl,
120 Supplementary Text 2). To remove aDNA associated damage and produce high-quality genomes,
121 chemically-repaired libraries (see Methods) were later sequenced. These reads were mapped against an
122 HPGI pseudo-reference genome (25), focusing on single nucleotide polymorphisms (SNPs) because the
123 short sequence reads of herbarium samples preclude accurate calling of structural variants. Genome
124 sequences were of high quality, with herbarium samples covering 96.8—-107.2 Mb of the 119 Mb

125 reference, and modern samples covering 108.0—108.3 Mb (Table SI).

126 Genetic diversity of HPGI and delineation from other lineages

127 We visualized the relationships between the sequenced historic and modern plants building a neighbor
128 joining tree of all 123 samples and confirmed that the majority fell within a almost-identical clade, the
129 HPGI (Fig. 2A) (23). Because any degree of introgression from other non-HPGI lineages would
130 confound the discovery of new mutations downstream, we removed all divergent samples and built a
131 neighbour joining tree (n=103 samples), which revealed that the HPGI| samples were very similar to
132 each other, with very little within-population structure (Fig. 2B). A parsimony network was used to
133 detect recombinant genomes within this HPGI clade (Fig. 2C), which led us to remove three potential
134 intra-lineage recombinants. Repeating the parsimony network cleared all previously inferred reticulations

135 due to recombinations (Fig. 2D). After such stringent filtering, we kept 27 of the 35 herbarium samples,
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136 and 73 of the 87 modern samples (Table SI). These constitute a set of non-admixed, non-recombined

137 and quasi-identical HPGI individuals.

138 Pairs of HPGI| herbarium genomes differed by 28-207 SNPs genome-wide, pairs of HPGI
139 modern genomes by 2-259 SNPs, and pairs of historic-modern HPGI genomes by 56-244 SNPs. That is,
140 whole-genome identity was at least 99.9997% in any of pair-wise comparison. Of the approximately five
141 to six thousand segregating SNPs in the HPGI population, the vast majority, about 95% (Supplementary
142 Text 3), have not been reported outside of this lineage (21). Importantly, the density of SNPs along the
143 genome was low and evenly distributed (typically fewer than 20 SNPs / 100 kb) with no peaks of much
144 higher frequency, which makes us confident that chunks of introgressions from other lineages do not
145 exist in this putatively pure HPGI set (Fig. 4). As a reminder, random pairs of A. thaliana accessions
146 from the native range or pairs of non-HPGI typically differ by about 500 SNPs / 100 kb (21) (see scale in

147 Fig, 2A).

148 There were no SNPs in mitochondrial nor chloroplast genomes, which already suggested a
149 recent common origin, and genome-wide nuclear diversity (T = 0.000002, 0yy, = 0.00001, with 5,013 full
150 informative segregating sites) was two orders of magnitude lower than in the native range of the species
151 (Oyy = 0.007) (21) (Table SI) (Supplementary Text 6). The population recombination parameter was
152 also four orders of magnitude lower (4N, = o = 3.0x10® <M bp'l) than in the native range (o =
153 75x102 cM bp'l) (26) (Supplementary Text 6). While recombination occurs in every generation,
154 regardless of self-fertilization or outcrossing, it is only observable after outcrossing between genetically
155 non-identical individuals, and this is what the population recombination parameter reports. We must
156 stress that because A. thaliana can outcross at rates of several percent per generation (23,27), but
157 because the HPGI population is genetically so homogeneous, we are mostly “blind” to the

158 consequences of outcrossing in this special case. The lack of “observable recombination” in the genome
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159 is important, as it allows for the use of straightforward phylogenetic methods to calculate a mutation
160 rate. The enrichment of low frequency variants in the site frequency spectrum (Tajima's D = -2.84;
161 species mean = -2.04, (21)) and low levels of polymorphism are consistent with a recent bottleneck
162 followed by population expansion (Fig. 3). The obvious explanation is that the strong bottleneck
163 corresponds to a colonization founder event, likely by very few closely related individuals, or perhaps

164 only a single plant.

165 Altogether these patterns indicate that the collection of HPGI plants we investigated constitute
166 a quasi-clonal and quasi-identical set of individual genomes, mostly devoid of observable recombination

167 and population structure, and thus eminently suited for the study of naturally arising de novo mutations.

168 The genome-wide substitution rate

169 It is important to distinguish between the mutation rate, which is the rate at which genomes change due
170 to DNA damage, faulty repair, gene conversion and replication errors, and substitution rate, which is the
171 rate at which mutations survive and accumulate under the influence of demographic processes and
172 natural selection (28,29). Under neutral evolution, mutation and substitution rates should be equal (29).
173 The simple evolutionary history of the HPGI| population enables direct estimates of substitution rates,
174 and the comparison of theses between different genome annotations, as well as with mutation rates
175 from controlled conditions experiments, could reveal the role played by both demographic and selective

176 forces.

177 To estimate the substitution rate in the HPGI lineage, we used distance- and phylogeny-based
178 methods that take advantage of the known collection dates (Supplementary Text 7). The distance
179 method is independent of recombination and has been previously applied to viruses (30) and humans
180 (31). The substitution rate is calculated from correlation between differences in collection time in

181 historic-modern sample pairs, and the number of nucleotide differences between those pairs relative to
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182 a reference (Fig. 3C), scaled to the size of the genome accessible to lllumina sequencing. This method
183 resulted in an estimated rate of 2.1 Ix10"? substitutions site™! year'I (95% bootstrap Confidence Interval
184 [CI]: 1.88-2.33x10"%) using rigorous SNP calling quality thresholds. Relaxing the thresholds for base
185 calling and minimum genotyped rate affects both the number of called SNPs and the length of the
186 interrogated reference sequence (32). These largely cancelled each other out, and the adjusted estimates

187 were relatively stable, between 2.1-3.2x10" substitutions site”! year'I (Table S3, Supplementary Text

188 3).

189 The second method, a Bayesian phylogenetic approach, uses the collection years for
190 tip-calibration and assumes a relaxed molecular clock. It summarizes thousands of plausible coalescent
191 trees, and it has been extensively used to calculate evolutionary rates in various organisms (33—35). This
192 method yielded a substitution rate of 4.0x10™, with confidence ranges overlapping the above estimates
193 (95% Highest Posterior Probability Density [HPPD]: 3.2—4.7x|0'9).

194 Based on the similar results obtained with two very different methods, we can confidently say

195 that the substitution rate in the wild populations of HPGI is between 2 and 5 x107 site”! year'l.

196 To date the colonization of N. America by HPGI A. thaliana and to improve the description of
197 intra-HPG1 relationships compared to that from a NJ tree, we further used a Bayesian phylogeny. At
198 first sight, the 73 modern samples appeared separated from the herbarium samples (Fig. 3B), but the
199 superimposition of thousands of possible trees showed that the apparent separation of samples was less
200 clear near the root (Fig. 3A). Long terminal branches reflected that the majority of the variants are

201 singletons, typical of populations that expand after bottlenecks.

202 The mean estimate of the last common HPGI ancestor, the average tree root, was the year
203 1597 (HPPD 95%: 1519-1660) (Fig. 3A, B), and an alternative non-phylogenetic method gave a similar

204 estimate, 1625. Both estimates are older than a previously suggested date in the 19th century, using a
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205 laboratory mutation rate estimate and having no information from herbarium samples (25). Because
206 HPGI appears to have been the most abundant lineage in N. America since the 1860s, we believe it
207 could have been one of the first, if not the first colonizer that could establish itself in N. America. If that
208 is true, the time of coalescence of the HPGI diversity could be close to the time of HPGI introduction
209 to N. America. During the colonial period, many European immigrants settled on the East coast,
210 consistent with N. American A. thaliana lineages being genetically closest to British and coastal West
211 European populations (21). Coincidently, the oldest herbarium samples (12 out of the 27) were HPGI
212 and came from the East Coast, and we found a significant correlation between collection date and both
213 latitude and longitude (Fig. | C). This could indicate that after the colonization they moved from the East
214 Coast to the Midwest — the other main area of the distribution that experienced an agricultural
215 expansion in the |9th century (36). Still, these conclusions need to be treated with caution, since
216 regardless of the robustness of the results and our attempts to sample evenly from available collections,

217 there could be unknown biases in the [9t" century herbaria.

218 Mutation spectra across genome annotations

219 Although for dating divergence events a substitution rate expressed by years is ideal, in order to
220 compare substitution and mutation rates, both need to be expressed per generation. While A. thaliana is
221 an annual plant, seed bank dynamics generate a delay of average generation time at the population scale.
222 A comprehensive study of multiple A. thaliana populations in Scandinavia found that dormant seeds
223 could wait for longer than a year in the seed bank, generating overlapping generations and an delayed
224 average generation time of 1.3 years (37) with a notable variance across populations. Multiplication by
225 the mean generation time led to an adjusted rate of 2.7x10" substitutions site”! generation'I (95% CI
226 2.4-3.0x10"%) (Fig. 3E). To be able to compare this rate with a reference, we also re-sequenced mutation

227 accumulation (MA) lines in the Col-0 reference background grown under controlled conditions in the
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228  greenhouse that had been analyzed before with less advanced short read sequencing technology (38).
229 From the new re-sequencing data, we obtained an updated rate of 7.1x10" mutations site™!
230 generation” (95% ClI 6.3-7.9x10"%) (Tables S2, S3, Supplementary Text 4 and 7). This is two- to
231 three-fold higher than the per-generation estimate in the wild, but within the same order of magnitude.

232 The same holds for rates in different genome annotations, i.e. genic, intronic and intergenic regions, but

233 the confidence intervals overlapped in many cases (Table S3).

234 Differences in per-generation rates between laboratory and wild populations could stem from
235  both methodological as well as biological causes. For instance, if the true average generation time was
236 actually over 3 years / generation, the differences would cancel out (Fig. 3E). Limitations in mapping
237 structural variation in non-reference samples could lower the substitution rate, what explains that we
238 calculated an atypically low substitution rate in regions with transposable elements (see Supplementary
239 Text 7.2.1). Environmentally-driven effects that are not yet well understood, such as variable
240 methylation status of cytosines, which account for much of the variation in local substitution rates (39),

241 could increase or decrease the rate (see Supplementary Text 7.2.3, Fig. S4).

242 An alternative evolutionary explanation to the aforementioned laboratory and wild populations’
243 rates differences is that purifying selection in the wild would slow down the accumulation of mutations
244 by removing deleterious mutations (Fig. 3E). This has been observed before and is one of the accepted
245 causes of the discrepancy between the so called long- and short-term substitution rates in a range of

246 organisms (40).

247 In order to provide evidence for negative purifying selection acting in the wild, we performed
248 three types of analyses involving comparisons across genomic annotations within the HPGI dataset.
249 Firstly, by calculating contingency tables and computing a Fisher’s exact test, we compared the deviation

250 of expected and observed SNPs between coding regions (more likely under purifying selection), with
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251 intergenic regions, intronic regions, and all non-coding regions of genome. All three pairwise
252 comparisons showed a depletion of coding SNPs and an enrichment of intergenic, intronic and
253 non-coding SNPs (odds ratio>2, p<|0'|6). An obvious explanation is that in genome annotations where
254 a mutation is more likely to be deleterious, i.e. coding regions, the number of observed variants should

255 be lower due to selection having removed them from the population before we could sequence them.

256 Secondly, we studied the Site Frequency Spectrum (SFS) of genetic variants. The rationale was
257 that because purifying natural selection is more efficient at removing intermediate-frequency variants,
258  variants that tend to be deleterious or slightly deleterious should be found at lower frequency than
259  those that only suffer neutral drift (41). We built contingency tables of coding, intergenic, intronic and
260 non-coding variants segregating above and and below the conventional frequency cutoff of 5% to
261  separate low- and intermediate-frequency variants (42). We found that SNPs in coding regions were
262 more likely to be at low frequency than those in intergenic (odds ratio=2.34, p=3.09x|0'I I), intronic
263 (odds ratio=1.48, p=0.02), and all non-coding regions (odds ratio=2.05, p=|.29x|0'8). We carried out
264 the same analysis using nonsynonymous and synonymous SNPs, which are easily interpretable in terms
265  of the selection regimes under which they evolve. We did not find an enrichment (p=0.67), perhaps a

266 consequence of the small number of such mutations (Table S3).

267 Thirdly, to verify that the full frequency spectrum of coding SNPs was shifted to lower
268  frequencies (i.e. the results were not dependent on the arbitrary 5% frequency cutoff), we used the
269 nonparametric Kolmogorov-Smirnov test for two samples. We found that the cumulative distribution of
270 the site frequency spectrum (CDgg) of coding regions is above (i.e., the frequency distribution is overall
271 skewed to lower values) both the intergenic CDgpg (p=3.25x107®) and the non-coding regions CDgfg

272 (p=0.001), but not the intronic CDgpg (p=0.60) (Fig. S5). As in our previous analysis, the comparison
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273 between the nonsynonymous and synonymous CDggg yielded, likely for similar reasons, no differences

274 (p=0.53).

275 All in all, these results support that purifying selection is a force shaping to some degree the
276 diversity across the HPG| genome and might therefore as well contribute to the differences between

277 HPGI and MA rates.

278 Potentially advantageous de novo mutations

279 Finally, having discovered over 5,000 de novo mutations in the HPGI lineage, we wondered whether
280 there is any evidence for an adaptive role of these de novo mutations in the colonization of N. America
281 by HPGI. We noted that some new mutations had risen to intermediate or even high frequencies in the
282 HPG1 samples. This might have been the consequence of drift from stochastic demographic processes,
283 or it could have been caused by positive natural selection. To find direct evidence for the latter, we
284 grew the modern accessions in a common garden and studied phenotypes of known importance in
285  ecology of invasions (43), namely flowering time and root traits (see Supplementary Text 8). Using linear
286 mixed models, we calculated the proportion of variance explained (also called narrow sense heritability,
287 h2) with a kinship matrix of all SNPs that had become common (>5%, n=391). We found significant
288 heritable variation for multiple traits including the growth rate in length (h2=0.64) and the average root
289 gravitropic direction (h®=0.54). As in our study mutations are the main source of genetic variants, these
290 mutations — or mutations linked to them — should be responsible for significant quantitative variation
291 in several traits (Table S4, Supplementary Text 10). The existence of mutation-driven phenotypic

292 variation at least indicates that natural selection could have acted upon such phenotypic variation.

293 Although linkage disequilibrium (LD) among SNPs is high, the fact that HPG| genomes differ in
294 very few SNPs greatly reduces the list of candidate loci that might generate the observed phenotypic

295 variation (Fig. S6) (44). With this reasoning in mind and understanding the limitations imposed by LD, we
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296 carried out a genome-wide association (GWA) analysis and found 79 SNPs associated with one or more
297 root traits, mostly growth and directionality (Fig. 4). Twelve SNPs were in coding regions and seven
298 resulted in nonsynonymous changes — some producing non-conservative amino-acid changes and thus
299 likely to affect protein structure and/or function (Table |, based on transition scores from (45)). Due to
300 the aforementioned LD, in some cases the results of associations could not be confidently assigned to a
301 specific SNP and thus we report the number of other associated mutations with 2> 0.5 (Table 1, Fig.
302 S6). For other cases, we were able to pinpoint clear candidates that were not in LD with other SNPs
303 and whose functional annotation had a strong connection to the phenotype (Table I, Fig. Sé). For
304 example, one SNP associated with root gravitropism was not linked to any other SNP hit and it was
305  found at 40% frequency (top 3% percentile). This SNP produces a cysteine to tryptophan change in
306 AT5G19330, which is involved in abscisic acid response and confers salt tolerance when overexpressed
307 (46). Another nonsynonymous SNP associated with root growth is located in AT2G38910, which
308  encodes a calcium-dependent kinase that is a factor regulating root hydraulic conductivity and

309 phytohormone response in vitro (47,48).

310 Nineteen other SNPs were associated with climate variables after correction for latitude and

311 longitude (www.worldclim.org, Table S4), and generally tended to coincide with top root-associated

312 SNPs (odds ratio = 3.9, Fisher’s Exact test p = 0.002; Fig. 4, and Table S5). Specifically, this means that
313 alleles increasing root length and gravitropic growth were present in areas with lower precipitation, and
314 vice versa (Pearson’s correlation r=0.85, p=0.003). This indicates that phenotypic variation generated by
315 mutations coincides with environmental (and not geographic) gradients along the colonized areas.
316 Compared to other mutations with matched allele frequencies, root-associated mutations are first found
317 in older herbarium samples nearer to Lake Michigan (Fig. S5), the area in US that seems to be most

318 populated by A. thaliana (21). This could be explained by natural selection having maintained mutations
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319 with phenotypic effect for a longer time than neutral mutations or perhaps that this mutations were
320 selected for in a new environment. All in all our results are compatible with natural positive selection
321 having already acted on root morphology variation that was generated by de novo mutations in this
322 colonizing lineage. To confirm such hypotheses of local adaptation by de novo mutations, it will be
323 necessary to grow collections of divergent HPGI individuals in multiple contrasting locations over

324 several years, and ideally revive historical specimens to compare performance (49).

325 Conclusions

326 In summary, we have exploited whole-genome information from historic and contemporary collections
327 of a herbaceous plant to empirically characterize evolutionary forces during a recent colonization. With
328 this natural time series experiment we could directly estimate the nuclear substitution rate in wild A.
329 thaliana populations — a parameter difficult to characterize experimentally (9). This allowed us to date
330 the colonization time and spread of HPGI in N. America. We provide evidence that purifying selection
331 has already changed the site frequency spectrum in the course of just a few centuries. Finally, we
332 discovered that a small number of de novo mutations that rose to intermediate frequency can together
333 explain quantitative variation in root traits across environments. This strengthens the hypothesis that
334 some de novo variation could have had an adaptive value during the colonization and expansion process,
335 a hypothesis that has been put forward as one of the possible solutions to the genetic paradox of
336 invasion in plants (17). This process might be more relevant in self-fertilizing plants, which typically have
337 less diversity than outcrossing ones (50), but have higher growth rates (43) and account for the majority
338 of successful plant colonizers (5). While A. thaliana HPGI is not an invasive, i.e. harmful, species, it can
339 teach us about fundamental evolutionary processes behind successful colonizations and adaptation to
340 new environments. Our work should encourage others to search for similar natural experiments and to

341 unlock the potential of herbarium specimens to study “evolution in action”.
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2 METHODS

343
Sample collection and DNA sequencing

344 Modern A. thaliana accessions were from the collection described by Platt and colleagues (23), who
345 identified HPGI candidates based on 149 genome-wide SNPs (Table SI, Supplementary Text I).
346 Herbarium specimens were directly sampled by Max Planck colleagues Jane Devos and Gautam
347 Shirsekar, or sent to us by collection curators from various herbaria (Table S|, Supplementary Text I).
348 Among the substantial number of specimens in the herbaria of the University of Connecticut, the
349 Chicago Field Museum and the New York Botanical Garden, we selected herbarium specimens spaced in
350  time so there was at least one sample per decade starting from the oldest record (1863). The
351 differences in geographic biases of herbarium and modern collections are difficult to know (2), thus we
352 did choose both historic and modern samples that were as regularly distributed in space as possible, and
353 sample overlapping locations wherever possible. DNA from herbarium specimens was extracted as
354 described (51) in a clean room facility at the University of Tiibingen. Two sequencing libraries with
355 sample-specific barcodes were prepared following established protocols, with and without repair of
356 deaminated sites using uracil-DNA glycosylase and endonuclease VIII (refs. (52-54)) (Supplementary
357 Text 2). We also investigated patterns of DNA fragmentation and damage typical of ancient DNA (24)
358 (Supplementary Text 2). DNA from modern individuals was extracted from pools of eight siblings using
359  the DNeasy plant mini kit (Qiagen, Hilgendorf, Germany). Genomic DNA libraries were prepared using
360  the TruSeq DNA Sample or TruSeq Nano DNA sample prep kits (lllumina, San Diego, CA), and
361  sequenced on lllumina HiSeq 2000, HiSeq 2500 or MiSeq instruments. Paired-end reads from modern
362 samples were trimmed and quality filtered before mapping using the SHORE pipeline v0.9.0 (25,55).
363 Because ancient DNA fragments are short (Fig. S|) we merged forward and reverse reads for herbarium

364 samples after trimming, requiring a minimum of || bp overlap (51), and treated the resulting as
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365 single-end reads. Reads were mapped with GenomeMapper v0.4.5s (56) against an HPGI
366 pseudo-reference genome (25), and against the Col-0 reference genome, and SNPs were called with
367 SHORE for the HPGI pseudo-reference genome mappings (25,57) using different thresholds
368 (Supplementary Text 3). Average coverage depth, number of covered genome positions, and number of
369 SNPs identified per accession relative to HPGI are reported in Table SI. We also re-sequenced the
370 genomes of twelve Col-0 MA lines (57,58) (Table S2) (Supplementary text 4) to recalculate and update

371 the laboratory mutation rate from Ossowski et al. (38) with the newer sequencing technologies.

372 Phylogenetic methods and genome-wide statistics

373 We used the Pegas, Ape and Adegenet packages in R (59—61) to manipulate and visualize the genetic
374 distances of all samples as well as the HPGI subset (Supplementary Text 7). We constructed parsimony
375 networks using SplitsTree v.4.12.3 (62), with confidence values calculated with 1,000 bootstrap
376 iterations. We built Maximum Clade Credibility Trees using the Bayesian phylogenetic tools

377 implemented in BEAST v.1.8 (63) (see below).

378 We estimated genetic diversity as Watterson’s 0 (64) and nucleotide diversity T, and the
379 difference between these two statistics as Tajimas’s D (65) using DnaSP v5 (66). We estimated pairwise
380 linkage disequilibrium (LD) between all possible combinations of informative sites, ignoring singletons, by
381  computing 2, D and D' statistics using DnaSP v5 (66). For the modern individuals, we calculated the

382 recombination parameter rho (4N,r) also using DnaSP v5 (66).

383 substitution and mutation rate analyses

384 Similarly as in Fu et al. (67), we used genome-wide nuclear SNPs to calculate pairwise “net” genetic
385  distances using the equation Djj = Dic-Djc, where D/ is the net distance between a modern sample i

386 and a herbarium sample j; D;. the distance between the modern sample / and the reference genome ¢
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387  and ch is the distance between a modern sample (j) and the reference genome (c). We calculated a
388 pairwise time distance in years between the collection times, T'j, and calculated the linear regression: D'
389 = a+bT. The slope coefficient b describes the number of substitution changes per year. We used either
390 all SNPs or subsets of SNPs at different annotations (genic, intergenic etc.) appropriately scaled by
391 accessible genome length. Because the points used to calculate the regression are non-independent, a
392 bootstrap has been recommended to overcome to a certain extent the anti-conservative confidence

393 intervals (30) (Supplementary Text 7 and Fig. S3).

394 To fully account for the non-independence of points, we need to work with phylogenies. The
395 Bayesian phylogenetics approach we used is implemented in BEAST v1.8 (63) and is called tip-calibration,
396 and calculates a substitution rate along the phylogeny. Our analysis optimized simultaneously and in an
397 iterative fashion using a Monte Carlo Markov Chain (MCMC) a tree topology, branch length,
398 substitution rate, and a demographic Skygrid model (Supplementary Text 7). The demographic model is
399  a Bayesian nonparametric one that is optimized for multiple loci and that allows for complex
400 demographic trajectories by estimating population sizes in time bins across the tree based on the
401 number of coalescent - branching - events per bin (68). We also performed a second analysis run using a
402 fixed prior for substitution rate of 3x107 substitutions site”! year'I based on our previous net distance
403 estimate to confirm that the MCMC had the same parameter convergence, e.g. tree topology, as in the

404 first “estimate-all-parameters” run.

405 Having a substitution rate per year we can estimate the time to the most common recent
406 ancestor L solving d = 2L x py where dis the average pairwise genetic distance between our samples and
407 y is the calculated substitution rate from the distance method. This yielded 363 years, which subtracted
408 to the average collection date of the samples, produced a point estimate of 1615. We compare this

409 estimate with the inferred phylogeny root from the BEAST analysis.
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410 Inference of genome-wide selection

411 We separately analyzed sequences at different annotations, since as they might be under different
412 selection regimes (i.e. evolutionary constraints). VWWe computed one-tailed Fisher’s exact test using the
413 base stats package in R (69) on tables of counts of the total number of positions in the genome
414 annotated as a coding or non-coding (intergenic, intronic, all other noncoding) and the number of SNPs

415 of each annotation present in the HPGI dataset:

coding SNP ‘ all coding base pairs
non-coding SNP \ all non-coding base pairs

416 The test will return whether coding regions have a lower number of SNPs than other reference
417 annotation (intronic, interenic, all non-coding regions), as expected by the total number of positions in
418 the genome annotated as such. We also constructed contingency tables to test whether the SNPs are

419 more likely to be found at low (<5%) or intermediate (52%) frequency:

coding SNP low \ coding SNP intermediate
non-coding SNP low \ non-coding SNP intermediate

420 Finally, we calculated the unfolded Site Frequency Spectrum (SFS) based on the order of
421 appearance of genetic variants in the herbarium dataset. We then used the the Kolmogorov—Smirnov
422 two-samples test and 10,000 bootstrap resampling using the R package Matching v. 4.9-2 (ref. (70)) to
423 calculate whether the frequency spectrum was lower for coding SNPs than for other SNPs. Additionally,

424 we also repeated these analyses comparing nonsynonymous and synonymous mutations.

425 Association analysis

426 We collected flowering, seed and root morphology phenotypes for 63 accessions (Supplementary Text

427 8). For associations with climate parameters, we followed a similar rationale as previously described

428 (71). We extracted information from the bioclim database (http://www.worldclim.org/bioclim) at a 2.5


https://paperpile.com/c/yXDXuV/WRf5
http://www.sciweavers.org/tex2img.php?bc=White&fc=Black&im=jpg&fs=78&ff=txfonts&edit=0&eq=%5Cbegin%7Btabular%7D%7B%20c%7Cc%20%7D%0Dcoding%20SNP%20%26%20all%20coding%20base%20pairs%20%20%20%5C%5C%20%0D%5Chline%0Dnon-coding%20SNP%20%26%20all%20non-coding%20base%20pairs%20%20%20%0D%5Cend%7Btabular%7D%0D
http://www.sciweavers.org/tex2img.php?bc=White&fc=Black&im=jpg&fs=78&ff=txfonts&edit=0&eq=%5Cbegin%7Btabular%7D%7B%20c%7Cc%20%7D%0D%20coding%20SNP%20low%20%26%20coding%20SNP%20intermediate%20%20%20%5C%5C%20%0D%5Chline%0Dnon-coding%20SNP%20low%20%26%20non-coding%20SNP%20intermediate%0D%5Cend%7Btabular%7D%0D
https://paperpile.com/c/yXDXuV/6nvS
https://paperpile.com/c/yXDXuV/5XsnX
http://www.worldclim.org/bioclim
https://doi.org/10.1101/050203
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/050203; this version posted October 5, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Exposito-Alonso, Becker et al. de novo mutation rate in A. thaliana

429 degrees resolution raster and intersected it with geographic locations of HPGI samples (n = 100). We
430 performed association analyses under several models and p-value corrections using the R package
431 GeneABEL (72) (Supplementary Text 8.2). To calculate the variance of the trait explained by all genetic
432 variants, we used a linear mixed model: y = Xb + Zu + ¢ ; where y is the phenotype or climate variable,
433 X is the genotype states at a given SNP, b is the fixed phenotypic effect of such SNP, Z is the design
434 matrix of genome identities, v is the random genome background effect informed by the kinship matrix
435  and distributed as MVN (0, OgA), and ¢ is the random error term. The ratio of og/OTis commonly
436 called narrow sense heritability, “chip” heritability, or proportion of variance explained by genotype (73).
437 Only SNPs with MAF>5% (n=391) were used to build a kinship or relationship matrix A. Note that the
438 differences between any two genotypes were of the order of one or few dozens of SNPs. While this
439 approach is appropriate to calculate a chip heritability, it would not be very useful to detect significant
440 SNP, as the random factor accumulates all the available variation (Table S4). We therefore run regular
441 GWA model without kinship matrix: y = Xb + ¢ ; but generated a p-value empirical null distribution
442 based on running such model over 1,000 permuted datasets, which lead to conservative significance
443 calculation (Fig. S6, Data Appendix Sl). The p-values from running the association in the real data that
444 were below the 5% tail in the empirical distribution could be considered significant. However, we also
445 established a conservative “double” Bonferroni correction, where the significant threshold was lowered
446 to 0.01% (= 5% / [number of SNPs + number of phenotypes tested]). All significant SNPs are shown in
447 Table S5, and a subset in Table |. Although many phenotypic traits did not have significant SNPs, we

448 show all the QQ plots in the Data Appendix S| file.

449 Accession numbers. Short reads have been deposited in the European Nucleotide Archive under the

450 accession number XXXXX.
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451 Online Content This article contains supplementary information including data sets, extended

452 methods and supplementary figures at xxx.
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de novo mutation rate in A. thaliana

TABLES

Table I. Genic SNPs associated with different traits.

For nonsynonymous SNPs, the amino acid change and the Grantham score (ranging from 0 to 215),

which measures the physico-chemical properties of the amino acids, are reported. All SNPs in the table

were significant (p < 0.05) after raw p-values were corrected by an empirical p-value distribution from a

permutation procedure. * highlights those that also passed a double Bonferroni threshold, correcting by

number of SNPs and number of phenotypes (p < 0.0001). LD corresponds to how many other SNP hits

are in high linkage (r2>0.5). Table S5 contains information on all significant SNPs and Table S4 for details

on phenotypes and climatic variables.

Trait Location Gene Anno- Protein aa change LD Bonf.

T (chr-bp) tation

G 1-958,948 ATIGO038I0 nonsyn Oligonucleotide binding ~ A>P, 27 53

D 1-13,994,958 ATI1G36933  transposon Copia 49

S 1-20,324,050 AT1G54440 intronic RRP6-LIKE | I =
D 1-23,648,407 ATI1G63740 nonsyn TIR-NLR family Y>S, 144 46

G 2-358,395 AT2G01820  syn RLK family 43 =
G 2-585,918 AT2G02220  syn PSKRI 42 *
G 2-6,034,545 AT2G14247  syn Expressed protein 38 &
G 2-7,047,529 AT2G16270  nonsyn Unknown protein P>A, 27 37 *
G 2-7,186,220 AT2G16580 intronic SAURS 36 =
G 2-10,495,275  AT2G24680 intronic B3 family 34 *

27
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G 2-12,415,084 AT2G28900 intronic OEPI16 32
S 2-16,039,488 AT2G38290 3'UTR AMT2 8 *
S 2-16,247,290 AT2G38910 nonsyn CPK20 A>G, 60 7 <
G 2-16,333,662 AT2G39160 nonsyn Unknown protein A>G, 60 29
G 3-2,500,258 AT3G07830 syn PGA3 28 <
G 3-3,629,794 AT3GI11530 intronic VPS55 26 *
G 3-4,269,626 AT3GI3229 5'UTR DUF868 domain 25 &
D 3-11,873,293  AT3G30219  transposon Gypsy 0
G&D 4-4228,138 AT4G07440 transposon Oligonucleotide binding 19
G &D 4-9,046,942 AT4GI15960 nonsyn Alpha/beta-hydrolase A>Q, 24 18
G&D 4-15646,341 AT4G32410 syn ANY | 15
G 4-15,845,001 AT4G32840 3'UTR PFKé 14
D 5-4245213 AT5GI13260 syn Unknown protein 12
D 5-4,500,202 AT5GI3950 nonsyn Unknown protein A>G, 60 I
G 5-4,797,923 AT5G14830 transposon Retrotransposon 10
G 5-6,508,329 AT5G19330  nonsyn ARIA C>W, 215 0
G 5-11,090,365 AT5G29037 transposon Gypsy 4
G 5-12,312,975 AT5G32630 pseudogene - 3
G 5-12,358,159  AT5G32825 transposon CACTA 2
S 5-16,024,197 AT5G40020 intronic Thaumatin superfamily 2 *
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845 TTraits with significant associations were root gravitropism (G), size (S), or low summer precipitation.
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Figure |. Geographic location and temporal distribution of HPGI| samples.

848  (A) Sampling locations of herbarium (blue) and modern individuals (green). (B) Temporal distribution of
849 samples (random vertical jitter for visualization purposes). (C) Linear regression of latitude and
850 longitude as a function of collection year (p-value of the slope and Pearson correlation coefficient are

851  indicated).
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Figure 2. Relationship among herbarium and modern samples.

(A) Neighbor joining tree with all 123 samples (dots) and rooted with the most distant sample. The

black clade of almost-identical samples is the HPGI lineage. Scale line shows the equivalent branch

length of over 25,000 nucleotide changes. (B) Neighbor joining tree only with the HPGI black clade

from (A). Colors represent herbarium (blue) and modern individuals (green). Scale line shows the

equivalent branch length of 80 nucleotide changes. Note that no outgroup was included. (C, D)

Network of samples using the parsimony splits algorithm, before (C) and after (D) removing three

intra-HPG| recombinants (in red). Note that the network algorithm returns in (D) a network devoid of

any reticulation, which indicates absence of intra-haplogroup recombination.
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Figure 3. Substitution rates.
(A) Bayesian phylogenetic analyses employing tip-calibration. A total of 10,000 trees were superimposed
as transparent lines, and the most common topology was plotted solidly. Tree branches were calibrated

with their corresponding collection dates. (B) Maximum Clade Credibility (MCC) tree summarizing the
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trees in (A). Note the scale line shows the equivalent branch length of 50 nucleotide changes. The grey
transparent bar indicates the 95% Highest Posterior Probability of the root date. (C) Regression
between pairwise net genetic and time distances. The slope of the linear regression line corresponds to
the genome substitution rate per year. (D) Substitution spectra in HPGI samples, compared to
greenhouse-grown mutation accumulation (MA) lines. (E) Comparison of genome-wide, intergenic,
intronic, and genic substitution rates in HPG| and mutation rates in greenhouse-grown MA lines.
Substitution rates for HPG| were re-scaled to a per generation basis assuming different generation
times. Confidence intervals in HPGI substitution rates were obtained from 95% confidence intervals of

the slope from 1,000 bootstraps (Table S4 for actual values).

33


https://doi.org/10.1101/050203
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/050203; this version posted October 5, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Exposito-Alonso, Becker et al. de novo mutation rate in A. thaliana

20 21 22 23 24 25 26 27 28 29

15

10 20
T T |

0

15

I T T T T T T T T T T T T T T T T T T T T T T T 1
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

#SNPs/ 100 kb
10 20
o
N
w

0

20

10

I 1 1 T I 1 1 I I 1 1 I I T 1 1 I T I 1 1 T I I 1 1 I 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Position (Mb)

874
Figure 4. Density of SNPs along all chromosomes and location of GWAS hits

875 Black line shows number of SNPs per 100 kb window. Centromere locations are indicated by grey
876 shading. Vertical lines indicate SNPs associated with root phenotypes (red) and climatic variables (blue)

877  (Table | and Table S5).
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I. Sample collection and preparation

Seeds from modern accessions (Table SI) were bulked at the University of Chicago. Progeny for
DNA extraction was grown at the Max Planck Institute for Developmental Biology. Ve used 2 to 8

mm? of dried tissue for destructive sampling from the herbarium specimens (Table SI).

2. Authenticity of aDNA

First, unrepaired sequencing herbarium libraries were screened for authenticity by sequencing at low
coverage on lllumina HiSeq 2500 or MiSeq instruments. To verify the DNA retrieved from historical
samples of A. thaliana was authentic, we checked the percentage of endogenous DNA of the sample
(Fig. SIA) as well as typical postmortem DNA damages: high fragmentation of DNA (Fig. SI1B),
enrichment of substitution from C to T at the first base pair (Fig. SIC) as well as purine enrichment
at breakpoints of DNA fragments (Fig. SID) (for details see (I)). Sequencing to produce the final
genomes (101 bp paired end) was carried out on an lllumina HiSeq 2000 instrument after DNA
repair by uracil-DNA glycosylase (2—4). For a detailed analysis of authenticity in a fraction of our

samples, see Weiss et al. ().

3. SNP calling thresholds

To assess the effect of SNP calling thresholds on the mutation rate, we employed three different
SHORE v0.9.0 quality thresholds following previous work (see Table S4 from (5)): allowing at most
one intermediate penalty in all strains (most stringent threshold; “32-32”); requesting that at least
one strain had at most one intermediate penalty, while all others were allowed up to two high and
one intermediate penalties (intermediate stringency, “32-15"); and finally allowing one high and one
intermediate penalty for all strains (most lenient stringency, “24-24"). On top of that, we would
either allow missing information per SNP in up to 50% of accessions, or request complete
information (0% missing rate). Thus, the most rigorous case would be 32-32 quality and 0% missing
rate, and the most relaxed 24-24 quality and 50% maximum missing rate. Substitution rate
calculations (section 7.2) were done for datasets from all combinations of these quality parameters
(Fig. S3), and we chose the regular 32_15 quality threshold and complete information for the final

estimate (Fig 3 C, E).

4. Resequencing of Col-0 Mutation Accumulation lines
We also sequenced the genomes of twelve greenhouse-grown mutation accumulation (MA) lines,
including ten that had been sequenced at lower coverage before (5,6) (Table S2). We called SNPs,

indels and structural variants (SVs), following the workflow and parameters described (7), but


https://paperpile.com/c/ykFeHF/hUgw
https://paperpile.com/c/ykFeHF/Vex4+o48f+rQ45
https://paperpile.com/c/ykFeHF/hUgw/?noauthor=1
https://paperpile.com/c/ykFeHF/G4mAl/?locator=Table%20S4%20
https://paperpile.com/c/ykFeHF/G4mAl+j5utH
https://paperpile.com/c/ykFeHF/lzT2M
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74 without iterations. This procedurérestletd- WP 2,205 BRIgPACFERISMs shared by all lines, indicating
75 errors in the reference sequence (12% of variants replaced N's in the TAIR9 genome) or genetic
76 differences in the founder plant of the MA population compared to the Col-0 reference genome. In
77 addition, we identified 388 segregating variants across the twelve lines (Table S2), of which 350 were
78 singletons. This analysis revealed on average 25.5 SNPs, 4.9 deletions and 3.2 insertions per MA line
79 at the 31* generation (Table S2), compared to 19.6 SNPs, 2.4 deletions and 1.0 insertions previously
80 detected in the 30" generation with shorter read length and lower read depth (8). The genome
81 length accessed in this sequencing effort, 115,954,227 bp, was used to scale the number of point

82 mutations to a rate of 7.1 x 10° mutations site” generation (Table S3, Fig. 3E).

83 5. Identification of bona fide HPGI accessions and mutations

84 5.1 HPGI and other haplogroups in North America

85  The modern samples had been originally selected based on previous genotyping efforts of about
86 2,000 N. American accessions with for 149 nuclear, intermediate-frequency SNPs. This work had
87 pointed to there being a single haplogroup, HPGI, that was invariant at these 149 markers and that
88  accounted for about half of N. American individuals genotyped (9). We extracted from the 123
89  genomes we had completely sequenced the same 149 SNPs and built a neighbour joining tree (Fig.
90 SIA). We also built the same tree with the whole-genome sequences (Fig. SIB), which was mostly in
91 agreement with the 149 SNP tree.

92 The previous work had identified several other haplogroup in N. America (9). Not
93 surprisingly, HPGI individuals outcross with other lineages, and this accounts for some of the
94 individuals which we later removed, because they did not agree completely in all 149 markers with

95 the HPGI consensus.

96 5.2 North american private diversity
97 Having identified these bona fide HPGI individuals, we wanted to confirm that the diversity has a
98  legitimate origin from de novo mutations. For that we used the 100l Genomes resource

99 (www.100Igenomes.org), which covers a sampling of populations from the native Eurasian and

100 African range. Subsetting the genomes from this resource to only European accessions, and limiting
101 the SNP set to those with 21% frequency of alternative alleles and a maximum of 50% missing data
102 (the same quality rate as our HPGI| SNP call), there were 300 variants out of all 5,181 HPGI variants
103 that were also found in Europe or Asia (5.7%). Changing the maximum missing data to 10% we get a
104 more conservative estimate of 1.8% overlap, while increasing the maximum missing data to 90%, we
105 get the anti-conservative estimate of 6.5% overlap. Only one of the reported SNPs associated with

106 phenotypes (see Section 8) was among these shared variants.


https://paperpile.com/c/ykFeHF/5rf4b
https://paperpile.com/c/ykFeHF/WUner
https://paperpile.com/c/ykFeHF/WUner
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107 There are several scenarios¥HatB¢aNeXPI4in BHE3ESRAHSE"SNPs. One is simply that there was
108 not a single founding seed, but a few of closely related individuals coming from the native range.
109 Other explanations are that parallel mutations occurred in North America and Eurasia, that HPGI
110 individuals were reintroduced to Europe, or that reversion-mutation occurred in some HPGI
111 individuals. The latter is not implausible given the large population size of the species and the fact
112 that about 10% of all sites in the genome are SNPs in the 1001 Genomes collection. As explained in
113 the main text, SNP sharing due to admixture with other lineages is extremely unlikely, as such cases
114 should be evident as blocks of high SNP diversity along the genome (Fig. 4).

115 Finally, regarding chloroplast diversity, we did not find any SNP in the chloroplast of HPGI
116 individuals. This is probably because chloroplast mutation rates are much slower (10) and because
117 the founder colonizers actually came from a small batch of seeds from an identical mother

118 (chloroplast diversity in the native range is of 2,842 SNPs (I 1)).

119 6. Extent of linkage disequilibrium and recombination

120 We estimated pairwise linkage disequilibrium (LD) between all possible combinations of informative
121 sites, ignoring singletons, by computing %, D and D’ statistics. LD decay was estimated using a linear
122 regression approach. Linkage disequilibrium parameter |D’| did not decay with physical distance
123 (intercept = 0.99, slope = 0.00) among all SNP pairs. Indeed 99.975% of pairwise SNP comparisons
124 had |D'|=1 meaning that 99.975% of those comparisons only three out of the four possible gametes
125 (ab, aB, Ab, AB) are found and thus mutation alone can explain their existence without the need of
126 invoking recombination. In other words, such three gametes can be represented in a tree structure.

127 LD and recombination related statistics were determined using DnaSP v5 (12).

128 7. Substitution and mutation rate analyses

129 7.1 Greenhouse grown MA lines

130 Mutation rates were estimated for each 3[*

generation greenhouse-grown MA line (5) as the
131 number of mutations divided by the total bp length of the genome (or a given annotation) and by 31
132 generations (the two MA lines with only three generations were excluded from this analysis). Mean
133 and confidence intervals across lines are reported (Table S3). The genome length was determined as
134 all base pairs with coverage higher or equal to 3, and a SHORE mapping quality score of at least 32 in

135 one sample (Table S2).


https://paperpile.com/c/ykFeHF/2upg
https://paperpile.com/c/ykFeHF/z8Ia
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136 7.2 Natural populations of HPGI
137 7.2.1 Net distances

138 For the “net genetic distances” method, we computed confidence intervals of the b regression slope
139 coefficient (D' = a+bT') using a bootstrap with replacement of 1,000 samples to avoid over-confident
140 confidence intervals due to lack of independence of points (I3). We used either all SNPs or SNPs at
141 specific annotations to calculate different substitution rates and scaled the slope into a per-base rate
142 using all positions (of the given annotation) that passed alternative or reference call quality thresholds
143 rather than using a single value of genome length (Table S3). For all annotations we calculated
144 substitution rates with three quality thresholds and either full information per SNP or allowing a
145 maximum of 50% missing accessions per SNP (see Section 3 and Fig. SIC).

146 For some annotations substitution rates were not reliable. For instance, in 3’ and 5> UTR
147 regions, we did not have enough mutations (on average ~| SNP difference between any pair), and
148 thus do not report these regions’ rates. We could also have less power to discover SNPs in
149 annotations with extensive structural variation such as active transposable elements (14).
150 Transposons, which comprise ~8% of the genome and ~19% of all the SNPs in greenhouse MA lines,
151 had fewer SNPs called than expected in HPGI. This would explain the atypically low transposon

152 substitution rate (Table S3). Therefore, transposon substitution rates in HPGI cannot be trusted.

153 7.2.2 Bayesian tip-calibration

154 For the second approach to estimate a substitution rate, the Bayesian phylogenetics tip-calibration
155 approach, we performed systematic runs and chain convergence assessments of different
156 demographic and molecular clock models. We found the Skygrid demographic model (15) and the
157 lognormal relaxed molecular clock (16) the most appropriate models. Under a relaxed molecular
158 clock, the substitution rate is allowed to vary across branches with a lognormal distribution. The
159 prior used for molecular clock was a Continuous-Time Markov Chain (CTMC) (15,17). The analysis
160 was carried out remotely at CIPRES PORTAL (v3.| www.phylo.org) using uninformative priors. The
161 run took about 1,344 CPU hours and performed 1,000 million steps in a Monte Carlo Markov Chain
162 (MCMC), sampling every 100,000 steps. Burn-in was adjusted to 10% of the steps. To visualize the
163 tree output we produced a Maximum Clade Credibility (MCC) tree with a minimum posterior
164 probability threshold of 0.8 and a 10% burn-in using TreeAnnotator (part of BEAST package), and
165 visualized the MCC tree using FigTree (tree.bio.ed.ac.uk/software/figtree/) (Fig. 3B). Additionally, we

166 used DensiTree (18) to simultaneously draw the 10,000 BEAST trees with the highest posterior
167 probability (Fig. 3A). Since all trees were drawn transparently, agreements in both topology and

168 branch lengths appear as densely colored regions, while areas with little agreement appear lighter.
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169 7.2.3 Methylation status of mutated sites

170 As in many other species, the spectrum of de novo mutations in the greenhouse-grown A. thaliana
171 MA lines is biased towards G:C—A:T transitions (8), leading to an inflated transition-to-transversion
172 ratio (Ts/Tv). This bias is less pronounced in recent mutations in a Eurasian collection of natural
173 accessions (Fig. 5A of (19) and in HPGI accessions (Fig. 3D). A recent multigenerational salt stress
174 experiment in the greenhouse also showed a more balanced Ts/Tv (20). These findings indicate that
175 less benign conditions might promote a lower Ts/Tv, and one possible cause are methylation
176 patterns, known to change under different environments (21).

177 We interrogated the potential evolutionary role of cytosine methylation in the mutability of
178 cytosine bases in the HPGI accessions. For reference DNA methylation data, we used previously
179 generated bisulfite-sequencing data of HPGI strains (7) and of Col-0 MA lines (5), respectively. For
180 both datasets, methylation status was calculated as the fraction of reads with methylated cytosines by
181 the total number of reads at a certain cytosine position in the genome. Our rationale was that if
182 methylation affected mutability, the degree of methylation at positions were we find a new mutation
183 should be higher. To be sure that a given site in HPGI was a new mutation, we only considered
184 positions for which we could determine that state by alignment to the A. lyrata genome (22). The
185 “tested sites” were positions in HPGI that had a mutation both from A. lyrata and A. thaliana Col-0.
186 These positions can be of two kinds, “fixed” if all HPGI individuals carry the alternative, or
187 “segregating” if both reference and alternative alleles exist in HPGI. As control, “control set”, we
188 used cytosine positions that did not vary across HPGI, A. lyrata and A. thaliana. To produce the
189 methylation distribution of the control set we randomly chose 1,000 invariant cytosine positions. For
190 the test sets, we averaged the methylation degree and compared it with the control distribution.

191 Ancestral cytosines with higher methylation in both A. thaliana Col-0 reference and HPGI
192 pseudo-reference methylome datasets were more likely to mutate to thymines in HPGI (Fig. S2
193 A-D). Additionally, the methylation degree at substitutions inside genes was higher in the HPGI
194 methylome (Fig. S2 B,D). While some C—T changes could be explained by higher spontaneous
195 deaminations known to happen more often at methylated cytosines, also C—A/G substitutions were
196 more likely to have been methylated. If this process is common enough, the Ts/Tv ratio should
197 decrease. We are far from understanding differences in Ts/Tv in natural and controlled conditions,

198 but definitely methylation status seems to have a strong statistical connection with mutability.
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199 8. Phenotypic association analyses and dating of newly arisen mutations
200 8.1. Phenotyping
201 8.1.1 Root

202 Fifteen root phenotypes were scored for = 10 replicates per genotype over a time-series experiment
203 at the Gregor Mendel Institute in Vienna, using image analysis as described in detail elsewhere (23).

204 We used the means per genotypes and per time series for association analyses.

205 8.1.2 Seed size

206 WVe spread the seeds of given genotypes on separate plastic square 12 x 12 cm Petri dishes. For
207 faster image acquisition we used a cluster of eight Epson V600 scanners. The scanner cluster was
208 operated by the BRAT Multiscan image acquisition tool

209 (www.gmi.oeaw.ac.at/research-groups/wolfgang-busch/resources/brat/). The resulting 1600 dpi images

210 were analyzed in Fiji software. Scans were converted to 8-bit binary images, thresholded
211 (parameters: setAutoThreshold("Default dark”); setThreshold(20, 255)) and particles analyzed
212 (inclusion parameters: size=0.04-0.25 circularity=0.70-1.00). The 2D seed size was measured in
213 square millimeters (parameters: distance=1600 known=25.4 pixel=1 unit=mm) for 2 plants per

214 genotype, > 500 seeds per plant.

215 8.1.3 Flowering in the growth chamber

216 WVe estimated the flowering time in growth chambers under four vernalization treatments (0, 14, 28
217 and 63 days of vernalization). We grew 6 replicates per accession divided between two complete
218 randomized blocks for each treatment. Seeds were sown on a |:I mixture of Premier Pro-Mix and
219 MetroMix and cold stratified for 6 days (6°C, no light). We then let plants germinate and grow at
220 I18°C, 14 hours of light, 65% humidity. After 3 weeks, we transferred the plants to vernalization
221 conditions (6°C, 8 hours of light, 65% humidity). After vernalization, plants were transferred back to
222 long day conditions. Trays were rotated around the growth chambers every other day throughout
223 the experiment, under both vernalization and ambient conditions. Germination, bolting and flowering
224 dates were recorded every other day until all plants had flowered. Days till flowering or bolting times
225 were calculated from the germination date until the first flower opened and until the first flower bud
226 was developed, respectively. The average flowering time and bolting time per genotype were used for

227 association analyses.
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228 8.1.4 Fecundity in the field aCC-BY-NC-ND 4.0 International license.

229 To investigate variation in fecundity in natural conditions, we grew three replicates of each accession
230 in a field experiment following a completely randomized block design. Seeds were sown from
231 09/20/2012 to 09/22/2012 in 66-well trays (well diameter = 4 cm) on soil from the field site where
232 plants were to be transplanted. The trays were cold stratified for seven days before being placed in a
233 cold frame at the University of Chicago (outdoors, no additional light or heat, but watered as needed
234 and protected from precipitation). Seedlings were transplanted directly into tilled ground at the
235 Warren Wood field station (41.84° N., 86.63° W.), Michigan, USA on 10/13/2012 and 10/14/2012.
236 Seedlings were watered-in and left to overwinter without further intervention. Upon maturation of
237 all fruits, stems were harvested and stored between sheets of newsprint paper. To estimate the
238 fecundity, stems were photographed on a black background and the size of each plant was estimated
239 as the number of pixels occupied by the plant on the image. This measure correlates well with the
240 total length of siliques produced, a classical estimator of fecundity in A. thaliana (Spearman’s

241 rho=0.84, p-value<0.001, data not shown).

242 8.2 Quantitative genetic analyses

243 For 63 modern accessions, we measured time to bolting and flowering, seeds per plant, seed size,
244 and 15 root phenotypes in common chamber or common garden settings. For all 100 accessions,

245 climatic information from the bioclim database (www.worldclim.org/bioclim) was extracted using

246 their geographic coordinates. For historic samples, some locations were only known by county

247 name. In this case we assigned the geographic coordinate location of the centroid of the county.

248 8.2.] Heritability

249 We performed association analyses using the R package GenABEL (24), with measured phenotypes
250 (p = 25) and climatic variables (c = 18) as response variables and SNPs as explanatory variables. A
251 Minimum Allele Frequency (MAF) cutoff of 5% was used. The number of assessed SNPs was 391 in a
252 dataset of only modern samples but with imputed genotypes for missing data using Beagle v4.0 (25),
253 and 456 SNPs with a dataset of modern and historic samples, without imputation. For all
254 associations, at least 63 individuals were genotyped for a specific SNP. We first investigated broad
255 sense heritability (H?) of each trait using ANOVA partition of variance between and within lines using
256 replicates (Table S4). Significance was obtained by common F test in ANOVA. Secondly we used the
257 polygenic_hglm function to fit a genome wide kinship matrix to calculate a narrow sense heritability
258 estimate (h). This fits a model of the type y = Zu + ¢ (see Main text Methods). Significance was
259 calculated employing a likelihood ratio test comparing with a null model. In principle, A’ is a

260 component of H then its values should theoretically be h”> < H% That is not our case. Our result
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261 cannot be interpreted in this frame¥W&TRY HARDAE BETIHBH SPBoth was not done with the same
262 samples: for the h? calculation we employed genotype means whereas for the H’ we used multiple
263 replicated measurements per genotype. The averaging of replicates per genotype in A’ reduced
264 environmental and developmental noise and thus we would expect A>>H. We did this so the climatic

265  estimates of h% for which we only have one value per genotype, would be comparable with the

266 phenotypic h®ones (Table S4).

267 822 Linear Models

268 For association analyses we first employed a linear mixed model that fitted the kinship matrix using
269 the mmscore function. This model is of the type: y = Xb + Zu + € (see Main text Methods) (26).
270 Only three significant SNP hits were discovered using a 5% significance threshold after False
271 Discovery Rate correction (FDR). This was expected since we have few variants and these would
272 have originated in an approximated phylogeny structure. We concluded that fitting the kinship matrix
273 in our model was not appropriate since there would be no residual variation for association with
274 specific SNPs. With this rationale we employed a fixed effects linear model using the gtscore function
275 (27). This model is of the type: y = Xb + £ ; where no random effect of genome background is fit. To
276 reduce the risk of having false-positives, we took a conservative permutation strategy by carrying out
277 association with over 1,000 randomized datasets (permuting phenotypes across individuals) and used
278 the resulting empirical p-value distribution to correct p-values estimated with the original dataset.
279 SNPs with p-values below 5% in the empirical p-value distribution should be considered significant
280 (but see next section). In climatic models, we included longitude and latitude as covariates to correct
281 for any spurious association between SNPs and climate gradients created by the migratory pattern of

282 isolation by distance.

283 8.2.3 Evaluation of significance

284 Significant SNPs were interspersed throughout the genome (Fig. 4) and their p-values and phenotypic
285  effects did not correlate with the minimum age of the SNPs nor with their allele frequency,
286 something that could have indicated that the significance was merely driven by the higher statistical
287 power of intermediate frequency variants. Using QQ plots to assess inflation or deflation of p-values,
288 we observed generally that permutation corrected p-values were deflated — another evidence of
289 our conservative strategy. Straight horizontal series of points in QQ plots indicate that multiple
290 SNPs have identical p-values, a pattern that we attributed to long range LD, i.e. lack of independence

291 (see Data Appendix S| for trait distributions and QQ plots from each association analysis).
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292 To further ensure that werQvdiddy--Piké PosHITEC AR S we also prioritized SNPs whose
293 empirical p-value was not below 5% only but also below 5% / (number of SNPs + number of traits) =

294 0.01%. This “double” Bonferroni correction was very conservative (Table |, Table S5).

295 824 Context of de novo mutations associated with phenotypes

296 For each SNP in our dataset, we determined the ancestral and derived states, by identifying which
297 allele was found in the oldest herbarium samples. We compared the time of emergence and the
298  centroid of geographic distribution of the alternative alleles of SNP hits to random draws of SNPs

299 with the same MAF filtering (5%) (Fig. SI).

300 825 Functional information

301 On top of phenotypic and climatic associations of SNP hits, we also provide a likely functional effect
302 employing a commonly used amino acid matrix of biochemical effects (28). Functional information of
303 gene name and ontology categorization of SNP  hits was obtained from
304  www.arabidopsis.org/portals/genAnnotation/gene_structural_annotation/annotation_data.jsp and

305  www.arabidopsis.org/tools/bulk/go/ (Table | and Table S5).

306 8.2.6 Proof of concept examples

307 We argue that the power of our association approach relies on the fact that HPGI lines resemble
308 Near Isogenic Lines (NILs) produced by experimental crosses (29) (Fig. S2A). Similar to
309 genome-wide association studies (GWA), power depends on many factors, namely the noise of
310 phenotype under study, architecture of phenotypic trait, quality of genotyping, population structure,
311 sample diversity, sample size, allele frequency, and recombination. On one hand, association analyses
312 in NILs suffer from large linkage blocks, but confident results can be achieved due to accurate
313 measurement of phenotypes, limited genetic differences between any two lines, and high quality
314 genotypes. In common GWA studies such as in humans, there are multiple confounding effects.
315 Among the confounders are (I) that any two samples differ in hundreds of thousands of SNPs, and
316 (2) that historical and geographic stratification produce non-random correlations among those SNP
317 differences. This considerably complicates the identification of phenotypic effects at specific genes,
318  and power relies greatly on large sample sizes to achieve the sufficient number of recombination
319 between markers.

320 To provide support for the non-synonymous SNP on chromosome 5, at position 6,508,329
321 in AT5G19330, we looked for pairs of lines that carry the ancestral and the derived allele, but that
322 differ in few (or no other) SNPs in the genome. When considering all genic substitutions with a

323 minimum allele frequency of 5% (Fig. S2A), we identified 20 pairs of lines differing only in the
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AT5G 19330 SNP and another linked*SNIP-{iotfRdd Sieadiffét'dieehromosome, association p-value >
0.4). The phenotypic differences in mean gravitropic score of these almost-identical pairs were
significantly higher than phenotypic differences among all pairs of HPGI lines, and genetically identical
pairs attending to substitutions inside genes (Fig. S2A). Furthermore, this SNP was not in complete
linkage with any other SNP hit (* < 0.5) (Fig. S2D). The same approach was used to examine the
SNPs in AT1G54440 (Fig. S2E) and AT2G 16580 (Fig. S2F), which represent an intermediate and a high

LD example.
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398  Table SI. HPGI sample information.

399 Table S2. Sample information for Col-0 mutation accumulation lines.

400 Table S3. Mutation rate estimates for different annotations in HPG| and mutation accumulation
401 lines.

402 Table S4. Description of phenotypic and climatic variables for association mapping analyses.

403 Table S5. SNP hits from association analyses and several descriptors.

404 Data Appendix SI: For each trait employed in association analyses, we report the histogram
405 distribution and the QQ plot of p-values to ensure that no trait departs exaggeratedly from the
406 normal distribution, and that no inflation of p-values is observed (when lambda < |, there is no

407 inflation of false positives).
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Fig S1. Ancient-DNA characteristics of unrepaired herbarium libraries.

(A) Fraction of A. thaliana DNA in sample. (B) Median length of merged reads. (C) Fraction of
cytosine to thymine (C-to-T) substitutions at first base (5’ end). (D) Relative enrichment of purines
(adenine and guanine) at 5’ end breaking points. Position -1 is compared with position -5 (negative

numbers indicate genomic context before upstream reads’ 5’ end).
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Fig S2. Separation between HPGI and other North American lineages.

(A) Neighbor-joining tree built using lllumina-based SNP calls at the 149 genotyping markers
originally used to identify HPGI| candidates. HPGI accessions are shown in black, whereas other
North American lineages are depicted in red (see explanation below for four HPG1-like accessions).
(B) Neighbor-joining tree based on genome-wide SNPs. Accessions colored as in (A). Note that
three accessions originally classified as HPG| based on 149 SNPs (A) are placed outside this clade. A
further accession (BRR7) within the HPGI| main branch was a recombinant removed from the

analysis.
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422 Fig S3. Substitution spectrum and rates.

423 (A) Site frequency spectrum for all transitions and transversions. (B) Distributions of “net” pairwise
424 genetic distances between historic and modern samples used to calculate mutation rates per
425 genomic annotation (from quality 32_15 and complete information per site). UTRs were excluded
426 because of the small number of SNPs. (C) Mutation rates calculated for different genomic
427 annotations and quality thresholds (32_32, 32_15, 24_24) and missing values (NA50: maximum 50%

428 missing data per SNP; COMPL: missing data 0%). Mean and 95% confidence intervals are shown.
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429 Fig S4. Relationship between methylation and substitutions.

430 (A, B) Fraction of methylation of cytosines in HPG| pseudo-reference(7) at intergenic (A) or coding
431 regions (B). (C, D) Fraction of methylation of cytosines in Col-0 reference genome(5) at intergenic
432 (C) or coding regions (D). In each of the four comparisons, a grey histogram represents distribution
433 of methylation of 1,000 random sets of invariant cytosines. Lines represent average methylation

434 degree at those sites in HPGI that changed from cytosine to thymine (red). We differentiate those

19
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substitutions that are shared - fixedCGErONE-AIP hAWIERACTRGIENEd) or whose allele are present at
an intermediate - segregating - frequency (dark red). Likewise, average methylation is shown for sites
that changed from cytosine to adenine (blue) that that are fixed (light blue) or segregating (dark
blue). The fact that the average methylation is higher in new substitutions than in invariant positions

supports a connection between methylation and mutability of sites.
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440 Fig S5. Comparison of Site Frequency Spectra across genomic annotations.
441 Cumulative empirical distribution, at different genomic annotations, of the unfolded Site Frequency

442 Spectrum of SNPs oriented based on the order of appearance of alleles in the herbarium genomes.
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Fig S5. Spatial and temporal emergence of root-associated mutations.

(A) Age distribution of derived SNPs with a significant trait association (the herbarium sample in
which they were first recorded) (red), compared with genome-wide SNPs with at least 5% minor
allele frequency (grey), or without frequency cutoff (black). (B) Spatial centroid of all samples
carrying a derived allele. Since it is an average location, centroids can be in a body of water. Ten
random draws of 50 SNPs for each category were used to produce the density lines in (A) and

points in (B).
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Fig S6. Linkage disequilibrium of significant SNPs.
(A-F) Linkage disequilibrium between SNPs with significant trait associations. Histogram of genetic
distances (A) between samples when evaluating only coding regions at 5% minimum allele frequency.
Linkage disequilibrium between SNP hits measured as r* (B) and D' (C). Three significant SNPs were
further studied to exemplify the power of association analyses with HPGI. For each, phenotypic
differences between accessions that differ in the focal SNP and that are otherwise virtually genetically
identical are compared both with all pairs of accessions and with pairs of accessions completely
identical for coding regions. Below each violin plot is the histogram of linkage disequilibrium of the
focal SNP with all other SNP hits. The three focal SNPs evaluated are located in AT5G19330 (D),
AT 1G54440 (E) and AT2G 16580 (F).
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Table S1. Sample information.

(Abbreviation H* indicates herbarium samples that cluster with the mo

dern HPG1 clade rather than the historic HPG1 clade in Fig. 3., highlighted as a star in the map from Fig. 1. Abbreviations of herbarium collections or seed
sources: UCONN = University of Connecticut Herbarium; CFM = Chicago Field Museum; NY = New York Botanical Garden; ABRC = Arabidopsis Biological

Resources Center; OSU = Ohio State University.)
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JK366 43,1921 -77.0102 NY 1866 888144 NY 6.8 100,379,839 95,118,236 123 yes H 94
JK395 38.9068 -77.036667 DC 1877 888134 NY 10.3 103,620,791 98,888,406 167 yes H 100
JK888141 40.732007 -74.068455 NJ 1879 888141 NY 42 107,211,409 102,634,255 161 yes H 103
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Table S2. Sample information for Col-0 mutation accumulation lines.

Information about each Mutation Accumulation (MA) line and their number of SNPs at different annotations. Also the total number of SNPs, average
number of mutations and total bp covered in the genome per annotation are reported.

£ 5 . o
-§ -‘é .é -§ S c < o .5‘3
T ¢ 35 g 3 5 , & _ B 2 2 :
MA line g & © zZ &8 £ 8 2 & £ in 'm = £
0-4-26 57 3 7 6 1 0 0 0 o0 0 0 0 1 5
0-8-87 49 3 7 5 0 2 1 1 0 1 0 0 0 3
30-109 45 31 31 3 7 1 3 3 0 3 0 0 2 15
30-119 45 31 33 2% 2 5 1 1 0 1 2 0 4 18
30-29 51 31 39 2% 10 3 2 1 1 3 0 1 5 15
30-39 48 31 28 8 7 3 1 1 0 1 0 1 4 11
30-49 50 31 30 23 3 4 4 4 0 0 0 0 6 13
30-59 40 31 46 31 8 7 5 2 3 2 0 0 6 18
30-69 50 31 26 20 3 2 4 3 1 1 1 1 6 8
30-79 50 31 31 2% 3 3 6 4 2 2 0 0 8 9
30-89 39 31 35 27 s 3 4 3 1 1 1 0 2 19
30-99 44 31 37 35 1 1 6 5 1 2 0 2 8 17
Total SNPs 274 38 28 10 17 4 5 52 158
average (31st) 336 255 49 32 36 27 09 16 0.4 0.5 5.1 14.3
stdev (31st) 5.9 49 30 18 18 14 10 1.0 0.7 0.7 21 3.9
Total bp 115,954,227 30,753,966 17,446,837 4,289,789 2,508,199 9,267,413 48,090,487
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Table S3. Mutation rate estimates for different annotations in HPG1 and mutation accumulation lines.

Mutation rates from MA lines are compared to HPG1 substitution rates from the dataset of 32_15 quality filter and complete information (see SOM)
(Abbreviations: stat, descriptive statistic; bp, base pairs; lower and upper, lower and upper 95% Cl; Nonsyn. and Syn., nonsynonymous and synonymous
sites; UTR, untranslated region sites; HPG1 adj., substitution rate of HPG1 adjusted by a mean generation time of 1.3 years)

c
2 E )
c Qo o s
. z 5 = = 2 £ g
(72 c < = o} o © (] c
o > o = z i o = Q
Dataset stat o A 2 £ n ™ = £ ()
MA mean 3.776 n/a n/a 2.958 3.008 6.431 17.752 9.592 7.094
MA sem 1.928 n/a n/a 1.786 5.258 9.094 7.420 2.628 1.352
MA lower 2.581 n/a n/a 1.851 -0.251 0.794 13.153 7.964 6.256
MA upper 4971 n/a n/a 4.065 6.267 12.067 22.351 11.221 7.932
HPG1 mean 2.149 n/a n/a 1.540 n/a n/a 2.290 3.029 2.114
HPG1 sem 0.108 n/a n/a 0.165 n/a n/a 0.536 0.173 0.119
HPG1 lower 1.943 n/a n/a 1.231 n/a n/a 1.314 2.698 1.871
HPG1 upper 2.364 n/a n/a 1.874 n/a n/a 3.309 3.368 2.344
HPG1 adj. mean 2.794 n/a n/a 2.002 n/a n/a 2.977 3.938 2.748
HPG1 adj. sem 0.140 n/a n/a 0.214 n/a n/a 0.697 0.225 0.154
HPG1 adj. lower 2.526 n/a n/a 1.600 n/a n/a 1.708 3.508 2.432
HPG1 adj. upper 3.073 n/a n/a 2.436 n/a n/a 4.302 4.378 3.047
L min 0 0 0 0 0 0 0 0 0
Distributio
n of 1st qu. 2 1 1 0 1 2 5 9
L median 5 3 3 3 1 2 4 10 18
pairwise
SNP mean 5.6 3 3.1 3.8 1.2 1.9 4.3 11.3 21.1
. 3rd qu. 8 5 4 5 2 3 6 16 31
differences
max. 27 17 11 15 5 7 22 43 87
Total number of SNPs 971 531 448 629 74 158 656 2498 5013

Total bp 32119233 n/a n/a 18132262 2632130 4480510 6209512 43601507 108434034
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Table S4. Description of phenotypic and climatic variables for association mapping analyses.

Mean and standard deviation (s.d.) across accessions for each phenotypic and climatic variables. Broad sense heritabilities (H2) were

calculated from between line and within line (between replicate) variance in ANOVA. P-value corresponds to F test. Narrow sense

heritabilities (h2) were calculated employing linear mixed models and kinship matrix from mean accession values. P-values correspond to

Likelihood Ratio test.

Variable Description mean s.d. H2 p-value h2 p-value
Time from germination until the first flower opens (days)
FT_VO L 101 4.53 0.009 7.28E-03 0.017 1.97E-25
- under 0 days of vernalization
Time from germination until the first flower opens (days)
FT_V1 L 107 4.12 0.013 6.87E-04  0.395  1.83E-25
under 14 days of vernalization
Time from germination until the first flower opens (days)
FT_V2 L 102 3.22 0.012 1.04E-03 0.429  3.37E-27
- under 28 days of vernalization
Time from germination until the first flower opens (days)
FT_V3 L 110 1.32 0.010 5.11E-03 0.226  9.52E-25
- under 63 days of vernalization
Time from germination until the first developed bud
B_VO L 88.8 4 0.013 8.99E-04  0.018  2.26E-25
(days) under 0 days of vernalization
Time from germination until the first developed bud
B_V1 L 939 384 0.009 7.45E-03 0.340 3.98E-25
(days) under 14 days of vernalization
Time from germination until the first developed bud
B_V2 L 89.2 213 0.005 6.92E-02 0.252  2.22E-25
- (days) under 28 days of vernalization
Time from germination until the first developed bud
B_V3 L 101 0.45 0.006 5.79E-02 0.177  1.99E-24
(days) under 63 days of vernalization
. Pixel area of inflorescence (correlation with number of
Fecundity . 0.02 0.0042 0.001 3.56E-01 0.240  1.02E-22
fruits, rho=0.84)
seed_size Average seed size (mm?2) 0.134 0.0053 0.016 4.73E-03 0.149  3.58E-24
GR_rootLength Average root growth rate 181 14.9 0.131 4.76E-77 0.640 3.13E-29
GR_shootArea Average of shoot area growth rate 2279 253 0.053 2.33E-24 0.812 1.77E-31
rootLength Average root length 467 35.8 0.048 2.01E-21 0.409 2.57E-28
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dirEquivalent

stdDevXY

meanRootWidth

rootWidth20

rootWidth40

rootWidth60

rootWidth80

rootWidth100

gravitropicDir

gravitropicScore

TotLen.EucLen

GR.TL

BIO1
BIO2

BIO3
BIO4
BIO5
BIO6
BIO7
BIO8

Average root direction index. Score for average pixel-by-
pixel deviations from growth relative to vector of gravity

Average root linearity coefficient of linear
determination; R2 of linear regression line fitted to 0.725
pixels of primary root skeleton

Average root width 5.27
Average width over first interval of the primary root 5 75
length (0 to 20%) at hypocotyl/root junction '
Average width over first interval of the primary root 535
length (20 to 40%) at hypocotyl/root junction '
Average width over first interval of the primary root -
length (40 to 60%) at hypocotyl/root junction '
Average width over first interval of the primary root 511
length (60 to 80%) at hypocotyl/root junction ’
Average width over first interval of the primary root 4.9
length (80 to 100%) at hypocotyl/root junction '
Average root angle between root vector and the vertical 792
axis of the picture (assumed vector of gravity) (°) '
Average score for root angle intervals 0.1
Average root tortuosity: Total root length divided by 11
Euclidian length '
Average relative root growth rate: Root growth rate 0.673

divided by total length at the earlier time point

Annual Mean Temperature (2C x 10) 98.1
Mean Diurnal Range (Mean of monthly (max temp - min

107

temp))
Isothermality (BIO2/BIO7) (x 100) 28.9
Temperature Seasonality (standard deviation x 100) 9169
Max Temperature of Warmest Month (2C x 10) 283
Min Temperature of Coldest Month (2C x 10) -80.9
Temperature Annual Range (BIO5-BIO6) (2C x 10) 364

Mean Temperature of Wettest Quarter (2C x 10) 176

0.0277

0.0429

0.177

0.124

0.19

0.212

0.241

0.222

2.56

0.0457

0.0097

0.0796

12.8

7.65

1.8
483
10.1

18
17.5
55.1

0.059

0.018

0.038

0.018

0.033

0.039

0.045

0.038

0.024

0.044

0.009

0.011
n/a
n/a

n/a
n/a
n/a
n/a
n/a
n/a

2.62E-28

4.54E-06

5.30E-16

5.11E-06

3.87E-13

1.49E-16

4.67E-20

4.06E-16

7.69E-09

2.83E-19

6.83E-03

1.20E-03
n/a
n/a

n/a
n/a
n/a
n/a
n/a
n/a

0.544

0.303

0.359

0.166

0.291

0.405

0.381

0.351

0.210

0.642

0.422

0.393

0.066

0.073

0.361
0.383
0.152
0.275
0.239
0.016

1.14E-26

1.41E-25

1.52E-25

3.37E-25

1.76E-25

6.51E-26

5.47E-26

8.81E-26

4.68E-27

7.56E-27

2.53E-25

2.69E-24

3.22E-40

1.02E-40

4.91E-39
4.68E-47
3.78E-40
4.79E-42
6.31E-42
3.58E-43
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BIO9 Mean Temperature of Driest Quarter (2C x 10) -7.11 487 n/a n/a 0.000
BIO10 Mean Temperature of Warmest Quarter (2C x 10) 213 10.8 n/a n/a 0.205
BIO11 Mean Temperature of Coldest Quarter (2C x 10) -24.1 182 n/a n/a 0.270
BIO12 Annual Precipitation (mm) 990 109 n/a n/a 0.219
BIO13 Precipitation of Wettest Month (mm) 103 6.72 n/a n/a 0.206
BIO14 Precipitation of Driest Month (mm) 541 16.7 n/a n/a 0.104
BIO15 Precipitation Seasonality (Coefficient of Variation) 17.8 5.51 n/a n/a 0.157
BIO16 Precipitation of Wettest Quarter (mm) 291 19.7 n/a n/a 0.269
BIO17 Precipitation of Driest Quarter (mm) 191 44.8 n/a n/a 0.084
BIO18 Precipitation of Warmest Quarter (mm) 277 25.2 n/a n/a 0.342
BIO19 Precipitation of Coldest Quarter (mm) 197 47 n/a n/a 0.022

3.58E-43
3.33E-40
1.71E-41
3.94E-44
1.53E-40
1.51E-40
8.93E-40
1.55E-42
3.67E-42
7.42E-44

2.68E-42
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Table S5. SNP hits from association analyses and several descriptors.

SNP hits significant at the 5% level after permutation correction are shown. Additionally, if raw p-values pass a double Bonferroni threshold of 0.01% are marked with a "tick".
(Abbreviations: nonsyn. and syn., nonsynonymous and synonymous changes; regular one-letter abbreviation was used for amino acid changes)

B
o
° - ?
@ @ £ —
g ¥ £ 3 I
S 5 $ 3 E .3
z o o 2 i o b=
S g S € -g o 'g con
= o b= c = - 2 g
@ 2 S > = £ g > 2 5
° ] = 7] 9 2 > b E S
o ] 2 @ S o ] @ s 2 g 8
£ T o H 2 5 S E] ] S s 2 T
o - £ N - O o =3 =3 i o = s L ¥ %
(7] © T ‘»n o (7] Q S =
S S5 3 % o S g g & & £ 3 8 2 5 § & 8
£ 289 = = & 5 2 2 v v % = s £ 2 2 £ £
£ O s 9 2 9 S E g © © < < o o 2 @ S @ 5§ E £
g = 8 ca = £ : : T = = 2§ % 5 < g o @ @
= O a <0 w w wn o [-3 o < < @) - - n < O o » »n =
dirEquivalent 1 958948 G T -0.014 0.004 63 5.30E-04 0.0052 0.018 0.186 0.227 1922 41.7 -85.3 nonsyr A->P AT1G03810 27 V
gravitropicScore 1 9925177 C T 0.033 0.010 63 7.10E-04 0.0651 0.016 0.078 0.092 1952 40.9 -82.3 interg. v
biol8 1 10187610 T C 6.830 1.987 99 5.83E-04 0.0124 0.047 0.196 0.24 1922 41.7 -85.3 interg. v
GR_rootlength 1 12638692 C T -12.100 3.164 63 1.33E-04 0.0037 0.003 0.087 0.105 1952 40.9 -81.3 interg. 7/
GR_shootArea 1 12638692 C T -231.000 53.774 63 1.75E-05 0.0005 0.001 0.087 0.105 1952 40.9 -81.3 interg. 7/
GR_rootLength 1 13652509 C A -12.100 3.164 63 1.33E-04 0.0037 0.003 0.093 0.107 1952 40.9 -82.9 interg. 7/
GR_shootArea 1 13652509 C A -231.000 53.774 63 1.75E-05 0.0005 0.001 0.093 0.107 1952 40.9 -82.9 interg. 7/
biol8 1 13904611 C T 6.570 1.756 90 1.83E-04 0.0124 0.016 0.217 0.237 1922 41.7 -85.3 interg. v
biol8 1 13994958 G A 6.830 1.987 99 5.83E-04 0.0124 0.047 0.196 0.24 1922 41.7 -85.3 tranposon  AT1G36933 v
biol8 1 17408807 C T 6.830 1.987 99 5.83E-04 0.0124 0.047 0.196 0.24 1922 41.7 -85.3 interg. v
dirEquivalent 1 19024876 C T -0.014 0.004 63 5.30E-04 0.0052 0.018 0.19 0.23 1922 41.7 -85.3 interg. v
GR_shootArea 1 20324050 G A -231.000 53.774 63 1.75E-05 0.0005 0.001 0.087 0.105 1952 40.9 -82.9 interg. AT1G54440 7/
GR_rootLength 1 20324050 G A -12.100 3.164 63 1.33E-04 0.0037 0.003 0.087 0.105 1952 40.9 -82.9 interg. AT1G54440 7/
biol8 1 23648407 A C 6.830 1.987 99 5.83E-04 0.0124 0.047 0.196 0.24 1922 41.7 -85.3 nonsyrY->S AT1G63740 144 /
dirEquivalent 1 26052913 A T -0.014 0.004 63 5.30E-04 0.0052 0.018 0.185 0.224 1922 41.7 -85.3 interg. v
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