
Variants in RNA-Seq data show a 
continued mutation rate during strain 
preservation of Schizophyllum 
commune 

Thies Gehrmann1, Jordi F. Pelkmans2, Luis G. Lugones2, Han A.B. Wösten2, Thomas Abeel1,3, and 

Marcel J.T. Reinders1 

1Delft Bioinformatics Lab, Delft University of Technology, 2628 CD Delft, The Netherlands. 

2Microbiology, Department of Biology, Utrecht University, 3585 CH Utrecht, The Netherlands.  

3Broad Institute of MIT and Harvard, Cambridge, Massachusetts MA02142, United States of America. 

Abstract 

Background: Typical microorganism studies link genetic markers to physiological observations, like 

growth and survival. Experiments are carefully designed, comparing wildtype strains with knockout 

strains, and replications are conducted to capture biological variation. To maintain monoclonal 

strains, strain preservation systems are used to keep the number of generations between the 

primary stock and the experimental measurement low, to decrease the influence of spontaneous 

mutations on the experimental outcome. The impact of spontaneous mutations during the minimal 

number of growth cycles for the experimental design is, however, poorly studied.  

Results: We set out to characterize the mutation landscape using a transcriptomic dataset of 

Schizophyllum commune, a laboratory model for mushroom formation. We designed a methodology 

to detect SNPs from the RNA-seq data, and found a mutation rate of 1.923 10-8 per haploid genome 

per base per generation, highly similar to the previously described mutation rate of S. commune in 

the wild. Our results imply that approximately 300 mutations are generated during growth of a 

colony on an agar plate, of which 5 would introduce stop codons. Knock-outs did not incur an 

increase of mutations and chromosomal recombination occurring at mating type loci was frequent. 

We found that missense and nonsense SNPs were selected against throughout the experiment. Also, 

most mutations show a low variant allele frequency and appear only in a small part of the 

population. Yet, we found 40 genes that gained a nonsense mutation affecting one of its annotated 

protein domains, and more than 400 genes having a missense mutation inside an annotated protein 

domain. Further, we found transcription factors, metabolic genes and cazymes having gained a 
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mutation. Hence, the mutation landscape is wide-spread and has many functional annotations.  

Conclusions:  We have shown that spontaneous mutations accumulate in typical microorganism 

experiments, where one usually assumes that these do not happen. As these mutations possibly 

confound experiments they should be minimized as much as possible, or, at least, be trackable. 

Therefore, we recommend labs to ensure that biological replicates originate from different parental 

plates, as much as possible. 

Introduction 

Experiments with microorganisms rely on the assumption that the organisms used in independent 

experiments are identical to ensure that differences in phenotypic characteristics are not the result 

of an underlying genetic heterogeneity. In reality, spontaneous mutations are regularly acquired 

during cell division(Baer et al., 2007), invalidating this assumption. These spontaneous mutations 

represent confounding factors in the original experiments (Barrick and Lenski, 2013), as well as for 

independent replication experiments. These confounders usually go unnoticed, or are disregarded. 

However, a change of a specific phenotypic trait can reveal the occurrence of spontaneous 

mutations. For example, Saccharomyces cerevisiae is often plagued by the petite phenotype, caused 

by deletion of mitochondrial DNA(Zeyl and DeVisser, 2001; Joseph and Hall, 2004). As another 

example, the mutation rate of 2.0x10^-8 per base per haploid genome per generation(Baranova et 

al., 2015) of Schizophyllum commune (model wood rot mushroom) regularly interferes with 

biological experiments(Raper and Miles, 1958), and consequently several mutations frequently occur 

in laboratory settings: the thn mutant prevents aerial hyphae formation(Wessels et al., 1991), the 

streak mutant results in a blue color(Miles et al., 1956), and the fbf mutation prevents mushroom 

formation(Springer and Wessels, 1989).  

To prevent these and other mutations from seeping into other experiments, labs utilize a strain 

preservation system (Supplementary Note 1). In general, a strain preservation system attempts to 

minimize the number of generations between the primary stock and the strains from which 

measurements or materials are eventually sampled. This involves ensuring the long-term 

preservation of the primary stock of a given strain. Each lab worker creates their own personal stock, 

subcultured from the primary stock, and samples exclusively from this stock to perform 

experiments. For each experiment, a ‘mother plate’ is subcultured from the personal stock, from 

which all subsequent measurements are made. If a personal stock is depleted, it is recreated from 

the primary stock. This procedure is followed for each strain, including mutant strains derived from 

the primary stock. To ensure statistical rigor, experiments are replicated, often seeded 
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simultaneously from the same mother plate to reduce human error. Although quite some mitosis 

steps take place in such experiments, it is presumed that there are no genetic alterations with 

respect to the original strain except for the intentionally introduced mutations.  But, it is not clear 

how spontaneous mutations impact phenotypic or transcriptomic differences. 

We set out to capture and characterize the mutations acquired during a typical laboratory 

experiment. We chose the S. commune mushroom because this species suffers frequently from 

spontaneous mutations that change the phenotype of the strain. We use a near-isogenic dikaryonic 

strain of S. commune (H4-8), meaning that each hyphal compartment contains two nuclei. These 

nuclei have been backcrossed in such a way that their genomic material differs only in their mating 

type loci (Materials, Supplementary Note 2). As S. commune grows linearly outwards, with cell 

division occurring only at the hyphal tips, a mutation gained at any stage of this growth will naturally 

be passed along to its descendants.  

Our dataset is composed of 46 RNA-Seq measurements (see Materials and Methods) from the 

dikaryotic wildtype and knockout strains of genes involved in mushroom formation 

(BRI1,FST3,FST4,HOM1,HOM2,GAT1,WC-1,WC-2, and C2H2). The heredity of these 46 samples is 

defined in the sample tree shown in Figure 1. The wild type has been sampled at five different 

developmental stages, across two different sequencing runs (aggregates and mushroom in the first, 

vegetative, vegetative induced and primordia in the second). The knockout strains were sampled at 

two different developmental stages (aggregates and mushroom, see Materials and Methods, 

Supplementary Note 3). All knockout strains are derived from a wild-type derivative, in which the 

ku80 gene is deactivated (node 26, Figure 1, Supplementary Note 4) to repress non-homologous 

chromosomal repair (De Jong et al., 2010). We studied the accumulation of spontaneous genomic 

mutations during growth of the wildtype and knockout strains in an experiment to monitor whole 

genome expression during development of S. commune (Figure 1, Materials) (Gehrmann et al., 2016; 

Pelkmans, 2016). 

Results 

SNPs can be identified from RNA-Seq data. 

To characterize the mutation landscape in various steps of an experimental design, we developed a 

method with which single nucleotide polymorphisms (SNPs) can be identified from the 

transcriptome (Methods). As the genome of S. commune is very dense, and neighboring genes have 

overlapping UTRs, the transcriptome spans ~89% of the genome(Gehrmann et al., 2016). This not 

only permits us to identify mutations that accumulated during culturing of the strain samples across 
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a large portion of the genome but also gives us the ability to study their phenotypic effect across 

various growth conditions. Using the ‘infinite sites assumption’(Kimura, 1969), which assumes that 

mutations are only gained once at novel loci and never lost, we are able to associate individual SNPs 

to intermediate steps in our experimental setup (Figure 1). We sampled the H4-8 S. commune strain 

and nine derived knock-out strains across a total of five developmental stages (Materials). RNA was 

sequenced with an average coverage of 100X per sample (Materials). Using a method which 

leverages the lineage information in our experimental design, we identified SNPs in our RNA-Seq 

data (Methods).  

We identified 13,249 SNPs across all our samples (Figure 1). Depending on the read depth, we 

detected 1,413 SNPs on average per sample (Supplementary Note 5). 94% of SNPs are heterozygous.  

43 SNPs mapped to mating type regions (Materials, Supplementary Note 2). The majority (71%) of 

SNPs lie in gene coding regions, 27% lie in intergenic regions, and 2% lie within intron regions. We 

are able to capture intergenic and intronic SNPs due to the high gene density of S. commune, and 

the overlapping UTRs of transcripts. Most SNPs (92%) are present at lower abundances than the 

reference base, resulting in low Variant Allele Frequencies (VAF) (Supplementary Note 6). However, 

care should be taken to interpret the VAF, as in this case it represents a non-deconvolvable 

expression of subcolonal populations and nuclear specific expression. SNPs present in a large 

number of samples also mapped to genes that have a high RNA expression level (Supplementary 

Note 7). 9% of the SNPs (1,252) lie in previously predicted alternatively spliced genes (Gehrmann et 

al., 2016). 

SNP origins reveal compounding spontaneous mutations. 

To investigate the accumulation of mutations throughout the experimental design, we identified the 

origin of SNPs in the sample tree. At each stage in the sample tree, mutations are gained with 

respect to the previous stage (Figure 2, see Supplementary Note 8 for the full tree). Most SNPs (85%) 

whose origin is identified at an internal node in the tree are supported by all its child samples 

(Methods), and only a small proportion (15%) are supported by a subset of child samples. As most 

variants match with the sample tree, it supports that the SNPs are DNA mutations rather than RNA 

editing substitutions. 11% (1,431) of the detected SNPs are predicted to be present in the primary 

stock of H4-8. The remaining 11,818 SNPs are gained at some point in the experimental procedure. 

Of the 783 homozygous SNPs, 85% (663) are associated to the primary stock. 7% (52) homozygous 

SNPs have been introduced in the ku80 knockout. The remaining 68 heterozygous SNPs are 

scattered throughout the experimental design, which, although unexpected due to the infinite sites 

assumption, may be the result of allele specific expression or silencing. 
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Estimated mutation rate is similar to the natural mutation rate. 

To determine if the mutation rate in the laboratory, where evolutionary stresses are removed, is 

different from the natural environment, we calculated a mutation rate from the observed 

mutations. Each plate represents approximately 200 cell divisions, and thereby 200 dikaryotic DNA 

duplications (Methods, Supplementary Note 9). From this, and given the 13,249 SNPs we identified, 

we estimated the mutation rate to be 1.9233*10-8 (95% CI: 1.3899*-8, 2.4568*10-8) per haploid 

genome per base per generation (Methods). This estimated mutation rate, in a strain preservation 

system, is almost identical to the mutation rate known for wild S. commune strains(Baranova et al., 

2015). The mutation rate varies across the genome (Figure 3), with 27 non-overlapping loci of 

20,000bp containing more than 20 SNPs. In these regions, we observe a mutation rate of 4.158*10-8 

(95% CI:  2.392*10-8, 5.924-8) per haploid genome per base per generation. The mating type loci 

exhibit a slightly (but not significantly) lower mutation rate of 1.652*10-8 (95% CI: 6.349x10-9, 

2.670x10-8), and consequently are not enriched for or depleted of mutations (Supplementary Note 

10). 

Selection against nonsense and missense mutations. 

The impact of SNPs on the coding sequence was assessed. Excluding the SNPs present in the original 

sample, 71% (8,820) of the SNPs that were gained at some point in the experimental setup lie in 

coding regions (between start and stop-codons) of predicted genes. 48% (4,234) are synonymous 

mutations, 50% (4,769) are missense mutations, and 2% (205) are nonsense mutations. This is 

significantly more synonymous, less missense and less nonsense mutations than expected by 

random chance (p-value < 0.05, 2-test) when taking into account the codon usage of S. commune 

(Supplementary Note 11). This indicates that deleterious mutations are still under negative selection 

in the population. 

To examine the impact of these mutations on functionality, we examine five key functional groups 

that are highly relevant for the development and growth of this fungus. Table 1a shows that the 

SNPs in coding regions occur without specific enrichments across the functional groups 

“transcription factors”, “cytochrome P450s”, “metabolic proteins” and “carbohydrate active enzymes 

(cazymes)”, even for the nonsense mutations. Examining the functional groups in which these 

mutations lie can help us understand the impact of these SNPs on the functionality of the genes, we 

investigate the location of the mutation in the gene relative to the annotated protein domains. 11% 

(967) of the SNPs in coding regions are located within predicted domain regions of 737 genes. 47% 

(453) are synonymous, 50% (486) are missense, and 3% (28) are nonsense mutations. No 

transcription factors have mutations in their binding domains (see Table 1c). 16% (1,369) of the SNPs 
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in coding regions are located before the end of the last annotated protein domain, also potentially 

altering the functional components of the protein. They lie within 1,023 genes, are annotated across 

various function groups (Table 1b), and are similarly distributed across synonymous 48% (661), 

missense 49% (668), and nonsense 3% (40) mutations as all detected SNPs. As an example, gene 

G2683529 is a predicted transcription factor with a nonsense mutation upstream of its DNA binding 

domain. The SNP is gained in the seed plate of the first-time measurement of the Hom2 knockout. 

The variant has a low VAF (< 4%), and is unlikely to severely impact colony behavior due to its low 

expression and prevalence in the population.  

Spontaneous SNPs may influence gene expression. 

Next, we set out to study the impact of detected mutations on the RNA expression level of 

neighboring genes. There are no SNPs within gene coding regions that do significantly influence gene 

expression (FDR corrected p-value > 0.05, two sample t-test with independent variance assumption 

between expression of samples with and without SNP). On the other hand, this is different for SNPs 

in (predicted) promoter regions of genes (Methods). 2% (36) of the 1,995 SNPs found in promoter 

regions of genes showed a significant difference in the RNA expression level of the associated genes 

(FDR corrected p-value < 0.01, two sample t-test with independent variance assumption between 

expression of samples with and without SNP). 29 of these genes have been observed to be 

differentially expressed between different developmental groups (Supplementary Note 12), so that 

the difference in expression level might not be caused by the SNP but is a result of development. For 

the other seven genes there was no alternative explanation. Four of them have a lower expression 

when the SNP is present, and three a higher. One encodes for protein ID 2539542, a (predicted) 

transcription factor. The SNP appeared for the first time in the aggregate stage seed plate for the 

gat1 knockout and has a variant allele frequency of 11%. The observed difference between the 

means of the RNA expression levels is 13% with the gene having a higher RNA expression level when 

the SNP is present. 

During karyogamy, S. commune performs frequent chromosomal crossover. 

SNPs identified at the root node in the strain tree allow us to investigate recombination in S. 

commune (see Materials). The 1,431 SNPs predicted to be associated with the primary stock are 

distributed more or less evenly over the genome. Scaffold 2 and 11 show mutation hotspots 

(Supplementary Note 13) that map to the A and B mating type loci (Figure 4). Their exceedingly high 

number of mutations suggest that these regions are at the breakpoints of a chromosomal 

recombination. This is supported by the observation that neighboring regions are depleted of 

mutations, indicative of the isogenic nature of the H4-8 strain. To explain the observed 
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recombination events at these regions, a minimum number of six chromosomal recombinations are 

required, amongst which one should have happened upstream, and one downstream of each mating 

type locus (four recombinations for the MatA loci, and two recombinations for the MatB loci). 

Having at least six chromosomal recombinations at these specific loci within nine backcrosses is 

indicative of a high chromosomal recombination frequency. We do find a few similar hotspots for 

the knock-out samples (Supplementary Note 14).  

The gene-knockout in S. commune procedure does not induce SNP mutations. 

We were wondering whether the stress conditions during the knockout procedure (see Materials) 

would introduce hitchhiker mutations. Between the wildtype and the ku80 knockout, we found 166 

SNPs. This is not significantly more than at any other reproductive step (node) in the tree, even after 

correcting for read depth (p-value > 0.05, 1 sample t-test). On the other hand, between the ku80 

knockout and the derived dikaryotic knockouts, we find significantly fewer SNPs when compared to 

the other reproductive steps (p-value < 0.05, 2 sample t-test with unequal variance). This indicates 

that the stresses of a gene knockout do not induce further spontaneous mutations.  

Discussion 

The mutation rate we observe in an experimental setup in the laboratory is similar to the previously 

reported mutation rate identified in in wild S. commune strains. From this observation, it is obvious 

that a strain preservation system does not protect against (or lower the number of) spontaneous 

mutations. Consequently, even in such a laboratory setting, spontaneous mutations will confound 

experiments, underpinning the necessity for replication experiments. However, we do need to be 

careful in designing the setup of these replication experiments. If we would replicate from the same 

parental seed plate, similar spontaneous mutations can confound results. Hence, replications should 

be done from different seed plates.  

We observed a similar mutation rate in the mating type loci as in the rest of the genome. James 

(James, 2015) argued that mushrooms have evolved a high outcrossing efficiency to ensure and 

encourage diversity in the population. S. commune has an extremely high outcrossing 

efficiency(Raper et al., 1958).  Our observation, which implies that the mating type loci are not 

protected from mutations, could point towards a biological mechanism that drives the high 

outcrossing efficiency in mushrooms. That is, the mating type loci mutations may create additional 

mating types. In theory, this could make it possible for hyphal anastomosis within a monokaryotic 

colony to result in a compatible, fertile dikaryon. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 10, 2017. ; https://doi.org/10.1101/201012doi: bioRxiv preprint 

https://doi.org/10.1101/201012
http://creativecommons.org/licenses/by/4.0/


We identified a large number of SNPs originating in the primary stock (root node of the sample tree) 

near the mating type loci. These are indicative of recombination sites. Not having linkage 

information complicated the calculation of a recombination rate for S. commune. Based on the 

mutation pattern near the mating loci, we expect a high chromosomal recombination frequency for 

S. commune. Previously it has been shown that S. commune performs crossover at regions of high 

homology(Seplyarskiy et al., 2014), and we see that S. commune also recombined very closely to 

mating type regions. A. bisporus (Pelkmans et al., 2016) (for which S. commune serves as a model for 

mushroom formation) performs crossover only near the telomeric regions (Sonnenberg et al., 2016). 

Given the seemingly alternative crossover mechanisms, we suggest caution when comparing 

evolutionary mechanisms between S. commune and A. bisporus. 

The ku80 knock-out strain derived from the primary stock showed a similar number of mutations as 

seen for the other derived strains.  Initially we were expecting a higher number of mutations due to 

stress (e.g. passenger mutations by selection with antibiotic resistance) induced by creating the 

knock-out. This might not have occurred because ku80 is involved in the DNA repair mechanism for 

double strand breaks. Hence, the absence of ku80 might not have an impact on single nucleotide 

polymorphisms, but rather induce structural variations such as indels or inversions. Our method to 

detect variations of DNA from RNA sequence data was not designed to detect these larger variations 

and the use of short-reads for RNA-seq precludes the study of large indels and translocations that 

long reads would ameliorate (Salazar et al., 2017). For the knock-out strains that are derived from 

the ku80 strain, we observed a lower mutation rate. This might be the result of crossover during the 

backcrossing with the primary stock wildtype to restore the ku80 gene. This would remove some 

mutations that were gained on one allele but not the other. The backcrossing with the primary stock 

wildtype might also explain the relatively high number of homozygous SNPs in the ku80 knockout 

strain. 

As we derived mutations from RNA sequencing data, we were able to relate detected spontaneous 

mutations to changes in RNA expression levels (in the same samples). We found no SNPs in coding 

regions that influence RNA expression of the corresponding gene, and only a handful of SNPs in 

predicted promotor regions were associated to changes in expression levels of the corresponding 

genes. This suggests that regulatory regions are vulnerable to evolutionary drift, especially in 

intermediate plates where a large part of the functional repertoire of the organism is not utilized. 

This effect might even be larger, since we only used the simplistic rule of associating a regulatory 

SNP to a gene via its upstream promotor region. Enhancers and promotors, however, lie scattered 

across the genome, forming complex interactions(Vermunt et al., 2014), which can be activated and 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 10, 2017. ; https://doi.org/10.1101/201012doi: bioRxiv preprint 

https://doi.org/10.1101/201012
http://creativecommons.org/licenses/by/4.0/


deactivated by the 3D conformation of the genome(Babaei et al., 2015). Detected SNPs in these 

regulatory regions might influence expression of a gene much further away than we now know 

account for. To estimate this effect, we do, however, need a more accurate picture of the complex 

genomic and regulatory interactions in higher fungi. 

Although we did not find spontaneous mutations in coding regions to change RNA expression, we 

did find mutations in coding regions that led to functionally different proteins. That is, we found 411 

missense SNPs in protein domains, and 40 nonsense SNPs that change the protein domain 

configuration of a protein. These missense and nonsense mutations are underrepresented in our 

observations, again pointing towards an evolutionary conservation of these regions. Nevertheless, 

they do involve regulatory genes and important metabolic genes. While it is known that non-

essential genes evolve faster than essential genes(Jordan et al., 2002), we found no functional group 

enriched for SNPs. As S. commune does not need its full functional repertoire in our experiment, we 

expected some groups to be more mutated than others. For example, strains used in our 

experiments are always grown on glucose containing minimal medium (Gehrmann et al., 2016), 

implying that the need for carbohydrate active enzymes (cazymes) is reduced. Yet, we do not 

observe more mutations in this group of genes due to a lesser evolutionary pressure. We should, 

however, realize that the effect of selective pressure might be limited due to the relatively small 

number of generations. Based on the detected mutation rate, we can expect approximately 300 

SNPs to accumulate through the growth of a single colony in a dikaryotic S. commune strain. Given 

the incidence of nonsense mutations in our dataset, we can anticipate that approximately 5 will 

induce a stop codon. 

It is possible that a number of the SNPs we discover are the result of post-transcriptional 

modification, such as RNA editing. RNA-editing has been shown to occur in fungi. However, the SNPs 

we identify are confidently associated to nodes in an evolutionary lineage, which is not what is to be 

expected from RNA editing events. Additionally, the mutation rate we estimate corresponds with 

the known mutation rate of S. commune in the wild, and the SNPs around the mating type loci 

correctly coincide with expected recombination sites. Together, these observations indicate that the 

substitutions we observe are actually genetic variants, rather than post-translational modifications. 

To resolve these conflicting observations would require an additional study in which DNA and RNA 

are sampled simultaneously, such as simul-Seq(Reuter et al., 2016). 

It has been shown that errors in the repair of damaged DNA (and possibly cDNA) are linked to faulty 

variant identification(Chen et al., 2016). Such errors could explain the majority of variants with low 

variant allele frequencies. And, in our case, the majority of SNPs do have low VAFs. However, most 
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of our SNPs are identified across a large number of samples. Hence, it is unlikely that the DNA is 

damaged and incorrectly repaired at identical locations over multiple samples. 

In this work, we developed an innovative method to detect SNPs in RNA-Seq data, which makes 

sense for S. commune since the transcriptome covers 89% of the genome. There have been previous 

attempts to call SNPs from RNA-Seq reads(Ramirez-Gonzalez et al., 2015; Deelen et al., 2015; Piskol 

et al., 2013; Quinn et al., 2013; Piechotta et al., 2017). With the exception of JACUSA(Piechotta et 

al., 2017), which was designed for the identification of RNA editing events, other approaches 

generally rely on GATK(McKenna et al., 2010), which was primarily not designed for the study of 

variants in RNA-Seq data. Most importantly, GATK assumes an approximately uniform distribution of 

reads across the genome, which is certainly not the case for RNA-seq data. Furthermore, the allelic 

imbalance due to allele specific expression (or, in our case, karyollele specific expression) severely 

hampers the performance. The best practices as described by Broad Institute indicate that results 

are only acceptable when strict filters are used 

(https://software.broadinstitute.org/gatk/documentation/article.php?id=3891). When we applied 

the GATK pipeline to our data, we found only 351 SNPs that associated to our experimental design 

tree. Therefore, we chose to develop our own method. Our initial SNP calling step is permissive and 

will call many spurious SNPs. Our method, therefore, strongly relies on a second step to filter 

spurious SNPs based on prior knowledge of the evolutionary relationship of the samples. It only 

permits SNPs with low RNA-seq coverage if they are present across several related samples. Without 

knowing the relationship between the samples, this becomes very difficult.  

As we derived mutations from RNA-Seq data, we do have to make a note of caution on our findings 

as they depend on the expression level of a gene. That is, when a gene is not expressed, no mutation 

can be detected. We remedy this by exploiting the (full) experimental setup. Throughout the 

complete experiment, only 1,612 (9.8%) of all predicted genes were considered to be not expressed 

(FPKM < 1) in any sample. Thus, although we do not capture the entire genome, we capture a 

considerable portion of it, and the reported mutation rate takes this into account.  

Conclusion 

In the laboratory, the selection pressures that shape the genotype and phenotype of wildtype 

organisms are replaced, relaxed, or even lost. We have shown that S. commune, a model organism 

for mushroom formation, has the same high mutation rate in the lab as in the wild. Spontaneous 

mutations will accumulate in experiments and tven the best strain preservation system cannot 

prevent this. We showed that SNPs are introduced in a variety of important functional groups, and 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 10, 2017. ; https://doi.org/10.1101/201012doi: bioRxiv preprint 

https://doi.org/10.1101/201012
http://creativecommons.org/licenses/by/4.0/


that they can have an effect on the function and regulation of genes. It is not clear that there is a 

better way to prevent the accumulation of spontaneous mutations, other than reducing the number 

of generations between the primary stock and the experimental strains derived thereof. We 

recommend that labs implement a sample tracking system in the lab, whereby each sample that 

enters a freezer is registered with its ancestor sample. This will enable the isolation of mutations 

should they later be discovered. Additionally, the experimental design should take into account the 

additional mutations that could accumulate, and replicates should originate from different parental 

plates. Although this may result in higher biological variation between the replicates, it will eliminate 

differences that result from confounding mutations that accumulated in the tree. 

Materials and methods 

H4-8 S. commune strain. The H4-8 S. commune strain(Ohm, de Jong, Lugones, et al., 2010) is a co-

isogenic dikaryon, meaning that it is a heterokaryon whose constituent homokaryons are supposedly 

identical with the exception of the mating type loci. It is the result of an integration of the H4-8a and 

H4-8b homokaryons. The H4-8b strain was achieved through 9 backcrosses between H4-8a and 4.40, 

selecting in each stage for a crossing that had a compatible mating type to H4-8a. During meiosis, 

the chromosomes are exchanged and (often) undergo crossover at locations of genetic 

similarity(Seplyarskiy et al., 2014). The exact efficiency of this backcrossing procedure in terms of 

homozygosity, especially in the chromosomes containing the mating type loci is unknown. 

Mating type loci. The two homokaryons of H4-8 differ in their A and B mating type loci(Ohm, de 

Jong, Lugones, et al., 2010). These loci were identified in version 3 of the H4-8 genome by mapping 

the genes annotated in the matAα, matAβ, matBα and matBβ of version 2 to the version 3 genome 

using the BLAST functionality of the JGI DOE website. See Supplementary Note 2. 

Knock-out strains. The knockout strains all originate from a ku80 knockout(Ohm, de Jong, Berends, 

et al., 2010) (Supplementary Note 4), which was used to generate a series of regulatory gene 

knockouts(Pelkmans, 2016), all stored in the -80 freezer. The ku80 knockout is the result of several 

stressful interventions (Supplementary Note 4), over an unknown number of generations. Beyond 

the phenotypic and transcriptomic differences induced by the knockouts (Ohm et al., 2011; 

Pelkmans, 2016), it is not known what additional sequence variation is induced by the knockout of 

the ku80 gene and the final regulatory genes. After the knockout of the second gene, the ku80 gene 

is crossed back into the genome. 

RNA-Seq data. RNA-Seq samples were retrieved from BioProject PRJNA323434. To produce these 
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samples, mRNA was isolated from S. commune strain H4-8 grown at 25◦C on minimal medium 

containing 1% glucose and 1.5% agar(Van Peer et al., 2009). The wildtype strain was initially sampled 

twice, once in the aggregates stage of development, and once in fruiting body of the mushroom and 

sequenced on an Illumina Hi-Seq 2000. Knockout strains were sampled when they reached the 

aggregates state and mushroom stage. If a knockout was halted in an earlier developmental stage 

(Supplementary Note 3), then they were sampled when the wildtype reached the aggregates or 

mushroom stage. A later second sequencing run sequenced wildtype samples at three additional 

developmental stages, vegetative growth, induced vegetative growth (after exposure to O2 and 

light), and primordia. Details on the sequencing runs can be found in Supplementary Note 15. 

Read Alignment. Raw reads were trimmed using TRIMMOMATIC(Bolger et al., 2014) and the 

resulting reads were aligned to the reference genome using two-pass STAR(Dobin et al., 2013), 

where the second pass used the splice junctions detected in all samples during the first alignment 

pass (Supplementary Note 16). Reads that ambiguously mapped were discarded. STAR was used to 

sort the resulting BAM files based on read alignment co-ordinate. Duplicate reads were flagged with 

PICARD (http://picard.sourceforge.net./). 

Detecting SNPs from RNA-Seq data. We process the aligned BAM files, ignoring duplicate reads, 

counting the number of observed nucleotides at each position in the genome. If the quality of a base 

is less than 30 in the PHRED scoring system, it is not counted. Based on the CIGAR strings in the BAM 

file, we also maintain a record of insertions and deletions observed in the alignments. For each 

position on the genome, we test a base for SNPs only if the base is not within 4 bases of a possible 

insertion/deletion site/splice junction, and that base is not an ‘N’ in the reference genome. For each 

nucleotide, we calculate the probability that it is observed erroneously. To do this, we assume that 

each erroneous observation of a nucleotide at a specific locus follows a Bernouilli trial with a small 

probability of success. With multiple observations, we build a binomial distribution around the 

probability of observing a specific nucleotide by error. Thus, when a locus has a depth of x, and xn 

counts of nucleotide n, then P(Xn > xn) expresses the probability of observing more than xn counts 

erroneously, where Xn ~ B(xn, 0.01). Clearly, with increasing observations of the nucleotide (xn), the 

probability of seeing that nucleotide at that locus as the result of an error becomes smaller. If this 

probability becomes smaller than 0.05 we conclude that the nucleotide is not observed erroneously, 

and thus is truly observed. We do so for all four nucleotides and when one of them passes this test 

and it is not equal to the reference nucleotide of that locus, we call a potential SNP at that base. Any 

SNP in a gene knockout region that originates from that knockout sample is removed. All positive 

and negative base calls are output in VCF format. 
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Assigning SNP origin in the generation tree. We use the lineage information in the sample tree to 

enhance our confidence in a SNP, and to remove spurious SNP calls. The VCF files of all the samples 

are merged and sorted on base coordinates. SNP calls from different samples are grouped together 

at each base. A generation tree is constructed, such as the one shown in Figure 1. For each SNP, we 

determine which nodes in the tree are possible candidates for the origin of the SNP. To do this, we 

calculate three metrics for each node of the tree: Sn, the number of descendent leaf nodes that have 

this SNP; En, the number of reads supporting this SNP across all the child nodes, and Pn, the 

possibility of this node harboring the SNP, being either ‘yes’, ‘no’ or ‘maybe’. For leaf-nodes a SNP is 

‘yes’ when the SNP is present, ‘no’ when the SNP is not present, and ‘maybe’ when there is not 

enough depth to make a SNP call (i.e. depth < 3). For non-leaf nodes, the possibility of a SNP is ‘yes’ 

when all its descendent leaves are ‘yes’, ‘no’ when at least one of its descendent leaves is ‘no’, and 

‘maybe’ when all its descendent leaves are ‘yes’ or ‘maybe’. For each SNP, we select the nodes 

highest (towards the root) in the tree where Pn is ‘yes’ or ‘maybe’, and either En > 3 or  Sn > 1, as the 

node of origin for that SNP. This results in SNPs that are either supported by sufficient depth within 

at least one sample, or supported by multiple samples. SNPs with multiple alternative nucleotides, 

or SNPs whose origin can’t be resolved (i.e. no origin found, or multiple origins found) are discarded.  

Estimating transcript abundance. To calculate transcript abundance, we pre-processed the reads 

with TRIMMOMATIC(Bolger et al., 2014) and aligned the reads to the genome using a two-pass 

STAR, as in the read alignment above, only in this case we permitted ambiguous alignments. 

Expression of each transcript for each sample was quantified and normalized with the 

Cufflinks(Trapnell et al., 2012) toolkit. 

Associating SNPs to genes and assessing deleteriousness. If a SNP lies within the coding region of a 

gene, then we can assess the deleteriousness of the SNP. If the transcript with the SNP produces the 

same amino acid sequence as without, then the SNP is considered synonymous. If, on the other 

hand, the amino acid sequence is changed, then it is a missense mutation, and if the sequence is 

shortened, then it is described as nonsense. If a SNP lies within 500bp upstream of the start codon of 

a gene, then we say that the SNP falls within the promotor region of that gene.  

Calculating a mutation rate. To calculate a mutation rate, we consider the number of mutations 

associated to each node in the tree. As we do not precisely know how many steps were involved in 

creating the original double knockouts plates, the ku80 knockout plate, and the primary stock plate, 

we excluded those samples from the calculation. The number of SNPs in each sample are divided by 

the number of bases considered, and multiplied by the number of generations that each plate 

represents (200, see Supplementary Note 9 and (Raudaskoski and Salonen, 1984)). The mutation 
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rates for each plate are averaged to arrive at a cross-sample mutation rate. A confidence interval is 

calculated assuming a normal distribution. For the genome-wide mutation rate, we used the number 

of bases covered with at least 5 reads (excluding mating type loci) multiplied by two, representing 

the callable part of the diploid genome. Because the number of detected mutations is dependent 

upon read depth, we need to correct for the library sizes in each sample. However, since the ability 

to call a SNP depends on the coverage of each base, we should, more specifically, correct for the 

number of confidently callable bases per sample. For each sample i, k(i) denotes the number of 

bases with at least 5x coverage (Supplementary Note 15). For non-leaf nodes, we infer k(i) to be the 

maximum across its leaves. The number of SNPs detected in each sample is multiplied by 
max(𝑘𝑖)

𝑘(𝑖) , 

where max(𝑘𝑖) is the maximum number of confidently callable bases across all the samples. This 

scales the number of mutations up for those samples with less read depth. 

Detecting mutation hotspots. A sliding window of 10,000bp up- and down-stream of a detected 

SNP, which contains at least 20 SNPs is considered a mutation hotspot.  

Functional annotations. Interpro domain annotations were taken from the JGI DOE website, filtered 

with a score threshold < 0.05. Transcription factors were predicted based on a curated list of fungal 

DNA binding domains, as in (Gehrmann et al., 2016). Cytochrome P450 genes were predicted based 

on the Interpro domain IPR001128, and metabolic genes based on the GO annotation GO:0008152. 

Carbohydrate active proteins were predicted using the CAT(Park et al., 2010; Lombard et al., 2014) 

tool, selecting only those proteins which are predicted both with the PFAM and sequence predictors. 

Alternatively spliced genes were taken from (Gehrmann et al., 2016). 
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Figure 1 

 

Figure 1: The experimental design of our S. commune experiment. The experimental design is heavily 

influenced by the strain preservation system, and takes the form of a tree. The labelled nodes (1-27) 

are the same as those shown in Figure 2. RNA-Seq data is derived from the leaves of the tree 

(indicated by the measurement icon), while SNPs are inferred for the internal nodes of the tree. All 

nodes are samples that are originally derived from the -80 freezer (node 27), including the ku80 

knockout (node 26), from which all knockout samples are derived. Initially, a researcher took a 

sample from the original stock, and created his own personal stock (node 18). From this, two 

experimental runs were conducted (nodes 16 and 18, Materials).  
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Figure 2 

 

Figure 2: SNPs identified at each plate in the sample tree. The numbered nodes in the tree are the 

same as those numbered in Figure 1. Bold shows the SNPs which are gained on that plate. The non-

bold number indicates the total number of SNPs observed on that sample (cumulative from root). 

The full tree can be seen in Supplementary Note 9. 
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Figure 3 

 

Figure 3: SNP hotspots across the genome. We move a sliding window across the genome 

(Methods), counting the SNPs in that window. The intensity of the point indicates the number of 

SNPs in the window around that position in the chromosome (see Methods).There are certain peaks, 

several of which coincide with mating type loci (chromosomes 2 and 11).   
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Figure 4 

 

Figure 4: SNP hotspots around the mating type loci MatA on chromosome 2 (A) and MatB on 

chromosome 11 (B). The red line in each panel indicates a sliding window of 10,000bp of SNPs 

whose origin was at the root node of the sample tree, while the blue line indicates the SNPs whose 

origin was not the root node of the sample tree.  
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Table 1 
Table 1: Number of genes with SNPs in any part of a gene in the different functional groups that lie 

a) anywhere in the gene, b) before the last protein domain, and c) inside a protein domain. The SNPs 

are split into Synonymous (S), Missense (M) and Nonsense (N) mutations. The total row indicates 

any functionally annotated gene. 

 a) Anywhere in gene b) Before last domain c) In protein domain 

 S M N S M N S M N 

Transcription Factors 128 132 13 31 33 1 11 12 0 

Cytochrome P450s 23 21 3 8 5 1 7 5 1 

Metabolic proteins 177 183 13 55 77 2 47 71 2 

Cazymes 525 542 30 176 166 9 128 130 7 

Total 2,860 2,934 202 575 574 40 394 411 28 
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