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Abstract 
 

A major challenge in cancer research is to determine the biological and clinical significance of 

somatic mutations in non-coding regions. This has been studied in terms of recurrence, 

functional impact, and association to individual regulatory sites, but the combinatorial 

contribution of mutations at common RNA regulatory motifs has not been explored. We 

developed a new method, MIRA, to perform the first comprehensive study of significantly 

mutated regions (SMRs) with overrepresented binding sites for RNA-binding proteins (RBPs) in 

cancer. We found multiple RBP motifs, including SRSF10, PCBP1 and HNRPLL motifs, as well 

as a specific subset of 5’ and 3’ splice-site sequences, enriched in cancer mutations. Gene 

targets showed association to cancer-related functions, and analysis of RNA sequencing from 

the same samples identified alterations in RNA processing linked to these mutations. MIRA 

facilitates the integrative analysis of multiple genome sites that operate collectively through 

common RBPs and can aid in the interpretation of non-coding variants in cancer. MIRA is 

available at https://github.com/comprna/mira.  
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Introduction 
 

Cancer arises from genetic and epigenetic alterations that interfere with essential 

mechanisms of the normal life cycle of cells such as DNA repair, replication control, and cell 

death (Hanahan and Weinberg 2011). The search for cancer driver mutations, which confer a 

selective advantage to cancer cells, has been traditionally performed in terms of how they 

directly affect protein sequences (Vogelstein et al. 2013). However, systematic studies of cancer 

genomes have highlighted relevant mutational processes outside of protein-coding regions 

(Alexandrov et al. 2013b; Weinhold et al. 2014; Juul et al. 2017) and tumorigenic mutations at 

non-coding regions have been described, like those found in the TERT promoter (Horn et al. 

2013; Huang et al. 2013). However, a major challenge remains to more accurately and 

comprehensively determine the significance and potential pathogenic involvement of somatic 

variants in regions that do not code for proteins (Piraino and Furney 2016). Current methods to 

detect potential driver mutations in non-coding regions have been generally based on 1) the 

recurrence of mutations in predefined regions in combination with measurement of potential 

functional impacts  (Melton et al. 2015; Fredriksson et al. 2014; Mularoni et al. 2016; Weinhold 

et al. 2014), 2) recurrence in combination with sequence conservation or polymorphism data 

(Khurana et al. 2016; Piraino and Furney 2017), or 3) the enrichment of mutations with respect 

to specific mutational backgrounds (Lochovsky et al. 2015; Lanzós et al. 2017; Juul et al. 2017); 

and some of them have combined multiple such approaches (Juul et al. 2017). However, these 

methods have so far been restricted to individual genomic positions rather than combining the 

contributions from multiple functionally equivalent regulatory sites and additionally, have not 

evaluated the impact on RNA processing measured from the same patient samples.  

RNA molecules are bound by multiple RNA binding proteins (RBPs) with specific roles 

during the different steps of RNA processing, including RNA splicing, stability, localization and 

translation, and are critical for the proper control of gene expression (Maslon et al. 2014; 

Rissland 2017). RBPs can act as auxiliary—and sometimes necessary—factors to regulate 

RNA processing, and in particular splicing, and often to antagonize each other in normal cellular 

programs and disease states (Fu and Ares 2014). Multiple experimental approaches have 

established that RBPs generally interact with RNAs through short motifs of 4-7 nucleotides (Ule 

et al. 2003; Lambert et al. 2014; Ray et al. 2013; Oberstrass et al. 2005). These motifs occur 

anywhere along the precursor RNA molecule (pre-mRNA), including introns, protein coding 

regions, untranslated 5’ and 3’ regions, as well as in short and long non-coding RNAs (Sterne-

Weiler and Sanford 2014; Haerty and Ponting 2015; Michlewski et al. 2008).  
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Mutations on RNA regulatory sequences can impact RNA processing and lead to 

disease (Soemedi et al. 2017). Studies carried out so far on mutations affecting RNA processing 

and alternative splicing have mainly focused on a fraction of the motifs associated with the core 

splicing machinery (Jung et al. 2015), or to protein-coding regions (Supek et al. 2014; Anczuków 

et al. 2015). Mutations at exon-intron boundaries have been associated with intron retention in 

tumor suppressors (Jung et al. 2015), whereas mutations on coding exons can trigger 

oncogenic splicing changes (Supek et al. 2014; Anczuków et al. 2015). In vitro screenings of 

sequence variants in exons has revealed that more than 50% of nucleotide substitutions can 

induce splicing changes (Ke et al. 2011; Julien et al. 2016), with similar effects for synonymous 

and non-synonymous sites (Julien et al. 2016). Since RBP binding motifs are widespread along 

gene loci, and somatic mutations may occur anywhere along the genome, it is possible that 

mutations in other genic regions could impact RNA processing and contribute to the tumor 

phenotype. Although mutations and expression alterations in genes coding for RNA binding 

proteins (RBPs) have an impact on specific cellular programs in cancer, it is not known yet if 

mutations in the binding sites of RBPs are frequent in cancer, could be damaging to RNA 

processing, and contribute to oncogenic mechanisms.  

To understand the effects of somatic mutations on RNA processing in cancer at a global 

level we have developed a new approach called MIRA to carry out a comprehensive study of 

somatic mutation patterns in exons and introns from coding and non-coding genes that operate 

collectively through interacting with common RBPs. Compared with other existing approaches to 

detect relevant mutations in non-coding regions, our study provides several novelties and 

advantages: 1) we searched exhaustively along gene loci, hence increasing the potential to 

uncover deep intronic pathological mutations; 2) we studied the enrichment of a large 

compendium of potential RNA regulatory motifs, allowing us to identify potentially novel 

mechanisms affecting RNA processing in cancer; 3) we showed that multiple mutated genomic 

loci potentially interact with common RBPs, suggesting novel cancer-related mechanisms; and 

4) unlike previous methods, we used RNA sequencing data from the same samples to measure 

the impact on RNA processing. Our study uncovered multiple sites common to RBPs that 

impact RNA processing of functions with potential implications in cancer. This study reveals a 

new layer of insight to aid in the functional interpretation of somatic alterations in cancer, and 

could also help in interpreting the clinical relevance of non-coding variants in cancer genomes.  
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Results 

 

Unbiased search for significantly mutated regions (SMRs) along gene loci 

 

RNA binding proteins (RBPs) generally interact with pre-mRNAs at motifs of 4-7 nucleotides, 

which occur anywhere along the pre-mRNA. We thus performed an exhaustive detection of 

mutation enrichment along overlapping genomic windows of 7 nucleotides (7-mers) along each 

gene locus (Fig. 1a) (Methods). Using a dataset of somatic mutations from whole-genome 

sequencing (WGS) from 505 samples for 14 tumor types (Fredriksson et al. 2014) (PAN505) 

(Table S1), we performed a double statistical test. First, to account for local variations in 

mutational processes, we tested each 7-mer window for enrichment in number of mutations by 

comparing each window against the mutation rate for the entire gene locus, and we selected an 

enrichment p-value threshold of < 0.05 after correcting for multiple tests (Figure S1a)(Methods). 

Secondly, to account for nucleotide biases, we compared the mutation count in each 7-mer 

window with the expected mutation count calculated from the nucleotide sequence of the 

window and the mutation rate per nucleotide at the same gene locus. With this we defined a 

nucleotide bias (NB) score per window as the log2-likelihood of the observed versus the 

expected counts (Methods). Of the 140,704 windows with 3 or more mutations, 93,497 (66%) 

showed NB-score > 6, whereas of the 45,916,437 7-mer windows with 1 mutation, which we 

considered to reflect the mutational background, 1,557,310 (3%) had NB-score > 6 (Chi-square 

test p-value < 2.2e-16) (Additional file 2: Figure S1b). We thus selected NB-score > 6 as a 

cutoff. After applying these filters (corrected p-value < 0.05 and NB score > 6), our exhaustive 

analysis produced a total of 78,352 significant 7-mer windows in 8,159 genes. 

The functional impact of somatic mutations depends on the specific genic region in 

which they fall. We thus separated the 7-mer windows according to whether they were in a 5’ or 

3’ untranslated region (5UTR/3UTR), a coding sequence (CDS), an exon in a long non-coding 

RNA (EXON), an intron (INTRON), or in a 5’ or 3’ splice site (5SS/3SS) (Fig. 1a) (Methods). 

These windows were then clustered into significantly mutated regions (SMRs), producing a total 

of 20,307 SMRs, containing a total of 41,756 substitutions (Figure S1c) (Tables S2 and S3), 

which we considered for further analysis. Most of the predicted SMRs were 7-15 nucleotides 

long (Figure S2), and the majority of SMRs were in introns or in exons of non-coding RNAs 

(EXON) (Table 1).  
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SMRs Total With 
enriched 
motifs 

With labeled 
enriched 
motifs 

Impact on 
RNA-
processing 

3SS 823 341 335 2 
3UTR 294 44 44 7 
5SS 1054 546 521 11 
5UTR 119 45 45 5 
CDS 208 10 10 3 
EXON 335 119 114 12 
INTRON 17474 3176 1812 427 

 

Table 1. Significant mutated regions (SMRs). For each region type, we indicate the total 

number of SMRs predicted (Total), SMRs with stranded enriched motifs (with enriched motifs), 

with stranded enriched motifs that we could label (with labeled enriched motifs), and with a 

significant association to an RNA-processing change (impact on RNA-processing). In this latter 

case we count changes in exon-exon junctions and transcript expression changes.  

 

Validation of predicted SMRs 

 

To test our predicted SMRs for possible biases we calculated in each region the DNA replication 

timing, which is known to correlate with somatic mutations in cancers and can be a source of 

artefacts in mutational driver predictions (Lawrence et al. 2013; Liu et al. 2013); we observed no 

association with mutation count (Figure S3). Another potential source of artefacts is the relation 

between gene expression and the rate of somatic mutations (Lawrence et al. 2013). We used 

RNA sequencing (RNA-seq) data from the same samples to measure the expression of 

transcripts whose genomic sequence contained significant regions and observed no association 

between the mutation count and expression (Figure S4). To further validate our SMRs we used 

LARVA (Lochovsky et al. 2015) to assess their significance using a statistical model that 

accounts for over-dispersion of the mutation rate and replication timing (Methods). We observed 

an overall high similarity between the significance provided by our method and that given by 

LARVA (Figure S5). In particular, we found a strong agreement for INTRON SMRs (Pearson’s R 

= 0.83), providing support for our intronic predicted regions. 

 

Predicted SMRs recovered known and novel mutational hotspots 

 

We found SMRs in 501 cancer-driver genes out of 889 collected from the literature (Sebestyén 
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et al. 2016) (Fig. 1b) (Figure S7), which is more than expected by chance (Fisher’s exact test p-

value = 2.2e-16, odds-ratio = 4.6, comparing cancer/non-cancer genes tested with/without 

SMRs). In particular, we recovered SMRs in 71 genes out of the 108 previously identified with a 

method that measured the functional impact of mutations (Mularoni et al. 2016). In agreement 

with prior findings (Mularoni et al. 2016), we observed CDS SMRs in a total of 34 cancer genes, 

including BRAF, IDH1, KRAS, PIK3CA and PIK3R1 (Fig. 1b). We also found SMRs in SF3B1, 

CTNNB1, TP53 and KRAS, which were recovered before with a method based on mutation 

enrichment and evolutionary conservation (Piraino and Furney 2017). We also found CDS 

SMRs in cancer genes not found previously, including NRAS, EP300 and ATM (Fig. 1c). From 

the 133 genes with predicted 5UTR SMRs, 17 were identified previously (Mularoni et al. 2016); 

and we found 5UTR SMRs in 8 cancer genes, including SPOP and EEF1A1. We found 3UTR 

SMRs in 3 of the 12 different genes identified before (Mularoni et al. 2016), and found 3UTR 

SMRs in 28 cancer genes, including CTNNB1 and FOXP1.  

 From the 519 SMRs in exon of long non-coding RNAs (lncRNAs), which we called 

EXON SMRs, 18 were located in cancer gene loci. Additionally, of 42 lncRNAs related to cancer 

(Lanzós et al. 2017), we found only one EXON SMR in TCL6. On the other hand, we found 

INTRON SMRs for 11 of these 42 lncRNAs, indicating that intronic regions in lncRNAs could be 

more relevant than previously anticipated. From the 13 genes reported as intronic in (Mularoni 

et al. 2016), we found 6 as INTRON SMRs and 5 as 5SS/3SS SMRs, with the genes ATG4B, 

NF1 and TP53 having both types of SMRs. As our analysis was exhaustive along the entire 

gene loci, we recovered many more intronic SMRs than in previous reports. In particular, we 

found INTRON SMRs in 317 cancer genes, including NUMB, ALK, EPHB1, ARID1A, TP73 and 

MET (Fig. 1c). Finally, we found 62 5SS SMRs and 53 3SS SMRs in cancer genes, including 

MET, CHEK2, BRCA1, VEGFA, RB1, CDKN2A, as well as TP53, PTEN and CHD1, which were 

described before to have mutations at splice-sites (Jung et al. 2015). In summary, our SMRs 

provide a rich resource with potential to understand non-coding alterations in cancer.  

 

Somatic mutations show positional biases on RBP binding motifs 

 

To further understand the properties of our SMRs we calculated the mutation frequencies at 

trinucleotides considering the strand of the gene in which the SMR was defined. We observed 

an enrichment of C>T and G>A mutations on SMRs (Fig. 2a, upper panel). However, the 

stranded triplets showed mutation frequencies similar to their reverse complements, indicating 

that a considerable proportion of SMRs reflected DNA-related selection processes.  
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To identify those SMRs that more clearly reflect RNA-related selection processes we 

studied sequence motifs potentially related to RNA processing regulation. We performed an 

unbiased k-mer enrichment analysis in SMRs, using k=6. For each SMR type, we compared the 

proportion of SMRs in which each 6-mer occurs with the proportion in 100 control region sets 

(Methods). Further, to keep only those potentially associated with RNA rather than DNA, we 

reverse-complemented all SMRs and control sequences and repeated the enrichment analysis. 

Those 6-mers enriched in both calculations for the same region-type were eliminated (Figure 

S7). We found a total of 357 enriched 6-mers (Table S4) in 3546 SMRs from all region types 

(Table S4). Enriched 6-mers were AC-rich in CDS regions, GC-rich in 5UTR regions, and T-rich 

in 3UTR and EXON regions, whereas in 5SS and 3SS regions they were G and A rich, 

respectively (Figure S7). In contrast, INTRON motifs showed a uniform nucleotide content 

(Figure S7). Enriched 6-mers showed a different mutational pattern compared to that for all 

SMRs (Fig. 2a) (Tables S5 and S6). The symmetry between stranded triplets and their reverse 

complements in SMRs was no longer present in enriched 6-mers, and there was an enrichment 

of mutations at AGA and TCC triples that is not recapitulated in their reverse complements, 

indicating that the selected enriched 6-mers reflect RNA-related selection processes.  

From the 74 enriched 6-mers found on 5SS SMRs, 46 contained the 5’ splice-site (5ss) 

consensus GT. These enriched 5’ss motifs showed the consensus G|GT(A/G)AG with a strong 

conservation of G at the +5 intronic position (position 7 in Fig. 2b). The highest density of 

mutations occurred at two positions on either side of the exon-intron boundary (Fig. 2b), with 

mostly G>A and G>T substitutions (Fig. 2c). From the 52 enriched 6-mers found on 3SS SMRs, 

36 contained the 3’ splice site (3’ss) consensus AG, which showed a strong CNCAG|(G/A) 

motif, with strong conservation of C nucleotides at the -5 position of the intron (position 1 in Fig. 

2c) and with positions -1 and -3 (3 and 5 in Fig. 2c) being the most frequently mutated positions, 

with the most frequent substitution C>T at position -3, and G>A or G>T at position -1 (Fig. 2c). 

Among the cases found, there was a 5’ss in NF1 with mutations in skin (SKCM), lung (LUAD) 

and uterine (UCEC) tumors (Fig. 2d), and a 3’ss in FGFR3 with mutations in head and neck 

(HNSC) and bladder (BLCA) tumors (Fig. 2e). Mutations at splice site motifs occurred in higher 

proportions in lung tumors (LUAD, LUSC) and in uterine tumors (UCEC), 5’ss mutations 

appeared also more frequent in bladder tumors (BLCA), whereas at 3’ss motifs were more 

frequent in colorectal tumors (CRC) (Fig. 3a).  

To identify RBPs that could potentially bind the enriched 6-mers beyond 5’/3’ss motifs, 

we used DeepBind (Alipanahi et al. 2015) to score the 6-mers using models for 522 proteins 

containing KH, RRM and C2H2 domains from human, mouse and Drosophila (Figure S7) 
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(Methods). Using this procedure we labeled 245 (68.6% of the 357 enriched 6-mers; Table S3). 

In 5SS and 3SS SMRs, besides the enriched 5’ss or 3’ss consensus motifs, we identified 

binding sites for multiple RBPs (Figs. 3a and 3b), including motifs for SRSF10, a splicing factor 

that regulates an alternative splicing response to DNA damage (Chabot and Shkreta 2016). 

SRSF10 motifs appeared also at CDS and INTRON SMRs (Figs. 3c and 3d) (Figure S8). The 

observed differences in the consensus motif between region types may reflect differences in 

binding affinities and nucleotide composition, which have been observed before for other RBPs 

(Lovci et al. 2013). In 3SS SMRs we also found binding sites for HNRPLL (Fig. 3b), a regulator 

of T cell activation through alternative splicing (Oberdoerffer et al. 2008), which was also found 

on EXON and INTRON SMRs (Fig. 3d) (Figures S8).  

To evaluate the mutational patterns on these motifs, we studied whether particular 

positions in the enriched motifs were more frequently mutated than others. For each RBP, we 

thus grouped the SMRs containing the enriched labelled 6-mers and performed a multiple 

sequence alignment (MSA) to determine the equivalent positions of the motifs across the SMRs 

and calculated the density of somatic and germline mutations per position (Methods). For 

SRSF10 motifs we found an enrichment of A>G mutations at A positions (Fig. 3d), which was 

recapitulated at INTRON, CDS and 3SS SMRs (Fig. 3c). HNRPLL and PCBP1 motifs showed 

an enrichment of C>T mutations in EXON SMRs (Figure S9). The most abundant RBP motifs 

on EXON SMRs were predicted to be for CPEB4, with a T-rich consensus and enriched in T>A 

mutations (Figure S9). CPEB4 (Ortiz-Zapater et al. 2012) and PCBP1 (Hwang et al. 2017) are 

known to bind 3’UTR regions of protein coding transcripts. It is possible that they also bind 

processed long-noncoding RNAs and that this binding is disrupted by cancer-related mutations.  

At 5UTR SMRs we found multiple T- and C-rich motifs, which occurred predominantly in 

melanoma (SKCM) (Fig. 4a) (Table S3). In particular, PCBP3 and PTBP1 motifs at 5UTR SMRs 

were characterized by an enrichment of C>T substitutions (Fig. 4b) (Figure S10). These motifs 

might be related to the so-called 5’ terminal oligo-pyrimidine tract (5’TOP) motif that is relevant 

for translational regulation and is bound by multiple RBPs (Sawicka et al. 2008; Pichon et al. 

2012); these mutations found could indicate cancer-related alterations of translation. At 5UTR 

SMRs there were also G-rich motifs (HNRPLL, HNRNPA2B1) with frequent G>A mutations 

(Figure S10). At 3UTR SMRs, the representation of enriched motifs across tumor types was 

more variable (Fig. 4c). There were also CT-rich motifs, including PTBP1, HNRNPC, PCBP3, 

IGF2BP2 and ELAVL1 (HuR) (Figure S11), but these were more frequent in CRC, BLCA and 

UCEC patients (Fig. 4c). For HNRNPC and other RBPs, although C>T appeared as the most 

recurrent mutation, there were also frequent T>C and T>G mutations (Fig. 4d) (Figure S11). We 
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also found the ACA-containing IGF2BP2 motif, which was more prominent in UCEC and CRC, 

and showed enrichment of C>T mutations (Figure S11).  

For each enriched motif, we calculated the enrichment of gene sets (GO Biological 

Function, Pathways and Oncogenic Pathways) in the genes harboring SMRs with the motif 

(Table S7) (Methods). We found only a few motifs associated with cancer-related functions. 

Genes harboring SMRs with 5’ss motifs (5SSC) show enrichment in apoptosis and DNA 

damage response functions, as well as in genes related to NFKB activation and PI3K signal 

cascade (Figure S12). Genes with SMRs harboring SRSF10 motifs show association to 

apoptosis and immune response, whereas genes with HNRNPC or HNRNPLL motifs in SMRs 

are related to metabolic processes (Figure S12). RBM41-motif containing SMRs are also related 

to genes involved in metabolic processes, as well as in T-cell activation (Figure S12). These 

results indicate that cancer mutations on RBP motifs may impact to a wide range of functions 

besides contributing to oncogenic processes. 

 

Somatic mutations in RBP binding motifs impact in RNA expression and splicing 

 

To determine the impact of the described mutations in enriched motifs we decided to test their 

impact on RNA processing. We first estimated the association of mutations with changes in 

transcript isoform expression. For each patient with a mutated SMR we considered each 

transcript overlapping the SMR and compared its abundance with the distribution of 

abundances of the same transcript in patients from the same tumor type that did not harbor any 

mutation in the same SMR. From the 20,308 SMRs tested, 148 showed an association with a 

significant expression change (Fig. 5a) (Table S8) (Methods). Most of the significant changes 

were associated to INTRON SMRs in skin (SKCM) and colorectal (CRC) tumors (Figures S13 

and S14). Motifs with mutations associated with a higher number of significant transcript 

expression changes included PTBP1, PCBP1, RBM8A and ZNF638 (Fig. 5b) (Figure S14). In 

particular, mutations in RBM8A motifs were associated with expression changes in transcripts of 

the histone acetyl transferase gene KAT6A (Turner-Ivey et al. 2014) and the pre-B-cell leukemia 

transcription factor 1 gene PBX1, both of which are potential oncogenes (Magnani et al. 2011). 

In the case of PBX1, two transcript isoforms change expression in opposite directions, indicating 

an isoform switch (Figure S14).  

 We also found mutations in an intronic SRSF10 motif associated with expression 

changes in a transcript from the dystrophin gene (DMD) in breast cancer (BRCA), and in two 

transcripts from the Mitogen-Activated Protein Kinase 10 MAPK10 (JNK3) in colorectal cancer 
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(CRC) (Fig. 5c). In DMD, the mutation was associated with increased expression, whereas in 

MAPK10 we observed an isoform switch (Fig. 5c). MAPK10 is a pro-apoptotic gene, whose 

alternative splicing has been observed in colon tumors (Ying et al. 2006; Sebestyén et al. 2016) 

Our results suggest that a mutation in an intronic SRSF10 motif conserved in primates is 

responsible for this splicing change in CRC (Fig. 5c). We also found a CRC mutation on an 

intronic MBNL1 motif conserved in mammals that is associated with an upregulation of the 

transcription factor ETV1 (Fig. 5d), which has been linked to prostate cancer (Cai et al. 2007). A 

mutation at a nearby site in SKCM appears to induce downregulation of a different transcript 

isoform (Fig. 5d).  

 In 5UTR SMRs, significant changes were associated only with SKCM mutations (Figure 

S15). One of these changes corresponds to a mutation on a PCBP3 motif associated with an 

isoform switch in the galactokinase-2 gene GALK2 in melanomas (Figure S15). GALK2 was 

found to be a regulator of prostate cancer cell growth (Whitworth et al. 2012) and showed 

extensive, alternative first-exon splicing in multiple tumor types (Sebestyén et al. 2016). Here 

we showed that these splicing alterations could stem from a mutation at the 5’UTR. Finally, 

among the changes associated with 3UTR SMRs, we found a mutation in a HuR (ELAVL1) 

motif in CRC related to the downregulation of the Debrin-like gene DBNL (Figure S15). 

We also analyzed all possible exon-exon junctions defined from spliced reads mapped 

to the genome, and for each patient we compared the relative junction inclusion level 

overlapping a given SMR with the distribution of inclusion levels of the same junction in patients 

from the same tumor type but without mutations in the same SMR (Methods). Of the SMRs 

tested, 30 were associated with a significant inclusion change in at least one junction (Fig. 6a) 

(Table S9). The majority of cases were associated with INTRON SMRs, were more abundant in 

bladder tumors (BLCA) and head and neck squamous-cell tumors (HNSC). Significant junctions 

were also commonly associated with 5SS SMRs, mainly in uterine (UCEC) and skin (SKCM) 

cancers (Fig. 6a). Additionally, there were many significant associations in 5UTRs SMRs, 

specifically for SKCM. In contrast, we found fewer associations for 3SS SMRs, and no 

association for CDS SMRs (Fig. 6a).  

Significant changes in exon-exon junctions were most commonly associated to the 5’ 

and 3’ splice site consensus sequences (5SSC and 3SSC in Fig. 6b) and to IGF2BP2, 

HNRNPA2B1, HNRNPLL and PCBP1 motifs among others (Fig. 6b). Among the significant 

changes associated to 5SS SMRs (Fig. 6c), the peptidyl-tRNA hydrolase 2 gene PTRH2 was 

associated with a mutation in uterine cancer (UCEC), which would lead to the recognition of an 

upstream cryptic 5’ss (Fig. 6d). PTRH2 induces anoikis; its downregulation is linked to 
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metastasis in tumor cells (Karmali et al. 2011) and was proposed as a prognostic marker in 

ovarian cancer (Hua et al. 2013). The mutation observed in uterine cancer could therefore play 

a role in cancer progression. We also found a significant splicing change in the Farnesyl 

Pyrophosphate Synthetase gene FDPS in melanoma that would produce an alternative 5’ss and 

skip part of the Polyprenyl synthetase domain (Figure S16). FDPS induces autophagy in cancer 

cells (Wasko et al. 2011), and an alteration of the autophagy pathway has been related to 

myeloid neoplasms when SF3B1 mutations are present (Visconte et al. 2017). It would be 

interesting to investigate further whether this splicing-induced alteration of FDPS could 

recapitulate a similar phenotype. Among the significant changes associated with 3SS mutations 

(Figure S16) there was one in the Adenine Phosphoribosyl transferase gene APRT associated 

to G>A mutations at the consensus 3’ss splice site in melanoma (SKCM), which would skip the 

Phosphoribosyl transferase domain (Figure S16). 

We also found mutations in 5UTR motifs associated to splicing changes (Fig. 6e). 

Among the significant cases, we found one in C16orf59 associated with mutations in a HNRPLL 

motif conserved across mammals (Fig. 6f). On the other hand, among the splicing changes 

associated to EXON mutations, we found one in the C14orf37 locus associated to LUAD 

mutations in an IGF2BP2 in an exon of a non-coding transcript (Figure S16). Finally, INTRON 

SMRs had the most numerous number of junction changes with mutations in multiple RBP 

motifs, including RBM8A and SRSF10 (Figure S17). We found a significant change in two 

junctions in the histone gene HIST1H2AC related to mutations in the RBM8A motif in HNSC, 

and in GMEB1 related to mutations in an SRSF10 motif (Figure S17). BED and GFF tracks 

representing all the found cases are available as supplementary material (Table S10).  

 

Discussion 
 

We have described a novel method to identify and characterize somatic mutations in coding and 

non-coding regions in relation to their potential to be involved in common protein-RNA binding. 

By considering mutational significance in combination with the enrichment of RBP binding 

motifs, we identified mutations in non-coding regions, and especially in deep intronic regions, 

with evidence of an impact on RNA processing. Our analysis provides evidence for new 

potential mechanisms by which somatic mutations impact RNA processing and contribute to 

tumor phenotypes. RBPs are known to control entire cellular pathways, from epithelial-to-

mesenchymal transition (Shapiro et al. 2011) to cellular differentiation (Han et al. 2013). This 

suggests a general model in which some of the mutations occurring in cancer anywhere along 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2017. ; https://doi.org/10.1101/200188doi: bioRxiv preprint 

https://doi.org/10.1101/200188
http://creativecommons.org/licenses/by/4.0/


genes could disrupt the function of targets of a given RBP and contribute independently to the 

disruption of similar pathways (Fig. 7). This provides a new strategy to interpret non-coding 

mutations and, moreover, indicates that lowly recurrent mutations could still be relevant to the 

study of cancer, as they can contribute to tumor phenotypes by impacting functions collectively 

controlled by the same RBP. 

Our methodology presents several advantages with respect to previous methods. We 

can detect deep intronic mutations, whereas other methods have only tested positions on exons 

or in intronic regions immediately adjacent to exons (Lanzós et al. 2017; Mularoni et al. 2016). 

Additionally, unlike previous methods (Mularoni et al. 2016; Piraino and Furney 2017; Lanzós et 

al. 2017), we examined the location of the mutations in the context of regulatory motifs, which 

was essential to enable the interpretation of the non-coding mutations and to identify regulatory 

mechanisms that may be altered in cancer. Previous methods attempting to describe recurrent 

mutations in splice-sites have tested either just a small window around exon-intron boundaries 

(Jung et al. 2015) or a region too large and undefined to provide substantial mechanistic insight 

(Mularoni et al. 2016). In our method, the definition of SMRs and motif enrichment is driven by 

the positions of the mutations, hence providing the precise regions where the mutations are 

likely to play a role. Furthermore, we did not assume any specific functional impact, like 

secondary structure or conservation, as not all non-coding regions function through a structure 

or are necessarily conserved. Other features may determine the processing, stability and 

function of pre-mRNA or mature RNA molecules, and here we assumed that these are mediated 

through their ability to interact with proteins. Finally, unlike most previous approaches, we tested 

the impact on RNA processing and expression using RNA-seq from the same samples. We 

observed significant changes for a small fraction of SMRs, indicating that the overall impact on 

RNA is modest. We found multiple intronic SMRs associated to an impacted in RNA processing, 

which represent new genetic alterations with potential relevance to cancer. Some of these 

intronic SMRs occurred in non-coding RNAs. Other methods assumed that the function of 

lncRNAs may be impacted only through exonic mutations (Lanzós et al. 2017). We also found 

5UTR SMRs associated to RNA processing changes. Although it has been assumed that RNA 

structure determines the function in UTR regions (Mularoni et al. 2016), our results suggest 

alternative mechanisms.  

Our approach is subject to several limitations. The analysis may be underpowered due 

to the relatively small number of patients analyzed. For instance, applying our approach to 

another data set (Alexandrov et al. 2013a) with 507 patients, we detected no enriched RBPs 

and limited overlap of the SMRs with the ones described here (data not shown). This indicates 
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that many more samples will be required to detect all possible mutations impacting RNA 

processing. Another limitation is that to be able to identify functionally analogous regions, we 

had to choose specific descriptions for the RNA binding motifs. The analysis is thus limited by 

how accurate these descriptions were. Short nucleotide strings hold sufficient information to 

describe protein-RNA interactions (Daubner et al. 2013). However, despite computational and 

technological advances, precise definitions of RBP binding sites at a genome scale remains 

challenging. Additionally, different RBPs bind very similar sequence motifs; hence the 

identification of some protein-RNA interactions may be ambiguous. Accordingly, we expect that 

some of the RBP label assignments could be improved. For instance, the described CT-rich 

motifs at 5’UTRs and AG-rich motifs in introns could correspond to multiple RBPs.  

In summary, our data provides evidence that multiple RNA processing mechanisms may 

be impaired through cancer mutations. Although non-coding mutations with an impact on RNA 

only occur in few patients, our results motivate the extension of current methods to analyze non-

coding mutations to account for functional analogous sites at different genomic positions, which 

will allow describing similar phenotypes arising from different alterations.  

 

  

Methods 

 

Detection of significantly mutated regions 

 

We aimed to identify significantly mutated regions (SMRs) in both coding and non-coding 

regions of genes, taking into account regional and sequence mutational biases. We used the 

Gencode gene annotations (v19), excluding pseudogenes. To define gene loci unequivocally, 

we clustered transcripts that shared a splice site on the same strand, and considered the gene 

to be the genomic locus and the strand defined by those transcripts. We used somatic 

mutations from whole genome sequencing for 505 tumor samples from 14 tumor types 

published previously (Table S1) (Fredriksson et al. 2014): bladder carcinoma (BLCA) (21 

samples), breast carcinoma (BRCA) (96 samples), colorectal carcinoma (CRC) (42 samples), 

glioblastoma multiforme (GBM) (27 samples), head and neck squamous carcinoma (HNSC) (27 

samples), kidney chromophobe (KICH) (15 samples),  kidney renal carcinoma (KIRC) (29 

samples), low grade glioma (LGG) (18 samples), lung adenocarcinoma (LUAD) (46 samples), 

lung squamous cell carcinoma (LUSC) (45 samples), prostate adenocarcinoma (PRAD) (20 

samples), skin carcinoma (SKCM) (38 samples), thyroid carcinoma (THCA) (34 samples), and 
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uterine corpus endometrial carcinoma (UCEC) (47 samples). We only used substitutions, 

discarding those with a precise allelic match to a germline variant in dbSNP138. We searched 

for significantly mutated regions (SMRs) using a sliding-window approach, whereby along each 

gene locus we tested all overlapping windows of fixed length that harbored at least one 

mutation. As RNA binding proteins (RBPs) interact with pre-mRNAs through short nucleotide 

stretches, we considered windows of size 7. Using shorter windows increased the number of 

calculations but the results were similar, whereas with larger windows we lost positional 

resolution (data not shown). For each 7-mer window, we performed a double statistical test to 

determine the enrichment and to account for local variations and nucleotide biases in mutation 

rates. Given a window with n mutations in a gene of length L and N mutations overall, we 

performed a binomial test using N/L as the expected local mutation rate. All tested windows in a 

gene were adjusted for multiple testing using the Benjamini-Hochberg (BH) method. We kept 

only 7-mer windows that passed a false discovery rate (corrected p-value) threshold of 0.05. 

Although our p-values are various orders of magnitude lower than the expected values, the 

discarded cases showed a trend similar to the expected values (Figure S1).  

To account for potential nucleotide biases we performed a second test per 7-mer 

window: we compared the mutation count in a given window with the expected count according 

to the distribution of mutations at each nucleotide in the same gene locus as follows: For each 

base a we calculated the rate of mutations falling in that base along a gene R(a) = m(a)/n(a), 

where n(a) is the number of a bases in the gene and m(a) is the number of those bases that are 

mutated. The expected mutation count is then calculated using the nucleotide counts in the 

window and the mutation rate per nucleotide. For instance, for the 7-mer window AACTGCAG, 

the expected count was calculated as: E = 3R(A) + 2R(C) + 2R(G) + R(T). This was compared to 

the actual number of mutations, n, observed in that window to define a nucleotide bias (NB) 

score: NB-score = log2( n / E ) for each 7-mer window. We discarded 7-mer windows 

corresponding to single-nucleotide repeats (e.g. AAAAAAA). Further, we compared the NB-

scores of windows with only 1 mutation with windows with >= 3 mutations and set the NB-score 

to be > 6 (Figure S1). For 7-mer windows that overlap any of the three intronic or exonic bases 

around the exon-intron boundaries, we kept all windows with 1 or more mutations as long as the 

NB-score was greater than 6.  

Significant 7-mer windows were classified according to the genic region in the same 

strand on which they fell: 5’ or 3’ untranslated regions (5UTR/3UTR), coding sequence (CDS), 

exon in short or long non-coding RNA (EXON), 5’/3’ splice-site (5SS/3SS), or intron (INTRON). 

To unambiguously assign each 7-mer window to a region type, we prioritized the assignment as 
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follows: 5SS/3SS > CDS > 5UTR/3UTR > EXON > INTRON. That is, if a window overlapped a 

splice-site, it was classified as such; else, if it overlapped a CDS, it was classified as CDS; else, 

if it overlapped an UTR, it was labeled as UTR; else, if it mapped an exon in a non-coding RNA, 

it was labeled as EXON. All SMRs that could not be matched to an exon (CDS, UTR or EXON) 

or to a splice site (5SS or 3SS) were classified as intronic. No significant window overlapped 

start or stop codons. To each SMR we assigned the average NB-score and a corrected p-value 

using the Simes approach (Lun and Smyth 2014): we ranked the p-values of the n overlapping 

7mer windows in increasing order pi , i=1,2,…n and calculated ps = min{ np1 / 1, np2 / 2, np3 / 3, …., 

npn / n}, where p1 was the lowest and pn was the highest p-value in the cluster. Each SMR cluster 

was then assigned the p-value ps. Code for this analysis is available at 

https://github.com/comprna/mira.  

 

Comparison to expression, replication timing and LARVA 

 

Data for replication time was obtained from (Lochovsky et al. 2015). Only SMRs for which 

replication time was available were analyzed. Expression data were analyzed for the samples 

from the PAN505 cohort (see below). For each SMR in the PAN505 cohort, we considered 

annotated transcripts whose genomic sequence overlapped with an SMR. We then calculated 

the total expression in transcripts per million (TPM) units for the overlapping transcripts per 

patient and averaged them across patients. For each SMR we compared the average 

expression of the SMR-containing transcripts in the mutated samples with the number of 

mutations. Additionally, we analyzed all SMRs with LARVA (Lochovsky et al. 2015) using the 

same mutation dataset. Specifically, we compared the significance of our SMRs with the 

significance given by LARVA using the model with a beta-binomial distribution and the 

replication timing correction (p-bbd-cor), which accounts for overdispersion of the mutation rates 

and regional biases.  

 

Control regions for SMR comparison 

 

For each set of SMRs (5SS, 3SS, CDS, 5UTR, 3UTR, INTRON, EXON), we generated control 

regions by random sampling non-overlapping regions from the Gencode annotation. For each 

SMR, we generated 100 control regions of the same length and same type, without mutations, 

and allowed for a maximum variation of G+C content of 5%. Each of these 100 controls were 

separated into different sets to generate 100 control sets of the count as the SMRs, each with 
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similar distribution and G+C content distributions. For the 5SS and 3SS SMRs we generated 

controls by sampling regions with the same length and same relative position from the exon-

intron boundary, with no mutations and also controlling for GC content.  

 

Motif analysis 

 

We performed an unbiased search for enriched k-mers (k=6) on the SMRs using MoSEA 

(https://github.com/comprna/MoSEA) (Sebestyén et al. 2016). For each 6-mer within an SMR, 

we counted the number of SMRs and control regions in which it appeared. A z-score was 

computed for each individual 6-mer comparing the observed frequency with the distribution of 

frequencies in the 100 control regions. The enrichment analysis was repeated, reversing the 

strand of all SMRs and control regions, and those 6-mers that appeared significantly enriched in 

the direct and reversed analyses for the same region type were discarded. We considered 

significantly enriched 6-mers with a z-score > 1.96 and with 5 or more counts on SMRs. This 

analysis included the GT and AG containing 6-mers at 5SS and 3SS splice sites, respectively. 

In total we obtained 444 enriched 6-mers (Table S3) in 3456 SMRs (Table S4). From all 20307 

SMRs, 749 (3,68%) appeared in both strands due to overlapping genes. However, considering 

the 3456 SMRs with enriched 6-mers, only 25 (0,72%) overlapped with opposite strands, which 

is a significant reduction (Fisher’s exact test p-value = 2.2e-16, odds-ratio = 5.25). To label 

enriched 6-mers we used DeepBind (Alipanahi et al. 2015) to score each 6-mer using models 

for 522 proteins containing KH (24 proteins), RRM (134, 2 in common with KH) and C2H2 (366 

proteins) domains from human (413 proteins), mouse (49 proteins) and Drosophila (60 

proteins). For each 6-mer, we kept the top three predictions with a score > 0.1. Subsequently, 

given all 6-mers associated to the same RBP label, we kept only those 6-mers that were at a 

maximum Levenshtein distance of 2 from the top-scoring 6-mer.  

 

Significant mutations per position of a motif 

 

For each of the RBP labels we located all the associated 6-mers in SMRs and performed a 

multiple sequence alignment (MSA) with all the 6-mers instances using ClustalW (Thompson et 

al. 2002). Sequence logos were built from this alignment and somatic mutations were counted 

per position relative to the MSA. As a control, we shuffled the same number of mutations along 

the aligned positions to calculate an average per position. Germline mutations from the 1000 

genomes project (1000 Genomes Project Consortium et al. 2010) were also considered to 
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calculate the number of germline mutations per position of the MSA. 

 

Gene set enrichment analysis 

Annotations for gene sets and pathways were obtained from the Molecular Signatures Database 

v4.0 (Liberzon et al. 2015). We performed a Fisher’s exact test per hallmark set for genes 

harboring SMRs with labeled enriched motifs in the following way: for each RBP motif and each 

gene set, we built a contingency matrix with the counts of genes with and without an RBP motif 

in an SMR, and within or outside each gene set.  

RNA-seq data analysis 

 

TCGA RNA-seq data was obtained for the PAN505 samples from the Genomic Data Commons 

(Grossman et al. 2016) (https://gdc-portal.nci.nih.gov/). We estimated transcript abundances for 

the Gencode annotations (v19) in TPM units using Salmon (Version 0.8.1) (Patro et al. 2017). 

For each mutated position in an enriched motif, we calculated whether the mutation was 

associated to a change in transcript expression using an outlier statistic. For each SMR with an 

enriched motif and for each transcript whose genomic extension contained the SMR, we 

compared the transcript log2(TPM+0.01) for each patient with a mutation on the motif, with the 

distribution of log2(TPM+0.01) values for the same transcript in the patients from the same 

tumor type with no mutations in the motif. We only considered those cases where at least 5 

patients lacked a mutation. We kept only those cases with |z-score|>1.96 and with a difference 

between the observed log2(TPM+0.01) and the mean of log2(TPM+0.1) in patients without 

mutations greater than 0.5 in absolute value. We considered as significant those cases with a p-

value < 0.05 after adjusting for multiple testing using the BH approach. RNA-seq reads were 

also mapped to the human genome (hg19) with STAR (version 2.5.0) (Dobin et al. 2013) and 

analyzed using Junckey (https://github.com/comprna/Junckey). From the BAM files, we 

identified all possible exon-exon junctions defined by spliced reads that appeared in any of the 

samples. All defined junctions were then grouped into junction-clusters. Any two junctions were 

placed in the same cluster if they shared at least one splice-site. Clusters were built using all 

junctions present in any patient, but junction read-counts were assigned per patient, i.e. 0 or 

more. Only clusters that had at least a total of 30 reads in all samples were used. Additionally, 

we only used junctions <100kbp in length and with a total of >1% of reads from the cluster in all 

samples. Then, for each patient, the read-count per junction was normalized by the total read 
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count in that cluster to define the junction inclusion level or proportion spliced-in (PSI). A 

junction not expressed in a sample was given a zero inclusion level. The software for junction 

analysis is available at https://github.com/comprna/Junckey. For each SMR containing an 

enriched motif, we compared each patient with a mutation in the motif against all patients for the 

same tumor type who did not have mutations in the same SMR. We measured a z-score 

derived from the PSI for each junction overlapping the motif, by comparing with the of PSIs for 

the same junction in the non-mutated patients, and we kept only those cases with |z-

score|>1.96 and |ΔPSI|>0.1. We considered significant those changes with p-value < 0.05 after 

adjusting for multiple testing using the BH approach.  

 

Supplementary Data and Software 

 

Supplementary Data for this manuscript is available at: 

http://comprna.upf.edu/Data/MutationsRBPMotifs/ 

Code used in this manuscript is available at:  

https://github.com/comprna/mira 

https://github.com/comprna/MoSEA 

https://github.com/comprna/Junckey 
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Figure Legends 
 
Figure 1. Systematic identification of RNA-related significantly mutated regions (SMRs). 

(a) Short k-mer windows (k=7 in our study) along genes are tested for the enrichment in 

mutations with respect to the gene mutation rate and the local nucleotide biases. Significant 

windows are clustered by region type into significantly mutated regions (SMRs). For each SMR 

we give the NB-score (x axis) and the number of mutations (y axis). (b) We show the SMRs 

detected in CDS regions, introns (INTRON), 5’ UTRs (5UTR) and 3’UTRs (3UTR). All SMRs 

detected are shown, but we only show the gene name for the SMRs with nucleotide-bias (NB) 

score > 6 and with 5 or more mutations, except for the INTRON SMRs, where we highlight the 

cases with 12 or more mutations. (c) Examples of a CDS SMR in NRAS and an INTRON SMR 

in MET. The UCSC screenshots show the SMR (green) and the mutations detected (red). 

 

Figure 2. Enriched splice-site motifs in significantly mutated regions (SMRs). (a) Upper 

panel: mutation pattern in SMRs. For each nucleotide substitution we give the total count of 

substitutions observed in SMRs separated according to the nucleotide triplet in which it occurs. 

SMRs are stranded; hence we give the substitutions according to the SMR strand. Lower panel: 

mutation patterns in enriched 6-mers in SMRs. For each nucleotide substitution we give the total 

count observed separated according to the nucleotide triplet in which it occurs. Since the 6-mers 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2017. ; https://doi.org/10.1101/200188doi: bioRxiv preprint 

https://doi.org/10.1101/200188
http://creativecommons.org/licenses/by/4.0/


are stranded, give the substitutions according to the 6-mer strand. (b) We show the logos for the 

splice site motifs significantly enriched in 5SS and 3SS SMRs, i.e. they appear more frequently 

in 5SS or 3SS SMRs than in the corresponding controls. The barplots below show the 

proportion of all somatic mutations in the 6-mers (y axis) that fall on each position along the 

motif logo. In orange indicate those somatic mutations that coincide with a germline SNP. (c) 

The plots show for each position the number of splice-sites with each type of substitution 

indicated with a color code below. (d) We give two examples of mutations found at splice sites 

motifs in the genes NF1 and FGFR3. Above the gene track we show the significantly mutated 

region (SMR) (green track), the enriched motif found in the SMR (blue track), and the somatic 

mutations (read track). For each mutation we indicate the patient identifier, the tumor type and 

the substitution. 

 

Figure 3. Cancer mutations in enriched RBP motifs. We provide the proportion of samples 

separated by tumor type (y axis) that have a mutated motif in 5SS (a), 3SS (b), CDS (c) and 

INTRON (d) SMRs. In each SMR type we show the enriched motifs. For 5SS and 3SS we 

indicate the consensus 5’ or 3’ splice site sequences (5SSC/3SSC). The proportions are color 

coded by tumor type.  We show the mutation patterns on SRSF10 motifs in 3SS (e), CDS (f) 

and INTRON (g) SMRs. In the upper panel we indicate in dark red the position of the mutations 

and in light red the positions covered by motif. The barplots below show the proportion of 

somatic mutations (y axis) that fall on each position along the motif logo. In orange indicate 

those somatic mutations that coincide with a germline SNP. Below we show for each position 

the number of motifs with each type of substitution indicated with a color code below. 

 

Figure 4. Cancer mutations in enriched RBP motifs in 5UTR and 3UTR SMRs. (a) For 

5UTR (a) and 3UTR (b) SMRs we provide the proportion of samples in each tumor type (y axis) 

that have a mutated RNA binding protein (RBP) motif (x axis). The proportions are color-coded 

by tumor type. The proportion of SMRs with each RBP motif per tumor type is given in Figure 

S9. We show the positional patterns of mutations on (c) PCBP3 motifs in 5UTR SMRs, and on 

(d) HNRNPC3 motifs in 3UTR SMRs. In the upper panels we indicate in red the positions 

covered by the motif and in dark red the position of the mutations. The barplots below show the 

proportion of somatic mutations (y axis) that fall on each position along the motif logo. In orange 

we indicate those somatic mutations that coincide with a germline SNP in position (with a 

different substitution pattern, as the exact matching substitutions were removed). Below we 

show for each position, the number of motifs with each type of substitution indicated with a color 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2017. ; https://doi.org/10.1101/200188doi: bioRxiv preprint 

https://doi.org/10.1101/200188
http://creativecommons.org/licenses/by/4.0/


code below. 

 

Figure 5. Transcript expression changes associated to mutations in RBP motifs. (a) For 

each region type (x axis) we give the number of SMRs (y axis) for which we found a significant 

change in transcript isoform expression associated with somatic mutations in enriched motifs 

within the SMR. The counts are color-coded by tumor type. (b) For each motif (x axis), we give 

the number of cases for which we found a significant change in transcript expression (y axis) 

associated with somatic mutations in the motif. The counts are color-coded by tumor type. (c) 

Significant changes in transcript expression associated with mutations in intronic SRSF10 

motifs. For each patient (x axis) we show the transcripts (y axis) that have a significant increase 

(red) or decrease (blue) in expression. We separate them according to tumor type (indicated 

above). In the UCSC screen shot we indicate the patients and mutations on the CAGAGA motif 

in the intron of MAPK10. Below we show the significant expression changes detected in two 

different transcripts of MAPK10 associated to mutations in the SRSF10 motif. (d) Significant 

changes in transcript expression associated with mutations in intronic MBNL1 motifs. For each 

patient (x axis) we show the transcripts (y axis) that have a significant increase (red) or 

decrease (blue) in expression. We separate them according to tumor type (indicated above). In 

the UCSC screen shot we indicate the patients and mutations on the CGCTTT motif in the 

intron of ETV1. Below we show the significant expression changes detected in two different 

transcripts of ETV1 associated to mutations in the MBNL1 motif. 

 

 

Figure 6. Changes in junction usage associated to mutations in RBP motifs. (a) For each 

region type (x axis) we give the number of SMRs (y axis) for which we found a significant 

change in exon-exon junction inclusion associated with somatic mutations in enriched motifs 

within the SMR. The counts are color-coded by tumor type. (b) For each motif (x axis), we give 

the number of instances (y axis) for which we found a significant change in exon-exon junction 

inclusion associated with somatic mutations in the motif (x axis). The counts are color-coded by 

tumor type. (c) Significant changes in junction inclusion associated to mutations in 5’ splice site 

(5’ss) motifs. For each patient (x axis) we show the junctions (y axis) that have a significant 

increase (orange) or decrease (cyan) in inclusion (PSI). We separate them according to tumor 

type (indicated above). (d) Significant junction changes in PTRH2 in uterine cancer (UCEC). We 

show the changing junctions in gray. The mutation in the annotated 5’ss induces the usage of 

an upstream cryptic 5’ss. We show the SMR (green), the enriched motif (blue), and the mutation 
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(red). The boxplots blow show the PSI values (y axis) of the two changing junctions separated 

by samples with mutations and without mutations in this SMR in UCEC, indicated in the x axis. 

(e) Significant changes in junction inclusion associated to mutations in 5UTR SMRs. For each 

patient (x axis) we show the junctions (y axis) that have a significant increase (orange) or 

decrease (cyan) in inclusion (PSI). We separate them according to tumor type (indicated 

above). (f) Significant junction changes in C16orf59 associated to mutations in an HRNPLL 

motif in melanoma (SKCM). The boxplots show the PSI values (y axis) of the two changing 

junctions separated by samples with mutations and without mutations, indicated in the x axis. In 

the screenshot we show the 5UTR SMR (green), the enriched motifs (blue), and the mutations 

(red), which suggest dinucleotide mutations GG>AA in some patients. The junctions associated 

to these mutations are downstream of the SMR and do not appear in the genomic range shown 

in the figure.  

 

Figure 7. Non-coding mutations in human tumors impact binding sites of RNA binding 

proteins. Our analysis suggests that many of the mutations (indicated in red) on non-coding 

regions, predominantly introns, and UTRs, impact binding sites of RNA binding proteins 

(indicated in orange and green) and affect RNA processing in multiple different genes across 

patients. In the figure altered RNA processing are indicated as solid gene models. These 

alterations would contribute to the frequent changes observed in RNA processing in tumors and 

could indicate novel oncogenic mechanisms.  
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A G A T T A A A C T A C T T T A C A G T A A C T T T T T T C G T G T A G A
G G A T T A A A C T A C T T T A C A G T A A C T T T T T T C A T G T A G A
G G A T T A A A C T A C T T T A C A G T A A C T T T T T T C G T G T A G A
G G A T T A A A C T A C T T T A C A G T A A C T T T T T T C A T G T A G A
G G A T T A A A C T A C T T T A C A G T A A C T T T T T C C G T G T A G A
G G A T T A A A C T A C T T T A C A G T A A C T T T T T T C A T G T A G A
G G A T T A A A C T A C T T T A C A G T A A C T T T T T T C A T G T A G A
A A A C C C A A T T G T T C T G T A T T A C C T T C T T T C G C A T C C A
G A A T T A A A C T A T T G T A T A G T A A C T T C T T T C A T G T T G -
G A A T T A A A C T A T T A T A C A G T A G C T T C T T T G A C A T A A A

7q31.2

100 Vert. Cons

4.88 -

-4.5 _

0 -

Scale
chr1:

<---
Common SNPs(150)

COSMIC Regions
SMRs (-)

Gaps
Human
Chimp
Gorilla

Orangutan
Gibbon
Rhesus

Crab-eating_macaque
Mouse

Dog
Elephant

10 bases hg19
115,256,520 115,256,530

G T A C C G T G A C A T G A G A A G A A C A G G T C G A C

NRAS/NM_002524
M 67 A 66 S 65 Y 64 E 63 E 62 Q 61 G 60 A 59 T 58NRAS/uc009wgu.3

TCGA-AF-3913-01A_CRC_A->C
TCGA-DA-A3F3-06A_SKCM_A->G
TCGA-FS-A1ZP-06A_SKCM_A->T

TCGA-EM-A2CN-01A_THCA_A->G
TCGA-BS-A0TD-01A_UCEC_A->G

TCGA-AA-3666-01A_CRC_C->A
TCGA-DA-A1HV-06A_SKCM_C->A
TCGA-DA-A3F3-06A_SKCM_C->A
TCGA-EE-A185-06A_SKCM_C->A

TCGA-EE-A2GN-06A_SKCM_C->A
TCGA-EE-A3JI-06A_SKCM_C->A

TCGA-ER-A19D-06A_SKCM_C->A

G T A C C G T G A C A T G A G A A G A A C A G G T C G A C
G T A C C G T G A C A T G A G A A G A A C A G G T C G A C
G T A C C G T G A C A T G A G A A G A A C A G G T C G A C
G T A C C G T G A C A T G A G A A G A A C A G G T C G A C
G T A C C G T G A C A T G A G A A G A A C A G G T C G A C
G T A C C G T G A C A T G A G A A G A A C A G G T C G A C
G T A C C G T G A C A T G A G A A G A A C A G G T C G A C
G T A C C G T G A C A T G A G G A G A A C A G G T C G A C
G T A C C G T G A C A T G A G A A G A A C T G G T C G A C
G T A C C G T G A C A T G A G G A G A A C A G G T C G A C

1p13.2

100 Vert. Cons

4.88 -

-4.5 _

0 -
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Scale
chr4:

SMRs (+)

20 bases hg19
1,803,540 1,803,550 1,803,560 1,803,570 1,803,580 1,803,590

TCGA-CF-A27C-01A_BLCA_C->G
TCGA-DK-A1AA-01A_BLCA_C->G
TCGA-DK-A1AG-01A_BLCA_C->G
TCGA-H4-A2HQ-01A_BLCA_C->G
TCGA-BA-A4IH-01A_HNSC_C->G

FGFR3
FGFR3
FGFR3
FGFR3
FGFR3
FGFR3

b	

d	

a	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

c	

																

e	Scale
chr17:

--->
Common SNPs(150)

SMRs (+)

Gaps
Human
Chimp
Gorilla

Orangutan
Gibbon
Rhesus

Crab-eating_macaque
Mouse

Dog
Elephant

10 bases hg19
29,654,850 29,654,860

G G C A G T T C T G A C C C G A G T T T A C G G T A G G T T T T

TCGA-EE-A3J5-06A_SKCM_G->A
TCGA-AX-A0J1-01A_UCEC_G->A

TCGA-78-7146-01A_LUAD_G->T
TCGA-EE-A3J5-06A_SKCM_G->A

TCGA-EE-A3JI-06A_SKCM_G->T
5SS_5SSC_GTAGGT_15

NF1/NM_001042492
NF1/NM_000267

G G C A G T T C T G A C C C G A G T T T A C G G T A G G T T T T
G G C A G T T C T G A C C C G A G T T T A C G G T A G G T T T T
G G C A G T T C T G A C C C A A G T T T A C G G T A G G T T T T
G G C A G T T C T G A C C C G A G T T T A C G G T A G G T T T T
G G C A G T T C T G A C C C G A G T T T A C G G T A G G T T T T
G G C A G T T C T G A C C C G A G T T T A C G G T A G G T T T T
G G C A G T T C T G A C C C G A G T T T A C G G T A G G T T T T
G G C A G T T C A G A C C C T A G T T T A C G G T A G G T A T T
G G C A G T T C A G A C C C T A G T T T A C G G T A G G - T T T
G G C A G C T C A G A C C C T A G T T T A C G G T A G G T C T T

17q11.2

100 Vert. Cons

4.88 -

-4.5 _

0 -
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Scale
chr4:

<---

Common SNPs(150)

SMRs (-)
Gaps

Human
Chimp
Gorilla

Orangutan
Gibbon
Rhesus

Crab-eating_macaque
Mouse

Dog
Elephant

10 bases hg19
87,375,880 87,375,890

T C T T T T T A A A G A G A C C G G A A C G A T C T
MAPK10/uc010ikh.1

TCGA-AA-3977-01A_CRC_G->T
TCGA-CA-6717-01A_CRC_G->T
TCGA-EI-6917-01A_CRC_G->T

INTRON_SRSF10_CAGAGA_63

T C T T T T T A A A G A G A C C G G A A C G A T C T
= = = = = = = = = = = = = = = = = = = = = = = = = =
= = = = = = = = = = = = = = = = = = = = = = = = = =
= = = = = = = = = = = = = = = = = = = = = = = = = =
T C T T T T T A A A G A G A C C G G - A C G A T C T
T C T T T T T A A A G A G A C C G G A A C G A T C T
T C T T T T T A A A G A G A C C G G A A C G A T C T
= = = = = = = = = = = = = = = = = = = = = = = = = =
- - - - - - - - - - - - - - - - - - - - - - - - - -
= = = = = = = = = = = = = = = = = = = = = = = = = =

100 Vert. Cons
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-4.5 _
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Scale
chr7:

<---

Common SNPs(150)

SMRs (-)
Gaps

Human
Rhesus
Mouse

Dog
Elephant

10 bases hg19
13,975,050

TCAAATTCACTTCGTTAAATTAAGTTCGTTTCGCTTTCCC
ETV1/NM_001163150
ETV1/NM_001163151

ETV1/NM_004956
ETV1/NM_001163152
ETV1/NM_001163149
ETV1/NM_001163148
ETV1/NM_001163147

ETV1/NR_120445
ETS_PEA3_N

TCGA-EE-A3JI-06A_SKCM_C->T
TCGA-AP-A051-01A_UCEC_G->A
TCGA-B5-A11H-01A_UCEC_G->A

TCGA-CA-6717-01A_CRC_C->T
INTRON_MBNL1_CGCTTT_12

2
TCAAATTCACTTCGTTAAATTAAGTTCGTTTCGCTTTCCC
TCAAATTCACTTCGTTAAATTAAGTTCGTTTCGCTTTCCC
GCAAATTCACTTCGTTAATTT- - - - - - -CTTCACTTCCTC
TCAAATTCACTCCGTTAAATTAAGTCCGTTTCGCTTTCCC
TCAAATTCACTTCTTTAAATTAAGTTCGTTTCACTTTCCC

100 Vert. Cons
4.88 -

-4.5 _

0 -

d	



Scale
chr16:

--->

Common SNPs(150)

Gaps
Human
Chimp
Gorilla

Orangutan
Gibbon
Rhesus

Crab-eating_macaque
Mouse

Dog
Elephant

10 bases hg19
2,510,070 2,510,080 2,510,090 2,510,100

C C G G C C G G G A A G G G G C G G C C T T C C C T C C C G G A A G G G G C G T G
ENST00000361837

ENST00000569496
ENST00000567489

TCGA-DA-A1IC-06A_SKCM_G->A
TCGA-EE-A29B-06A_SKCM_G->A
TCGA-EE-A2M5-06A_SKCM_G->A
TCGA-EE-A2MI-06A_SKCM_G->A
TCGA-EE-A3J5-06A_SKCM_G->A
TCGA-ER-A19J-06A_SKCM_G->A
TCGA-GN-A266-06A_SKCM_G->A

TCGA-D9-A148-06A_SKCM_G->A
TCGA-EE-A2M5-06A_SKCM_G->A
TCGA-EE-A2MI-06A_SKCM_G->A
TCGA-ER-A19J-06A_SKCM_G->A
TCGA-GN-A266-06A_SKCM_G->A
5UTR_HNRPLL_AGGGGC_6

5UTR_HNRPLL_GGGGCG_8
5UTR_C16orf59_12_CCCGGAAGGGGCGTG

+
C C G G C C G G G A A G G G G C G G C C T T C C C T C C C G G A A G G G G C G T G
C C G G C C G G G A A G G G G C G G C C T T C C C T C C C G G A A G G G G C G T G
C C G G C C G G G A A G G G G C G G C C T T C C C T C C C G G A A G G G G C G T G
C C G G C C G G G A A G G G G C G G C C T T C C C T C C C G G A A G G G G C G T G
C C G G C C G G G A A G G G G C G G G C T T C C C T C C C G G A A G G G G C G T G
C C G G C C G G G A A G G G G C G G C C T T C C C G C C C G G A A G G G G C G T G
C C G G C C G G G A A G G G G C G G C C T T C C C G C C C G G A A G G G G C G T G
C T A C C C G G A A G T G G G C G G C C T T C T - G C C C G G A A G G C G C G G G
G C C G C C G G A A G G G G G C G G T C C C C T A G C C C G G A A A G G A C C G G
C C G G C C G G A A A G A G A C C G T C T T C T C A C A C G G A A G G G G C G G A

100 Vert. Cons

4.88 -

-4.5 _
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Scale
chr17:

<---

SMRs (-)
Gaps

Human
Chimp
Gorilla

Orangutan
Gibbon
Rhesus

Crab-eating_macaque
Mouse

Dog
Elephant

10 bases hg19
57,784,720 57,784,730 57,784,740

G C G G G A C A T T C C T C G G T T G G T T G G A T G G A T G T C A T G G A G
PTRH2/NM_001015509

PTRH2/NM_016077

TCGA-A5-A0GA-01A_UCEC_G->T
5SS_5SSC_GTAGGT_15

2 2
G C G G G A C A T T C C T C G G T T G G T T G G A T G G A T G T C A T G G A G
G C G G G A C A T T C C T C G G T T G G T T G G A T G G A T G T C A T G G A G
G C G G G A C A T T C C T C G G T T G G T T G G A T G G A T G T C A T G G A G
G C G G G A C A T T C C T C G G T T G G T T G G A T G G A T G T C A T G G A G
G C C G G A C A T T C C T C G G T T G G T T G G A T G G A T G T C A T G G A G
G C G G G A C A T T C C T C G G T T G G T T G G A T G G G T G T C A T G G A G
G C G G G A C A T T C C T C G G T T G G T T G G A T G G G T G T C A T G G A G
G C A G G A T C T T C C T C - - - - A G C T G A A T G G A C C T C G A A G A G
T C G G G A C A C T T C C C - - - - G G C T G A A T G G C T C G C T T G A A G
G C G G G A G A C T C T T C - - - - A G C T A A A T G G A T C T A A T A A C G

17q23.1

100 Vert. Cons

4.88 -

-4.5 _

0 -

d	c	
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