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Abstract 
Recent advances in next generation sequencing (NGS) technologies have given an impetus to
find  causality  for  rare  genetic  disorders.  Since  2005  and  aftermath  of  the  human genome
project,  efforts  have  been  made  to  understand  the  rare  variants  of  genetic  disorders.
Benchmarking the bioinformatics pipeline for whole exome sequencing (WES) has always been
a challenge. In this protocol, we discuss detailed steps from quality check to analysis of the
variants using a WES pipeline comparing them with reposited public  NGS data and survey
different techniques, algorithms and software tools used during each step. We observed that
variant  calling  performed  on  exome  and  whole  genome  datasets  have  different  metrics
generated when compared to variant  callers,  GATK and VarScan with different  parameters.
Furthermore,   we  found  that  VarScan  with  strict  parameters  could  recover  80-85% of  high
quality GATK SNPs with decreased sensitivity from NGS data. We believe our protocol in the
form of pipeline can be used by researchers interested in performing WES analysis for genetic
diseases and by large any clinical phenotypes.

INTRODUCTION

Next Generation Sequencing (NGS) technologies have paved the way for rapid sequencing
efforts  to  analyze a wide  number  of  samples.  From the whole  genome to transcriptome to
exome, it has changed the way we look at nonspecific germline variants, somatic mutations,
structural variant besides identifying associations between a variant and human genetic disease
(Singleton et al. 2011). This can help understand the complex genetic disorders to get better
diagnosis and assess disease risk.  The analysis of exome sequencing data to find variants,
however still poses multiple challenges. For example, there are several commercial and open
source pipelines but configuring them in terms of benchmarking and optimizing them is a time
consuming process (Pabinger et al. 2012; Guo et al 2015) . Among the steps, viz. quality check,
alignment, recalibration, variant calling, variant annotation, one needs to reach consensus on
the set of tools following which one's output should be fed as other tool’s input (Gentleman et al.
2004, Stajich et al. 2002, Chang et al. 2012). While integrating, it would be appropriate to check
and use the tools before finally reproducing and maintaining highly heterogeneous pipelines
(Hwang et al. 2015).  In this protocol, we discuss the steps for whole exome sequence (WES)
analyses and it’s pipeline to identify variants from exome sequence data. Our pipeline includes
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open source tools  that  include a number of  tools from quality  check to variant  calling  (see
Supplementary information).

MATERIALS
Step 1: NGS Data pre-processing

Step 2: Variant Discovery

Step 3: Variant Prioritization

Figure 1:  The pipeline involving three important phases,  viz. preprocessing, variant discovery
and prioritization of variants.
 
The raw file (fastq) is subjected to different steps such as quality check, indexing, alignment,
sorting,  duplication  removal,  variant  calling,  variant  annotation  and  finally  downstream
bioinformatics annotation (Pabinger et al. 2014)(Figure 1). It integrates bowtie2 (Langmead et
al. 2012), samtools (Li et al. 2009), FastQC (Andrews, 2010), VarScan (Koboldt et al. 2012 )
and bcftools (Li et al. 2009), apart from necessary files containing the human genome (Venter et
al. 2001), alignment indices (Trapnell,  2009), known variant databases (Landrum et al. 2014,
Sherry et al. 2001, Auton et al. 2015).  Keeping in view of the fact that the  benchmark metrics
for  pipelines  is  an essential  step,  we have ensured that  our  pipeline  is  benchmarked on a
sample  fastq  file  taken  from  a  human  genome project.  As  the  pipeline  runs  on  Linux,  all
commands are case sensitive wherever used. Whereas this pipeline was run on a 64GB RAM
with 8 core CPUs in an Ubuntu operating system (14.04 LTS machine), this can be run on a
minimum 16 GB RAM machine  based on the size of raw fastq file.  However, for benchmarking
the datasets was done on a 1 TB RAM with 32 cores (Dell) machine. A shell script (with an
extension sh) was created with all the commands as detailed below.
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PROCEDURE 
(1) Preprocessing the raw data Quality check: NGS data analysis depends on the raw data
control  as it  provides a quick insight  into the quality  of  the sequences.  This  will  potentially
reduce the amount  of  further  downstream analyses with  early  identification  of  questionable
samples.  The ideal base quality scores for Phred (Cock et al. 2010) have paved way for the
best quality scores for GC content (ca. 50% threshold) and the nucleotide distribution across all
reads. In our pipeline, we used FastQC (with default Phred = 20 value) as it plots the read depth
and quality score besides a host of other statistical inferences.
 
(i) ./fastqc ~/samples/sample1.fastq
FastQC generates an HTML formatted report with box plots and graph plots for mean quality
scores for sequences, read length and depth along with the intended coverage (See Figure 2) 

Figure  2:  A pictorial  representation  containing  the  box  plots  and  figures  of  FASTQC  run
containing information on statistics, quality, read coverage, depth, yield, based per read call etc.
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Individual Sample Type Sequenced 
Technology

Sequencin
g Bases

Coverage Link

NA11930 SRR098
416

Exome Illumina 
HiSeq

145M 3× ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA11930/sequence_read/SRR098
416*

NA12046 SRR742
200

Exome Illumina 
HiSeq

5G 102× ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA12046/sequence_read/SRR742
200*

NA12155 SRR702
068

Exome Illumina 
HiSeq

7G 140× ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA12155/sequence_read/SRR702
068*

NA11932 ERR034
544

Exome Illumina 
HiSeq

11G 251× ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA11932/sequence_read/ERR034
544*

NA12878 SRR098
401

Exome Illumina 
HiSeq

16G 341× ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA12878/sequence_read/SRR098
401*

NA12891 SRR098
359

Exome Illumina 
HiSeq

16G 347× ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA12891/sequence_read/SRR098
359*

NA12878 SRR622
461

Whole 
Genome

Illumina 
HiSeq

17G 6× ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA12878/sequence_read/SRR622
461*

NA12878 ERR091
571

Whole 
Genome

Illumina 
HiSeq

41G 14× ftp://ftp−trace.ncbi.nih.gov/giab/ftp/technical/NA12878_data_other_pro
jects/sequence_read/ERP001229/ILLUMINA/sequence_read/ERR091571
*

Table 1: 1000 Genomes samples used in benchmarking
 
Indexing human genome using bowtie2:  Bowtie2-build is used to index reference genome
which works at high speed and memory efficient way.  
 
(ii)    ./bowtie2-build −u 10 indexes/references/reference.fq reference
 
When the command is expedited, the current directory would contain four new files ending with
suffices .1.bt2, .2.bt2, .3.bt2, .4.bt2, .rev.1.bt2, and .rev.2.bt2. While the first four files are the
forward strands, the rev files indicate the reverse indexed sequences.
 
Alignment and post processing:   Bowtie2 is  used for  short  read alignment.  What  makes
bowtie2 interesting is the use of very little RAM with accuracy and  modest performance in
indexing the alignment  (Langmead et  al.  2012).  The mismatch or any sequencing errors or
small genetic variation between samples and reference genome could be checked using the
following command:
 
(iii)   ./bowtie2 -x reference_filename -1 path/filename1  -2  path/filename2 > filename.sam
(The -2 option may be omitted for single-end sequences)
 
Bowtie2 aligns a set of unpaired reads(in fastq or .fq format) to the reference genome using the
Ferragina and Manzini (FM)-index (Langmead et al. 2012). The alignment results output in SAM
format (Li et al. 2009) and a short alignment summary is written to the console.
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Samtools  is a collection of tools to manipulate the resulting alignment in SAM/BAM format.
SAM stands for sequence alignment/map format and it’s corresponding format is binary mapped
format (BAM). SAM is converted into different alignment formats, sorted, merged, aligned or
duplicates removed and finally SNPs and short indel variants are called; whereas the BAM and
following indices (.bai) are used to view the index of the binary aligned sequences. The basic
need for having the binary mapped files is to save the memory.
 
(iv)   ~/samtools view -bS sample1.sam > sample1.bam
 
Sorting  BAM: A sorted  BAM  file  is  used  for  streamlined  data  processing  to  avoid  extra
alignment when loaded into memory. Whereas it can be easily indexed for faster retrieval of
alignment, overlapping is needed to retrieve alignment from a region.
(v)   ~/samtools sort sample1.bam sample1.sorted
 
Samtools sort is used to convert the BAM file to a sorted BAM file and  samtools index to index
BAM file.
(vi)   ~/samtools index sample1.sorted.bam
 
Pileup all  samples:  Samtools  mpileup step is used to analyze multiple samples across all
samples thus giving coverage to all mappable reads.
(vii)  ~/samtools mpileup -E -uf reference.fa sample1.bam > sample1.mpileup
 
(2)  Variant  calling:  To  call  variants  from  NGS  data,  VarScan  among  other  tools  provide
heuristic statistical approaches, that give the desired threshold for reading depth, base quality,
variant allele frequency and statistical confidence over other bayesian methods.  VarScan uses
SAMtools mpileup data as input and there are a number of options included for variant calling.
For each position, the variants, which doesn’t meet the user input criteria of coverage, number
of reads, variant alleles frequency and Fisher's exact test, P-value are filtered out. This step is a
prerequisite to identify those candidate mutations underlying the phenotype/disease.
 
Germline  variants:  For  germline  variants,  mutations  that  an  individual  inherits  from  their
parents, or SNV calling VarScan mpileup2snp protocol is used.
 
(viii)  java –jar VarScan.jar mpileup2snp sample.mpileup >sample.VarScan.snp
 
Indel calling: Detecting of insertion and deletion (Indels) is the second most abundant source of
finding genetic mutations in human population in a reliable manner. VarScan mpileup2indels
protocol is used to call indels. The sensitivity and range for calling indels are determined by the
respective alignments.
 
(ix)    java –jar VarScan.jar mpileup2indel sample.mpileup  >sample.VarScan.indel
 
Variant filter:  To get  rid of false variants call  and remove overlapping between SNPs and
indels, a filtering option is applied on the resultant variant calling files which provide SNV and
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indels with higher confidence. An option to generate readcount report can also be used with
VarScan.
 
(x)    java  –jar  VarScan.jar  filter  sample.VarScan.snp  –-indel-file  sample.VarScan.indel  –-
output-file sample.varScan.snp.filter
 
(xi)   java –jar VarScan.jar filter sample.VarScan.indel –-output-file sample.VarScan.indel.filter
 
(xii)  java –jar VarScan.jar readcounts sample.mpileup.sam > sample.mpileup.readcounts
 
Contamination check: Once the BAM files and IDs are generated, we could end up checking
whether  or  not  the  BAM  ids  are  error  prone  or  contaminated  across  the  samples  using
VerifyBAMID (Jun et al. 2012).
 
(3) Downstream processing the files: VCF, an acronym for variant call format is a popular
format to store variants calling data as it  stores both SNPs and indel information succinctly.
While BCF is a binary version of VCF, the  format can be written and read using BCFtools tool
using the following command:
(xiii) samtools mpileup -uf sample.sorted.bam | bcftools view - > sample.var.raw.bcf
 
While generating BCF file from BAM using samtools, -u is used for generating uncompressed
VCF which can be piped as BCFtools designed for stream data and -f for the faidx-indexed
reference file in the FASTA format.
 
(xiv) bcftools view sametools.var.raw.bcf | vcfutils.pl varFilter -D100 > sample.var.flt.vcf
(xv) samtools calmd -Abr sample.sorted.bam ~/hg38/hg38.fa > sample.baq.bam
(xvi) samtools  mpileup  -uf  ~/hg38/hg38.fa  sample.baq.bam  |  bcftools  view  -  >
sample.baq.var.raw.bcf
 
Annotation  and  curation:  Post  processing  the  files,  annotation  and  curation  of  the  data
followed by prioritizing the candidate SNPs/variants involves  a great deal of user's discretion.
There are a host of tools and annotation methods meant for this.  Population stratification can
be  one  such  step  in  this  process.  While the  1000  genomes  dataset(Auton  et  al.  2015)  or
gnomAD (Fu  et al.  2013) containing the datasets are already used to summarize worldwide
population, estimating individual ancestries using ADMIXTURE (Alexander et al. 2009) would
help  researchers  to    project  the  samples.  On  the  other  hand,  downstream bioinformatics
annotation can then be supplemented to integrate the results with different pathway tools,  viz.
PANTHER  (Mi  et  al.  2016)  which  assesses  the  ontology/pathways  affecting  the  “mutated”
genes. This can be further supplemented by usage of assorted databases like Clinvar, dbSNP.
In addition,  global  enrichment  analysis  and association  networks using GeneMania (Warde-
Farley et al. 2010) would allow create and visualize gene networks by evidence in pathways and
gene-gene/protein-protein interactions (predicted and experimental).
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Benchmarking gave distinct distribution of variants

Benchmarking yielded a good recovery rate for validation of SNPs while VarScan with default
values was found to have highest overall sensitivity with VarScan strict parameters having the
lowest overall sensitivity (Figures 6 and 7). However, we observed that the preprocessing steps
have little impact on the final output, with base recalibration step using GATK Unified Genotyper
identifying fewer validated SNPs when compared to VarScan. On the other hand, we found that
the recovery of exon variants among the exome samples was typically high when compared to
the two whole genome datasets (Figure 5b).  When variant lists were confined to previously
observed  variants  as  observed  from  the  benchmark  analyses  between  Sention  and  GATK
(Weber et al. 2016), we observed that the recovery of SNPs with default parameter was found
to be considerably good. Whereas changing variant calling criterion especially using VarScan,
for  example,  imposing strict  coverage requirement  (Figure 7)  yielded less  numbers of  false
positives giving the number of  bona fide or  de novo variants (Figures 5a and 5b). This subtly
proves that our benchmarking the six WES and two WGS datasets is variable with the capture,
sequencing,  processing and post-processing/analysis  in the human genome and VarScan is
comparable with the GATK in terms of identifying the de novo variants (Figure 5a and 5b). With
the wet-lab components of NGS being cumbersome, analyzing the exons or for  that  matter
intronic variants using bioinformatics pipeline is equally challenging. There must be significant in
silico hurdles and organizational steps discussed from time to time and yet at the end of the
analysis, one needs to arrive at the fittest in using the discretionary tools. Although technology
challenges persist in setting up certain standards and guidelines, the end-user can enhance the
pipeline with further tools. In this protocol, we have essentially shown how a WES pipeline can
be run using batch file process and the comparison of VarScan over GATK using benchmarked
datasets.
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Supplementary  information:   All  the  software  can  be  downloaded/used  from  following
locations:
 

1. FastQC  https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

2. Bowtie2   http://bowtie-bio.sourceforge.net/bowtie2/index.shtml  

3. Samtools   http://samtools.sourceforge.net/  

4. VarScan   http://varscan.sourceforge.net/  

5. Bcftools https://github.com/samtools/bcftools

6. Vcftools   https://vcftools.github.io/index.html  

7. PANTHER   http://pantherdb.org/  

8. dbSNP   https://www.ncbi.nlm.nih.gov/projects/SNP/  

9. 1000 genomes dataset   http://www.internationalgenome.org/  

10.  GeneMania http://genemania.org/
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Figure 3:  Number of variants obtained from GATK and VarScan with various parameters. We
observe GATK Unified caller to have large number of false positives while VarScan with strict
parameters performed well with less number of false positives. 
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Figure 4: Venn diagram of three methods using Haplotype caller with preprocessing (HC-PP)
and  Universal  genotype  caller  with  preprocessing  (UC-PP)  and  VarScan  strict  om  sample
SRR098359.  We observed that all the three share the most true positive variants. 
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Figure 5a : Distribution of de novo variants and all variants in regards to the depth of coverage
of NGS run.  The x-axis shows the number of million reads with depth of coverage shown in
legend (right) and the y-axis shows the number of de novo variants. 
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Figure 5b: Distribution of de novo variants in regards to all SNPs against each sample. 
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Figure 6: Number of SNPs and Indels called by GATK and VarScan using all parameters against
the samples. We observed again that VarScan gave the best results with less false positive 
variants.  
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Figure 7: Scatter plot of number of true positives/false positives for all variant calling parameter 
options.
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Figure 8a: Density plot of an exome NGS run for de novo and known variants.  The x-axis 
shows the variant read frequency against the density in y-axis.   
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Figure 8b:  Density plot of NGS runs for de novo and known variants. The x-axis shows the 
variant read frequency against the density in y-axis.   
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Table 2 : Variant calling pipelines and their respective arguments  

Pipeline Arguments 

VarScan-Default Default

VarScan-Pvalue --p-value 0.05

VarScan Strict --min-coverage 10  --min-avg-qual 20 or --min-reads2 4 --min-
var-freq 0.3

GATK WPP  “No Preprocessing” pipeline

GATK-PP  “Realign Only”, “Recalibrate Only”, and “Full Pipeline”
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