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Figure 4. Closed-loop gliotransmission. A In the most general design, modeling of closed-loop
gliotransmission in Brian 2 separates between the extracellular space of synapse-to-astrocyte
signaling (ecs_syn_to_astro) and the extracellular space of astrocyte-to-synapse gliotransmis-
sion (ecs_astro_to_syn). B Average extracellular concentration of synaptically-released neu-
rotransmitter (〈YS〉) for step increases of the mean rate of Poisson-generated incoming action
potentials (top panel, νin = 0.011 Hz, 0.11 Hz, 1.1 Hz, 11 Hz for 5-s time intervals; traces aver-
aged over 500 identical synapses.) C Corresponding average release of synaptic neurotrans-
mitter resources as function of the rate of incoming action potentials (data points and error
bars: mean ± standard deviation for 100 trials.) Parameters as in the tables in Appendix C
except for Oβ = 3.2 µm s−1; Ibias = 1 µm (open-loop gliotransmission); Ibias = 0 µm (closed-loop
gliotransmission).
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ecs_astro_to_syn.connect(j=’i if i >= N_synapses and i < 2* N_synapses ’)

Figure 4B shows a reproduction of Figure 13.2 by our Brian 2 implementation of closed-
loop gliotransmission for the time evolution of the average neurotransmitter concentration in
the synaptic cleft (〈YS〉) in response to step increases in the rate of incoming action potentials
(νin, top panel). Gliotransmission dramatically changes synaptic transmission (colored vs. black
traces), with the effect of closed-loop gliotransmission (purple trace) being somewhat interme-
diate between the scenarios of no gliotransmission (black trace) and open-loop gliotransmission
(green trace).

This is further elucidated in Figure 4C where the mean neurotransmitter concentration in the
extracellular space in the three scenarios is shown for different mean rates of randomly incoming
action potentials. The low-pass filter characteristics of synapses without gliotransmission (top
panel) turns into a bell-shaped, band-pass filter characteristics caused by (release-decreasing)
open-loop gliotransmission (middle panel) (Chapter 12). In the presence of closed-loop glio-
transmission however, the average concentration of synaptically-released neurotransmitter is
in between those expected in the other two scenarios for low input rate values, and tends to
approach the shape of the curve in the open-loop scenario for increasing rates. For high in-
put rates however, the release-decreasing effect of gliotransmission is such that the synapse is
ultimately silenced and cannot sustain further gliotransmitter release. Synaptic transmission
then becomes independent of gliotransmission again as if it were in the naive scenario without
gliotransmission, which accounts for the jump at νin > 10 Hz.

2.7 Networks of astrocytes

Astrocytes are known to arrange in networks of different shape and connectivity depending on
the brain region under consideration (Giaume et al., 2010), and to be capable of propagating
Ca2+ signals through such networks in the form of intercellular (regenerating) waves. The
mechanisms underlying such propagation can be multiple and varied (Scemes and Giaume,
2006). Here, we only focus on the well characterized mechanism of intracellular IP3 diffusion
through gap junctions channels (GJCs) between neighboring astrocytes (Chapter 7).

From a modeling perspective, IP3 diffusion from one astrocyte j to a neighboring one i
can be thought as a flux of IP3 (Jij) which is some nonlinear (rectifying) function of the IP3

concentration gradient between cells i and j, i.e. ∆ijI = Ii−Ij , such as, for example (Lallouette
et al., 2014, see also Chapter 7)

Jij = −F
2

(
1 + tanh

(
|∆ijI| − Iθ

ωI

))
sgn(∆ij) (22)

Incidentally, we note that the above formula is reminiscent of the expression of the exogenous IP3

flux (Jex) in equation 14, insofar as the latter may be regarded as a special case of intercellular
IP3 influx to any astrocyte from a much larger external IP3 source (i.e. Ibias in our notation)
(Goldberg et al., 2010). Because Jij is a function of IP3 concentrations in connected astrocytes
(i.e. Ii, Ij) by ∆ijI, it is astrocyte-dependent and not constant. Therefore, once we add Jij to
our astrocyte equations in Brian 2 (denoted in the code below by J_coupling), we must define
it as an astrocytic variable (that is without the (constant) flag), i.e.

astro_eqs = ’’’

dI/dt = J_delta - J_3K - J_5P + J_ex + J_coupling : mmolar

# [...]

# Diffusion between astrocytes

J_coupling : mmolar/second

# [...]

’’’
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Figure 5. Astrocytes connected in a network. A Sample astrocyte network in a ring configu-
ration with only one cell (in red) being exogenously stimulated. Connections between cells are
bidirectional, and represent GJC-mediated coupling between neighboring astrocytes. B General
Brian 2 modeling principle of astrocytic networks: GJC-mediated connections can be modeled
by a Synapses object (ellipse). C Intercellular Ca2+ wave generation and propagation in a
ring of 50 identical astrocytes mediated by stimulation of cell 25 (red trace). Parameters as in
Table C.2 with Fex = 0.09 µm s−1; and Ibias = 1 µm.
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Connections between astrocytes by GJCs may conveniently be implemented by a Synapses

object in Brian 2 , once we regard Jij as the IP3 flow from “presynaptic” astrocyte j to “post-
synaptic” astrocyte i (Figure 5B). The effective total J_coupling to cell i by intercellular IP3

diffusion is the sum of all IP3 fluxes incoming to cell i from the Ai astrocytes connected to this
latter by GJCs, i.e. J icoupling =

∑
j∈Ai Jij . In Brian 2 code, this reads

astro_to_astro_eqs = ’’’

delta_I = I_post - I_pre : mmolar

J_coupling_post = -F/2 * (1 + tanh((abs(delta_I) - I_Theta )/ omega_I )) *

sign(delta_I) : mmolar/second (summed)

’’’

astro_to_astro = Synapses(astrocytes , astrocytes ,

model=astro_to_astro_eqs)

The above code bears the caveat of defining GJCs as unidirectional when they may not
be so. This caveat can be easily overcome, specifying both a connection from astrocyte i to
astrocyte j and a connection from j to i, whenever we want to model bidirectional IP3 diffusion
between neighboring astrocytes. For example, to connect astrocytes in a ring, where every
astrocyte is connected to its neighbors (Figure 5A), we can make use of the connect method of
the astro_to_astro object, and specify the following condition in terms of Brian 2 predefined
pre- and post-synatic indexes, i and j respectively, and the total number of elements in the
presynaptic group N_pre3:

astro_to_astro.connect(’j == (i + 1) % N_pre or ’

’j == (i + N_pre - 1) % N_pre’)

where the % operator implements the modulo (remainder) operation.
Figure 5C shows a snapshot of Ca2+ dynamics of 50 astrocytes connected in a ring, where

only the 25th cell is exogenously stimulated (red trace). The fact that all cells, for some t > 0,
display Ca2+ fluctuations, is a direct consequence of inclusion of intercellular IP3 diffusion in
our model. Such diffusion allows excess IP3 from the stimulated cell to be redistributed by
GJCs in the ring to other cells where it ultimately triggers CICR. It may also be appreciated
how, in this example, bidirectional GJC communication allows for emergence of intercellular
Ca2+ waves that propagate both from and to the stimulated cell, as evidenced by wave fronts
respectively oriented like ‘\’ or like ’/’.

2.8 Coupled neuron and astrocyte networks

The examples discussed so far provide together all the ingredients to model complex networks
of interacting neurons and astrocytes (Figure 6A). However, to realistically implement such
networks we also need to specify the connections among neurons, synapses and astrocytes in
the physical (Euclidean) space. In the following we show how to include space in such networks,
limiting our focus here to planar networks for simplicity, although the outlined procedure can
easily be extended to higher dimensions.

We start by adding two cell-specific parameters, x and y, to each neuron which store the
cell’s 2D spatial coordinates and initialize them so that neurons are arranged on a grid of N_rows
rows and N_cols columns:

neuron_eqs = ’’’

# [...]

# Neuron position in space

3Note that the expression has been split into two strings for better readability. Python automatically merges
adjacent strings.
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x : meter (constant)

y : meter (constant)

’’’

neurons = NeuronGroup(N_e + N_i , model=neuron_eqs ,

threshold=’v>V_th’, reset=’v=V_r’,

refractory=’tau_r ’, method=’euler ’)

exc_neurons = neurons [:N_e]

inh_neurons = neurons[N_e:]

# Ar r ange e x c i t a t o r y n e u r o n s i n a g r i d
N_rows = int(sqrt(N_e))

N_cols = N_e/N_rows

grid_dist = (size / N_cols)

exc_neurons.x = ’(i / N_rows )* grid_dist - N_rows /2.0* grid_dist ’

exc_neurons.y = ’(i % N_rows )* grid_dist - N_cols /2.0* grid_dist ’

Furthermore, we also add a synapse-specific constant astrocyte_index to the synapse’s equa-
tions, whose value will correspond to the index of the astrocyte that ensheathes a synapse:

synapses_eqs = ’’’

# [...]

# which astrocyte covers this synapse ?

astrocyte_index : integer (constant)

’’’

# [ . . . ]
exc_syn = Synapses(exc_neurons , neurons , model=synapses_eqs ,

on_pre=synapses_action+’g_e_post += w_e*r_S’,

method=’linear ’)

We finally need to define the effective connections between the different cells of the network.
Overall there are four different types of connections: (i) connections between neurons which
defines the actual synapses; (ii) connections from synapses to astrocytes, as pathways to trigger
astrocyte activation; (iii) connections from astrocytes to synapses as routes for gliotransmission
and thereby modulation of synaptic release; and ultimately, (iv) connections between astrocytes
by GJCs. Here, for simplicity, we assume random connectivity between all neurons, indepen-
dently of their spatial coordinates (as in Figure 1C). Furthermore, we make the assumption
that only excitatory synapses can activate astrocytes and be modulated by them, restricting in
this way our focus on the experimentally well-characterized pathway of closed-loop glutamater-
gic gliotransmission (Panatier et al., 2011; Perea and Araque, 2007). In particular, we specify
which astrocyte is responsible for which excitatory synapse on the basis of the spatial position
of postsynaptic neurons with respect to Na astrocytes (N_a) which, like neurons, are arranged
on a regularly-spaced grid of Nrows rows (N_rows_a) and Ncols columns (N_cols_a), i.e.

N_rows_a = int(sqrt(N_a))

N_cols_a = N_a/N_rows_a

grid_dist = size / N_rows_a

exc_syn.astrocyte_index = (’int(x_post/grid_dist) + ’

’N_cols_a*int(y_post/grid_dist)’)

We then define the network of astrocytes:

astro_eqs = ’’’

# [...]

# The astrocyte position in space

x : meter (constant)

y : meter (constant)

’’’

# [ . . . ]
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Figure 6. Recurrent neuron-glial network. A Neuron-glial network model design in Brian 2 .
B Simulations of neuron-glia network for a rectangular-pulse increase of external current (Iex,
top panel). The raster plot (middle panel) shows the firing activity of 25% out of all excitatory
(red) and inhibitory neurons (blue) of the network, and gliotransmitter release (green) from an
equal fraction of astrocytes. The network-averaged firing rate is shown at the bottom. Neural
activity dramatically changes from asynchronous low-firing activity to synchronous high-firing
activity following gliotransmitter release from astrocytes during the period of high stimulation
(2 ≤ t < 4 s). External current: Iex = 100 pA for t < 2 s or t ≥ 4 s; Iex = 120 pA for 2 ≤ t < 4 s.
Neural and synaptic parameters as those in Figure 1 (see also Table C.1). Astrocyte parameters
as in Table C.2 except for Oβ = 0.5 µm s−1; Oδ = 1.2 µm s−1; and Ibias = 0.
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# Ar r ange a s t r o c y t e s i n a g r i d
astrocytes.x = ’(i / N_rows_a )* grid_dist - N_rows_a /2.0* grid_dist ’

astrocytes.y = ’(i % N_rows_a )* grid_dist - N_cols_a /2.0* grid_dist ’

Next, we connect the astrocytes with those synapses that they are supposed to ensheathe
according to astrocyte_index, i.e.

ecs_astro_to_syn = Synapses(astrocytes , exc_syn ,

’G_A_post = G_A_pre : mmolar (summed)’)

ecs_astro_to_syn.connect(’i == astrocyte_index_post ’)

ecs_syn_to_astro = Synapses(exc_syn , astrocytes ,

’Y_S_post = Y_S_pre/N_incoming : mmolar (summed)’)

ecs_syn_to_astro.connect(’astrocyte_index_pre == j’)

Finally, we specify the connectivity of the astrocyte network. In this example, we introduce
recurrent connections between astrocytes by GJCs, connecting each astrocyte to all other astro-
cytes found at the boundary of its anatomical domain, in line with the experimental observation
that neighboring astrocytes are more likely to be connected than astrocytes that are far apart
(Giaume et al., 2010; Pannasch and Rouach, 2013). Given that the diameter of astrocyte is
between 50–130 µm (Chao et al., 2002), we consider an intermediate value of 75 µm, whereby:

astro_to_astro.connect(’i != j and ’

’sqrt((x_pre -x_post )**2 +’

’ (y_pre -y_post )**2) < 75*um’)

We present a simulation of our neuron-glia network in Figure 6B, where we show the raster
plot of the firing activity of 25% of the excitatory (red) and inhibitory neurons (blue) of the
network along with gliotransmitter release events from an equal fraction of astrocytes (green),
in response to a transient increase of external stimulation (rectangular pulse in the top panel).
Up to the onset of stimulation (i.e. t < 2 s) there is no gliotransmitter release from astrocytes,
therefore the network behaves as it would be expected for a neuronal network without the
astrocyte component. It may be noted in fact how the raster plot of our network, and the ensuing
dynamics of the total firing rate (bottom panel), show low-frequency population activity, similar
to those reported in Figure 1C for our neuronal-only network model introduced in Sections 2.2
and 2.3. For 2 ≤ t < 4 s, the increase of external stimulation correlates with an increase in
the firing rate of the whole network, as reflected by a denser raster plot during this period. In
particular for t > 3.5 s, the larger neuronal firing triggers gliotransmitter release from astrocytes
and thus astrocytic modulation of excitatory synaptic transmission. Because this modulation is
slow-decaying (Chapter 8), it outlasts the transient increase of external stimulation and changes
neural firing once the external stimulation returns to its original value (at t = 4 s). We can
indeed clearly see how, for t > 4 s, excitatory neurons are more synchronized in firing than
for t < 2 s, as a consequence of gliotransmission from astrocytes. This is just one example of
the many possible ways astrocytes could actively shape neural activity, which has also been
suggested to participate in the genesis of cortical UP and DOWN states (Fellin et al., 2012).

Conclusions

Computational approaches to model glial physiology are hampered by the lack of definitive
experimental evidence and a missing comprehensive modeling framework that could tackle the
many different scales of glial signaling. “Standard” glia models have yet to be identified, and
neural simulator packages therefore do not ship such models as part of their pre-built model
libraries. While in theory these libraries could be extended by individual researchers to add
their preferred glia model, in practice this path is only open to experienced programmers.
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In this chapter, we have shown how Brian 2 ’s simple syntax and versatility can offer a
solution to these problems, providing an ideal tool to model glial physiology, and specifically
the influence of astrocytes on neural activity. Brian 2 ’s syntax allows the researcher to flexibly
describe models by using conventional mathematical notation instead of low-level programming
code (Goodman and Brette, 2008; Goodman et al., 2009; Stimberg et al., 2014). Moreover,
Brian 2 ’s core data structure NeuronGroup, which describes a neuron by a set of ODEs, pa-
rameters, and actions that are triggered by conditions, provides a versatile framework that
can be borrowed to also describe non-neuronal cell types such as astrocytes. Similarly, the
Synapses data structure that, in purely neural simulations, represents chemical and electrical
synapses that connect neurons, can also be used to model the interactions between astrocytes
and synapses, as well as GJCs between astrocytes. Importantly, this flexibility does not come
at the cost of computational efficiency: without any user interaction, Brian 2 employs a code
generation approach that generates highly efficient code based on the user-provided high-level
description (Goodman, 2010). We hope that these arguments motivate newcomers as well as
experienced researchers to experiment with Brian 2 in the future and use it to model glial
physiology in their research, thereby contributing to the growth of this exciting emerging field
of computational research.

Appendix A Technical remarks on Brian 2

Brian 2 scripts are executed by default in the so-called “runtime mode”. This mode runs the
simulation loop over the time steps in Python and executes chunks of target language code that
have been generated from the model description provided by the user. The choice of target
language depends on the user’s system; Brian 2 will prefer to use the C++ programming
language but, if the user does not have a working C++ compiler, will fall back to a pure
Python-based simulation. A Python-based simulation will usually be significantly slower but
can give comparable performance for big networks due to the use of vectorized computation
(Brette and Goodman, 2011). The advantage of the runtime mode is that the user has full
control to combine the automatically generated simulation code with arbitrary hand-written
Python code. This code could dynamically change aspects of the model during the run, or
interact with it in other ways. For example it could read out the model’s state and hand it
over to some code for visualization or terminate the simulation based on some criterion. This
mode however involves a significant overhead per simulated time step, since the program flow
constantly switches between Python and the individually-generated code chunks. For small-to-
medium size networks for which computations during a single time step do not take long, this
overhead can critically dominate the total runtime and lead to long simulation times.

To avoid this problem and allow more efficient simulations, Brian 2 also offers an alternative
mode called “standalone mode”. In this mode, the complete simulation code, including the
main simulation loop, are written as a set of C++ files to disk which can then be compiled
and executed as a single program. The resulting files are independent of the Python platform,
so that the simulation could also be run on systems where Python may not be available (for
example, in robotics). Moreover, if the user code complies to some specific conventions and does
not run custom Python code during a simulation, then switching from runtime to standalone
mode only requires the addition of a set_device(’cpp_standalone’) line to the simulation script;
Brian 2 then takes care of the whole process transparently. For further details, the reader is
invited to see comments in individual examples files (Appendix B) and/or refer to the online
Brian 2 documentation.
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Appendix B Example files

The code for all the simulations presented in this chapter has been organized in multiple stan-
dalone example files as detailed in the following. Unless stated otherwise, all simulations start
from zero initial conditions, except for h(0) = 0.9 and xS(0) = xA(0) = 1.

example_1_COBA.py

This file implements the simulation of the neuron-only network model of Figure 1. The simu-
lation runs for 1 s with an integration time step of 0.1 ms. Out of all neurons, we distinguish
between excitatory (exc_neurons) and inhibitory ones (inh_neurons), which give rise to exci-
tatory synapses (exc_syn) and inhibitory synapses (inh_syn), connecting from the respective
population to the full population. Because the dynamics of synaptic variables are updated
only at incoming action potentials (i.e. (event-driven)), we can monitor the value of these
variables only at the arrival time of action potentials but not in between. However, we can re-
construct the whole synaptic dynamics by recording synaptic variables immediately after each
action potential (i.e. at t+i with i > 0), which is achieved by specifying the keyword argument
when=’after_synapses’ in the synaptic StateMonitor. For t > ti, the solutions of the synapse’s
equations 4 and 5 then read (Tsodyks, 2005):

uS(t) = uS(t+i ) exp (−Ωf (t− ti))
xS(t) = 1 +

(
xS(t+i )− 1

)
exp (−Ωd(t− ti))

whereas synaptic release by the ith action potential at time ti is given by rS(ti) = uS(t+i )xS(t−i ) =
uS(t+i )xS(t+i )/

(
1− xS(t+i )

)
.

example_2_gchi_astrocyte.py

This code implements the synaptically-stimulated astrocyte model and related simulations
of Figure 2. The astrocyte’s temporal dynamics in response to synaptic activity was simu-
lated for 30 s using the derivative-free Milstein integration method with a time step of 1 ms. In
the deterministic limit of ξ(t) → 0 in equation 13, the Milstein method reduces to the classi-
cal (forward) Euler method which is suitable, at sufficiently small time steps, to numerically
solve dynamics of the deterministic astrocyte model, too. Synapses are stimulated by a train
of periodic action potentials at rate f0 = 0.5 Hz (f_0, rate of generation of action potentials by
presynaptic neurons) generated by

source_neurons = NeuronGroup (1, ’dx/dt = f_0 : 1’, threshold=’x>1’,

reset=’x=0’, method=’euler ’)

example_3_io_synapse.py

This file implements the open-loop model of gliotransmission and the simulations shown in Fig-
ure 3. The code considers three synaptic connection between one presynaptic source_neurons

and one postynaptic target_neurons, built by passing n=3 as an argument to the synapses.connect
method. We further consider two astrocytes stimulated by different I_bias values, and connect
them to synapses 2 and 3 respectively, leaving synapse 1 as it is (i.e. without gliotransmission).
This is done by:

ecs_astro_to_syn.connect(j=’i+1’)
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example_4_synrel.py

This code runs the closed-loop model of gliotransmission for simulations in Figure 4B. The code
considers N_synapses neurons (source_neurons), each firing action potentials drawn from an
independent, inhomogeneous Poisson process with a stepped rate specified in a TimedArray, i.e.

rate_in = TimedArray ([0.011 , 0.11, 1.1, 11] * Hz , dt=5* second)

source_neurons = PoissonGroup(N_synapses , rates=’rate_in(t)’)

target_neurons = NeuronGroup(N_synapses , ’’)

The target_neurons are used to build N_synapses multi-synaptic connections from the
source_neurons, with each connection constituted of three synapses. Out of these three synapses,
the first one is connected with its own astrocyte and is, in turn, modulated by gliotransmitters re-
leased from this latter (closed-loop scenario); the second one is modulated by gliotransmitters re-
leased from another astrocyte (open-loop scenario); the third one is left as it is (scenario without
gliotransmission). Since this is repeated for all N_synapses, and overall we have N_astro=2 differ-
ent scenarios of gliotransmission (open-loop vs. closed-loop), we consider N_astro*N_synapses

astrocytes in total, and connect them accordingly with N_synapses*(N_astro+1) synapses as
elucidated in Section 2.6.

example_4_rsmean.py

The file provides the code to build the synaptic transfer characteristics in Figure 4C in terms
of average synaptically-released neurotransmitter resources for different input rates of (presy-
naptically) incoming action potentials.

example_5_astro_ring.py

This code implements the astrocyte ring model in Figure 5. The simulation runs for 4000 s with
a time step of 50 ms. Calcium concentrations shown in Figure 5C were normalized by their
maximum.

example_6_COBA_with_astro.py

This file runs the simulation of the recurrent neuron-glial network in Figure 6. To stimulate
the network by a time-varying external current we multiply I_ex in neuron_eqs on page 4 by
stimulus = TimedArray([1.0, 1.2, 1.0, 1.0], dt=2*second). Neurons are placed on a square
lattice of size 3.75 × 3.75 mm at 50 µm distance from each other. For t = 0 we set C = I =
0.01 µm.

Appendix C Model parameters used in the simulations

The following tables report constants that correspond to the model parameters used in the
simulations presented in this chapter. Simulation-specific parameters are marked by ‘†’ and are
reported in respective figure captions instead.
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C.1 Neurons and synapses

Symbol Name in code Value Units Description

Neuron parameters

Cm C_m 198 pF Membrane capacitance
El E_l -60 mV Leak reversal potential
gl g_l 9.99 nS Leak conductance
Iex I_ex † pA External current
Vr V_r -60 mV Reset potential
Vθ V_th -50 mV Firing threshold
τr tau_r 5 ms Refractory period

Synapse parameters

Ωd Omega_d 2 s−1 Synaptic depression rate
Ωf Omega_f 3.33 s−1 Synaptic facilitation rate
U∗

0 (U0) U_0__star (U_0) 0.6 – Resting synaptic release probability
YT Y_T 500 mm Total vesicular neurotransmitter concentration
ρc rho_c 0.005 – Synaptic vesicle-to-extracellular space volume ratio
Ωc Omega_c 40 s−1 Neurotransmitter clearance rate
we w_e 50 pS Excitatory synaptic conductance
wi w_i 1 nS Inhibitory synaptic conductance
τe tau_e 5 ms Excitatory synaptic time constant
τi tau_i 10 ms Inhibitory synaptic time constant
Ee E_e 0 mV Excitatory synaptic reversal potential
Ei E_i -80 mV Inhibitory synaptic reversal potential

Presynaptic receptors

OG O_G 1.5 µm−1 s−1 Agonist binding (activating) rate
ΩG Omega_G 0.5 min−1 Agonist release (deactivating) rate
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C.2 Astrocytes

Symbol Name in code Value Units Description

Calcium-induced Ca2+ release

CT C_T 2 µm Total cell free Ca2+ content
ρA rho_A 0.18 – ER-to-cytoplasm volume ratio
d1 d_1 0.13 µm IP3 dissociation constant
d2 d_2 1.05 µm Ca2+ inactivation dissociation constant
d3 d_3 0.9434 µm IP3 dissociation constant
d5 d_5 0.08 µm Ca2+ activation dissociation constant
O2 O_2 0.2 µm s−1 IP3R binding rate for Ca2+ inhibition
ΩC Omega_C 6 s−1 Maximal rate of Ca2+ release by IP3Rs
ΩL Omega_L 0.1 s−1 Maximal rate of Ca2+ leak from the ER
OP O_P 0.9 µm s−1 Maximal Ca2+ uptake rate by SERCAs
KP K_P 0.05 µm Ca2+ affinity of SERCAs

IP3 signaling

Oβ O_beta † µm s−1 Maximal rate of IP3 production by PLCβ

Oδ O_delta 0.6 µm s−1 Maximal rate of IP3 production by PLCδ

κδ kappa_delta 1.5 µm Inhibition constant of PLCδ by IP3

Kδ K_delta 0.1 µm Ca2+ affinity of PLCδ

O3K O_3K 4.5 µm s−1 Maximal rate of IP3 degradation by IP3-3K
K3K K_3K 1 µm IP3 affinity of IP3-3K
KD K_D 0.7 µm Ca2+ affinity of IP3-3K
Ω5P Omega_5P 0.05 s−1 Maximal rate of IP3 degradation by IP 5P

Metabotropic receptor kinetics

ON O_N 0.3 µm−1 s−1 Agonist binding rate
ΩN Omega_N 0.5 s−1 Maximal inactivation rate
KKC K_KC 0.5 µm Ca2+ affinity of PKC
ζ zeta 10 – Maximal reduction of receptor affinity by PKC

IP3 stimulation & diffusion

Fex F_ex 2 µm s−1 Maximal exogenous IP3 flow
Ibias I_bias † µm External IP3 drive
F F 0.09 µm s−1 GJC IP3 permeability
Iθ I_Theta 0.3 µm Threshold gradient for IP3 diffusion
ωI omega_I 0.05 µm Scaling factor of diffusion

Gliotransmission

Cθ C_Theta 0.5 µm Ca2+ threshold for exocytosis
GT G_T 200 mm Total vesicular gliotransmitter concentration
ΩA Omega_A 0.6 s−1 Gliotransmitter recycling rate
UA U_A 0.6 – Gliotransmitter release probability
ρe rho_e 0.00065 – Astrocytic vesicle-to-extracellular volume ratio
Ωe Omega_e 60 s−1 Gliotransmitter clearance rate
α alpha 0 – Gliotransmission nature
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Ermentrout, B., Djurfeldt, M., Lansner, A., Rochel, O., Vieville, T., Muller, E., Davison,
A. P., El Boustani, S., and Destexhe, A. (2007). Simulation of networks of spiking neurons:
a review of tools and strategies. J Comput Neurosci, 23(3):349–398.

Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking
neurons. J Comput Neurosci, 8(3):183–208.

Cannon, R. C., Gewaltig, M.-O., Gleeson, P., Bhalla, U. S., Cornelis, H., Hines, M. L., How-
ell, F. W., Muller, E., Stiles, J. R., Wils, S., and Schutter, E. D. (2007). Interoperability
of Neuroscience Modeling Software: Current Status and Future Directions. Neuroinform,
5(2):127–138.

Carnevale, N. T. and Hines, M. L. (2006). The NEURON Book. Cambridge University Press.

Chao, T. I., Rickmann, M., and Wolff, J. R. (2002). The synapse-astrocyte boundary: an
anatomical basis for an integrative role of glia in synaptic transmission. In Volterra, A.,
Magistretti, P. J., and Haydon, P. G., editors, The Tripartite Synapse: Glia in Synaptic
Transmission, chapter 1, pages 3–23. Oxford University Press, New York.

Dayan, P. and Abbott, L. F. (2001). Theoretical neuroscience, volume 806. Cambridge, MA:
MIT Press.
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