Takagi et al.

1	
2	Ki-67 and condensins support the integrity of mitotic
3	chromosomes through distinct mechanisms
4	
5	
6	
7	Masatoshi Takagi ¹ , Takao Ono ² , Toyoaki Natsume ³ , Chiyomi Sakamoto ⁴ ,
8	Mitsuyoshi Nakao ⁴ , Noriko Saitoh ^{4,5} , Masato T. Kanemaki ³ , Tatsuya
9	Hirano ² , and Naoko Imamoto ¹
10	
11	¹ Cellular Dynamics Laboratory, RIKEN
12	² Chromosome Dynamics Laboratory, RIKEN
13	³ Division of Molecular Cell Engineering, NIG
14	⁴ IMEG, Kumamoto University
15	⁵ Department of Cancer Biology, The Cancer Institute of JFCR
16	
17	Running title: Assembly of mitotic chromosomes
18	
19	Key words: Ki-67, condensin, mitotic chromosome, AID
20	
21	Corresponding author:
22	Masatoshi Takagi, Ph.D.
23	Cellular Dynamics Laboratory, RIKEN
24	2-1 Hirosowa, Wako,
25	Saitama 351-0198, Japan
26	Phone: +81-48-467-9554
27	Fax: +81-48-462-4716
28	E-mail: mtakagi@riken.jp

Takagi et al.

29 Abstract

30

31	Although	condensins play essential roles in mitotic chromosome assembly, Ki-67, a		
32	protein lo	protein localizing to the periphery of mitotic chromosomes, had also been shown to		
33	make a contribution to the process. To examine their respective roles, we generated a			
34	set of HCT116-based cell lines expressing Ki-67 and/or condensin subunits that were			
35	fused wit	h an auxin-inducible degron for their conditional degradation. Both the		
36	localizati	on and the dynamic behavior of Ki-67 on mitotic chromosomes were not		
37	largely affected upon depletion of condensin subunits, and vice versa. When both Ki-67			
38	and SMC2 (a core subunit of condensins) were depleted, ball-like chromosome clusters			
39	with no sign of discernible thread-like structures were observed. This severe defective			
40	phenotype was distinct from that observed in cells depleted of either Ki-67 or SMC2			
41	alone. Ou	r results show that Ki-67 and condensins, which localize to the external		
42	surface and the central axis of mitotic chromosomes, respectively, have independent yet			
43	cooperative functions in supporting the structural integrity of mitotic chromosomes.			
44				
45				
46				
47				
48				
49	List of A	bbreviations used		
50				
51	AID	auxin-inducible degron		
52	DOX	doxycycline		
53	FRAP	fluorescence recovery after photobleaching		
54	IAA	indol-3-acetic acid		
55	mACl	mAID-mClover		
56	mACh	mAID-mCherry		
57	NEBD	nuclear envelope breakdown		
58	SMC	structural maintenance of chromosomes		
59	STLC	S-Trityl-L-cysteine		
60	topo IIa	topoisomerase IIa		

Takagi et al.

61 Introduction

62

63	During mitosis of animal cells, the nuclear envelope breaks down and chromatin	
64	surrounded by the nuclear envelope is now packaged into a discrete set of rod-shaped	
65	structures, known as mitotic chromosomes. This process enables different chromosomes	
66	to individualize, duplicated chromatids to resolve, and sister kinetochores to properly	
67	attach to the mitotic spindle, thereby ensuring the faithful segregation of genetic	
68	materials into daughter cells. Extensive studies during the past two decades have	
69	established that a class of multiprotein complexes, condensins, play central roles in	
70	mitotic chromosome assembly and segregation (Hirano, 2016; Uhlmann, 2016). Most	
71	eukaryote species have two different types of condensin complexes (condensins I and	
72	II). The two complexes share the same pair of structural maintenance of chromosome	
73	(SMC) ATPase subunits (SMC2 and SMC4), and have distinct sets of non-SMC	
74	regulatory proteins (CAP-H, -D2, and -G for condensin I, CAP-H2, -D3, and -G2 for	
75	condensin II). A recent study has shown that structures reminiscent of mitotic	
76	chromosomes can be reconstituted in vitro using a limited number of purified factors,	
77	including core histones, three histone chaperones, topoisomerase II α (topo II α), and	
78	condensin I (Shintomi et al., 2015). It is clear, however, that this list represents a	
79	minimum set of proteins required for building mitotic chromosomes, and that additional	
80	proteins must cooperate to provide them with physical and physicochemical properties	
81	that support and promote their own segregation. Candidates for such proteins include	
82	linker histones (Maresca et al., 2005), the chromokinesin KIF4 (Mazumdar et al., 2006;	

Takagi et al.

83 Samejima et al., 2012; Takahashi et al., 2016) and Ki-67 (Booth et al., 2016; Takagi et
84 al., 2016).

85	Ki-67 is a nucleolar protein widely appreciated as a cell proliferation marker		
86	(Scholzen and Gerdes, 2000). During mitosis, Ki-67 is localized around mitotic		
87	chromosomes and constitutes a perichromosomal layer to which many nucleolar		
88	proteins are targeted (Booth et al., 2014; Takagi et al., 2014). To assess the mitotic		
89	function of Ki-67, we have recently generated HCT116-based cell lines in which		
90	endogenous Ki-67 was degraded conditionally and acutely via an auxin-inducible		
91	degron (AID) (Takagi et al., 2016). Using the cell lines, we demonstrated that Ki-67		
92	aids the finalization of mitotic chromosome assembly and the maintenance of		
93	rod-shaped chromosome structures (Takagi et al., 2016). Another recent study has		
94	demonstrated that Ki-67 may act as a biological "surfactant" to prevent the coalescence		
95	of mitotic chromosomes by using its positively-charged, extended conformation that		
96	orients perpendicular to the surface of mitotic chromosomes (Cuylen et al., 2016).		
97	Despite these intriguing observations, it remains unclear how the perichromosomally		
98	localized proteins such as Ki-67 might functionally cooperate with the axially localized		
99	proteins such as condensins to build individual chromosomes and to support their		
100	segregation during mitosis.		
101	In the current study, we aimed to address the question by conditionally		
102	depleting Ki-67 and condensin subunits individually or simultaneously from mitotic		
103	cells. To this end, we generated a panel of HCT116-based cell lines expressing Ki-67		
104	and/or condensin subunits that were fused with AID for their conditional degradation		

Takagi et al.

105	and with fluorescent proteins for imaging. Remarkably, ball-like chromosome clusters
106	with no sign of discernible thread-like structures were observed in mitotic cells depleted
107	of both Ki-67 and SMC2. To further assess this unprecedented "slime-ball" phenotype,
108	we introduced a quantitative analysis using a supervised machine-learning algorithm,
109	wndchrm (Ono et al., 2017; Orlov et al., 2008). We also present evidence that abberant
110	kinetochore-microtubule attachments accompany the formation of the slime ball. The
111	observations presented here argue that Ki-67 and condensins, which localize to the
112	external surface and the central axis of mitotic chromosomes, respectively, have
113	independent yet cooperative functions in supporting the structural integrity of mitotic
114	chromosomes in mammalian cells.
115	

Takagi et al.

115 **Results**

116

117 Ki-67 and hCAP-H/H2 localize on mitotic chromosomes independently of one

118 another

119 We previously generated an HCT116-based cell line (AID2) in which endogenous

- 120 Ki-67 was fused to mAID and mClover (mACl), thereby enabling us to degrade Ki-67
- 121 conditionally upon addition of indol-3-acetic acid (IAA) (Takagi et al., 2016). To
- 122 examine the localization of hCAP-H (a subunit specific to condensin I) and hCAP-H2

123 (a subunit specific to condensin II) in the absence of Ki-67, we further modified AID2,

- by a CRISPR-mediated knock-in strategy, to generate AID11 and AID44, in which
- 125 hCAP-H and hCAP-H2, respectively, were C-terminally fused to mCherry. AID11 and
- 126 AID44 cells were synchronized to G2 phase in the presence or absence of IAA, and
- 127 then released into M phase in the presence of S-Trityl-L-cysteine (STLC), a KIF11/Eg5

128 inhibitor (Fig. 1A). One hour after the release, the cells were subjected to immunoblot

- 129 analysis (Fig. 1B) and microscopic observation (Fig. 1C,D). In both cell lines, Ki-67
- 130 fused to mACl was degraded upon addition of IAA (Fig. 1B, lanes 3 and 6) as had been
- 131 shown in their ancestor cell line AID2 (Takagi et al., 2016). Whereas hCAP-H-mCherry
- 132 and hCAP-H2-mCherry were detected at positions bigger than their endogenous
- 133 counterparts in the blots due to the mCherry-tagging, no signal was detected at the size
- 134 of their endogenous counterparts (lanes 2-3 and 5-6), indicating that both alleles of their
- 135 genomes had been edited as intended. In a subpopulation of IAA-treated cells (~10% at
- 136 most), the fluorescence signal of Ki-67-mACl was still detectable under the current

Takagi et al.

137	condition. In the microscopic observation, we focused on cells in which the signal
138	decreased to an undetectable level. We found that both hCAP-H-mCherry and
139	hCAP-H2-mCherry localized at the axial regions of mitotic chromosomes similarly to
140	the endogenous counterparts even though the overall morphology of chromosomes
141	slightly swelled upon Ki-67 degradation (Fig. 1C,D), a result consistent with the
142	previous observation obtained by immunofluorescence using specific antibodies
143	(Takagi et al., 2016).
144	We then wished to investigate the localization of Ki-67 in the absence of
145	hCAP-H or hCAP-H2. To this end, we generated AID12 and AID13 in which hCAP-H
146	and hCAP-H2, respectively, were C-terminally fused to mAID and mCherry (mACh).
147	Their conditional degradation upon addition of IAA was verified by immunoblot
148	analysis (Fig. 1E) and microscopic observation (Fig. 1F,G). Upon depletion of either
149	hCAP-H or hCAP-H2, the perichromosomal localization of Ki-67 was not significantly
150	altered (Fig. 1F,G). Taken these results together, we conclude that Ki-67 and
151	hCAP-H/H2 localize on mitotic chromosomes independently of one another.
152	
153	Ki-67 displays its perichromosomal localization and associates dynamically with
154	mitotic chromosomes regardless of the presence or absence of SMC2
155	To determine unequivocally whether Ki-67 localizes to the periphery of mitotic
156	chromosomes independently of condensins, we wish to generate a cell line in which
157	SMC2, an ATPase subunit shared by condensins I and II, was C-terminally fused to
158	mACh. We first attempted to generate such a cell line based on the standard protocol

Takagi et al.

159	using NIG272 as a mother cell line, in which OsTIR1, a ubiquitin E3 enzyme specific to
160	AID-tagged proteins, was expressed constitutively, but without success, possibly due to
161	reduced expression of SMC2 in the absence of IAA (discussed in Natsume et al. 2016).
162	We circumvented this problem by using NIG430 as a mother cell line, in which OsTIR1
163	was expressed conditionally upon addition of doxycycline (DOX) (Natsume et al.,
164	2016). The resultant cell line, AID30, were treated according to the protocol shown in
165	Fig. 2A, and then subjected to immunoblot analysis (Fig. 2B) and microscopic
166	observation (Fig. 2C,D). We noticed that degradation of SMC2-mACh upon the
167	treatment with IAA was inefficient in AID30, probably because of a lower expression
168	level of OsTIR1 compared to that seen in the mother cell (NIG430) (Fig. 2B).
169	Reflecting this, variable levels of the SMC2-mACh signal were detected among
170	individual cells treated with IAA (Fig. 2C,D). Cells where SMC2-mACh was reduced
171	to less than 25% of the original level upon the treatment with IAA were rare (15 out of
172	127 cells: 11.8%; Fig. 2C). We noticed, however, that, in all cells with undetectable
173	levels of SMC2-mACh, chromosomes lost their slim rod-like shapes and contracted into
174	a smaller space (Fig. 2D, the third row). Although individualization of each
175	chromosome became ambiguous in these cells, it was still possible to trace Ki-67 on the
176	poorly organized chromosomes, indicating that SMC2 is largely dispensable for the
177	perichromosomal localization of Ki-67.
178	We then wished to test whether depletion of SMC2 might affect this dynamic
179	behavior of Ki-67 by fluorescence recovery after photobleaching (FRAP) experiments
180	(Saiwaki et al., 2005). According to the protocol depicted in Fig. S2A, AID14

Takagi et al.

181	(expressing Ki-67-mACl plus hCAP-H-mACh; Fig. S1) cells were transfected twice
182	with control siRNA (siControl) or siRNA against SMC2 (siSMC2), treated with
183	reagents for synchronization, and then subjected to FRAP experiments. We measured
184	the FRAP of Ki-67-mACl in cells with undetectable levels of hCAP-H-mACh (Fig.
185	S2D,E), and found that it was indistinguishable from that observed in the control cells
186	(Fig. S2B,C). These results indicate that the dynamic behavior of Ki-67 on the
187	periphery of chromosomes does not depend on SMC2, or chromatin structure supported
188	by condensins.
189	
190	Chromosomes rapidly lose their structural integrity upon nuclear envelope
191	breakdown in cells devoid of both Ki-67 and SMC2
192	In the absence of either Ki-67 (Fig. 1C,D) or SMC2 (Fig. 2C), the architecture of
193	mitotic chromosomes was compromised in different manners, suggesting that Ki-67 and
194	condensins contribute to this event through distinct molecular mechanisms. To further
195	examine the functional relationship between Ki-67 and condensins, we sought to
196	deplete these chromosomal components simultaneously. To this end, we generated
197	another cell line AID35, in which Ki-67 and SMC2 were C-terminally tagged with
198	mACl and mACh, respectively. AID35 cells were treated according to the protocol
199	shown in Fig. 3A. Cell lysates were prepared and subjected to immunoblot analysis to
200	confirm that the bulk levels of the target proteins were substantially reduced in the
201	presence of IAA (Fig. 3B). Microscopic inspection of individual cells revealed that the
202	Ki-67-mACl levels were reduced to less than 20% of the original level in 59% of

Takagi et al.

223	of both Ki-67 and SMC2 even after their assembly is complete
222	Mitotic chromosomes rapidly lose their structural integrity upon the degradation
221	
220	section).
219	forming "protrusions" that were readily discernible with Hoechst staining (see a later
218	cortex. Moreover, part of the slime ball seemed to be pulled in the opposite direction,
217	frequently observed at one side of the cytoplasm, being placed at the vicinity of the cell
216	unprecedented structure as a "slime ball" hereafter. Interestingly, the slime ball was
215	cells had not been reported in the literature before: we therefore refer to this
214	10'-40'). To our knowledge, this type of abnormal chromosome structures in mitotic
213	the shape and border of individual chromosomes were not discerned (Fig. 3E, time
212	thereafter, chromatin formed a single cluster, displaying a ball-like structure in which
211	immediately after nuclear envelope breakdown (NEBD). 10 min after NEBD and
210	Hirota et al., 2004). A striking phenotype in chromosome morphology was observed
209	as expected from the previous studies reporting condensin depletion (Ono et al., 2004;
208	compaction in the prophase nucleus was compromised in these cells (Fig. 3E, time -10'),
207	effectively disappeared in the presence of IAA (Fig. 3E). We found that chromosome
206	AID35 (Fig. 3D). We then monitored cells in which the signals of Ki-67 and SMC2
205	SMC2-mACh were indistinguishable from those of their endogenous counterparts in
204	demonstrated that, in the absence of IAA, the behaviors of Ki-67-mACl and
203	IAA-treated cells (19 out of 32 cells) inspected (Fig. 3C). Live cell imaging

224 We next wished to test what would happen when the degradation of both Ki-67 and

Takagi et al.

225	SMC2 was induced after mitotic chromosome assembly was complete. To this end, we
226	treated AID35 cells with the protocol depicted in Fig. 4A. In this protocol, IAA was
227	added one hour after removing RO-3306 (rather than being added at the same time of
228	RO-3306 addition). At the time point when IAA was added, the cell had already entered
229	mitosis, displaying a discrete set of condensed chromosomes: Ki67-mACl localized to
230	the external surface of chromosomes, whereas SMC2-mACh was detectable on their
231	central axis (Fig. 4B, time 0'). 40 min after addition of IAA, the signals of Ki-67-mACl
232	and SMC2-mACh started to decrease, and chromosomes tended to lose their rod-shaped
233	morphology (Fig. 4B, time 40'). After 60 min, both signals diminished to an
234	undetectable level, and chromosomes form a single cluster with protrusions (Fig. 4B,
235	time 60', 80' and 100'), whose morphology was very similar to that of the slime ball
236	shown in Fig. 3. In control cells in which both Ki-67 and SMC2 escaped from
237	degradation during the imaging period, mitotic chromosomes kept their structural
238	integrity (Fig. S3C). Taken the observations in Figs. 3,4 together, we conclude that cells
239	can neither establish nor maintain the structural integrity of mitotic chromosomes when
240	both Ki-67 and SMC2 are absent.
241	
242	Validation of the observed chromosome morphology by a machine learning
243	algorism
244	In the experiments above, we observed seemingly different impacts on the morphology
245	of mitotic chromosomes caused by depletion of either Ki-67, SMC2, or both of them.
246	When comparing the images of those chromosomes side by side (Fig. 5A), the defective
247	phenotypes observed among the three cell lines were clearly distinct from each other.

Takagi et al.

248	Nevertheless, to further validate these differences objectively and quantitatively, we
249	used a supervised machine-learning algorithm, wndchrm (weighted neighbor distances
250	using a compound hierarchy of algorithms representing morphology) (Ono et al., 2017;
251	Orlov et al., 2008). We first collected 36 images of mitotic chromosomes observed
252	under each of the four conditions (control, Ki-67 depletion, SMC2 depletion, and
253	Ki-67/SMC2 double depletion), and each set was defined as a class. Different numbers
254	of images (5-35 images) were randomly selected from each class, and they were
255	subjected to wndchrm analysis for constructing classifiers. We found, as expected, that
256	the classification accuracy (CA) obtained with those classifiers increased according to
257	the number of images used, reaching a plateau when more than 15 images from each
258	class were used (Fig. 5B). Then, the 36 images in each class were randomly divided into
259	two independent subclasses (subclasses 1 and 2, each containing 18 images). The
260	resultant eight subclasses were processed in parallel for wndchrm analysis, and the
261	differences included in those images were statistically evaluated. The results were
262	displayed as morphological distances (MD) between two different subclasses (Fig. 5C)
263	and also as a phylogeny tree (Fig. 5D). In the phylogeny tree, the two subclasses
264	derived from each class were closely clustered with each other, confirming the
265	assurance of this classification method. Notably, the four classes were distantly
266	branched from each other, positioning at vertexes of a cruciform having four branches
267	of similar lengths. This result indicates that the morphology of mitotic chromosomes
268	formed in the four different settings tested are distinct from each other, and that the
269	defective phenotype observed in cells devoid of both Ki-67 and SMC2 is closer to

Takagi et al.

- 270 neither that observed in cells devoid of Ki-67 alone nor that observed in cells devoid of271 SMC2 alone.
- 272

273 Additional characterization of the slime-ball phenotype observed in cells devoid of

274 both Ki-67 and SMC2

275 To further characterize the slime-ball phenotype observed in cells devoid of both Ki-67 276 and SMC2 (Fig. 3E), those cells were fixed one hour after the release into mitosis and 277 subjected to immunofluorescence analyses using various antibodies (Fig. 6A-D). One of 278 the most conspicuous observations upon depletion of both Ki-67 and SMC2 was the 279 loss of radial arrays of microtubules and the emergence of microtubule bundles passing 280 through the slime ball (Fig. 6A,D). The centrosomes, as judged by the localization of 281 pericentrin, were located away from the chromosome mass (Fig. 6D). Chromosomal 282 regions containing kinetochores, as determined by the localization of Hec1 (an outer 283 kinetochore component), seemed to be pulled along the microtubule bundles toward the 284 centrosome (Fig. 6B), thereby producing the protrusions characteristic of the slime ball. 285 Interestingly, strong signals of topo II α were detectable along the protrusions (Fig. 6C), 286 implicating that topo II-enriched pericentromeric heterochromatic regions were also 287 pulled by the microtubule bundles. In parallel with these observations, cells devoid of 288 only SMC2 (AID30 treated with IAA) were examined (Figs. 6D,S4). Although Hec1 289 signals were seen clustered at one side of the nucleus as well (Fig. S4B) probably along 290 microtubule fibers (Figs. 6D,S4A), accumulation of topo II α on certain chromosomal regions was not clearly observed (Fig. S4C). The protrusions were less obvious in cells 291

Takagi et al.

	292	devoid of SMC2 alone compared to cells devoid of both Ki-67 and SMC2	(Figs. 6D.S	4).
--	-----	--	-------------	-----

- 293 In fact, the distance between the centroid of chromatin mass and the Hec1-positive
- region was shorter in the former cells than in the latter cells (Fig. 6E). Assuming that
- the emergence of the Hoechst-positive protrusions reflects a loss of structural integrity
- of chromosomes, the chromosomes devoid of both Ki-67 and SMC2 appeared more
- fragile than those devoid of SMC2 alone. The alteration of microtubule organization,
- which was accompanied with the depletion of SMC2, might contribute to and accelerate
- the formation of the slime-ball phenotype (see Discussion).

Takagi et al.

300 Discussion

301

- 302 In the current study, we aimed to understand the functional relationship between Ki-67
- and condensins in establishing and maintaining the structural integrity of mitotic
- 304 chromosomes in human cells. Using a panel of HCT116-based AID cells, in which
- 305 Ki-67 or subunits of condensins can be degraded conditionally, we first extended our
- 306 previous finding that Ki-67 and condensins behaved independently in mitotic cells
- 307 (Takagi et al., 2016). We then examined defective phenotypes caused by depletion of
- 308 both Ki-67 and condensins. The defect we observed was unprecedentedly drastic, which
- 309 was further validated by the image analyses using a supervised machine-learning
- 310 algorithm, wndchrm. Our results suggest that Ki-67 and condensins have independent
- 311 yet cooperative functions in supporting the structural integrity of mitotic chromosomes.
- 312

313 Contribiution of Ki-67 to the structure of mitotic chromosomes is rather cryptic

- 314 In the current study, we have shown that mitotic chromosomes assembled in the
- absence of Ki-67 display a swollen morphology (Figs. 1,5; Takagi et al., 2016).
- 316 Consistently, a recent study showed that the total volume of mitotic chromosomes
- 317 (DAPI-stained chromatin regions) increased by 38% upon siRNA-mediated depletion of
- 318 Ki-67 in RPE-1 cells (Booth et al., 2016). Somewhat inconsistent with these data,
- 319 however, we and others also noticed that Ki-67 depletion had little impact on the
- 320 morphology of mitotic chromosomes when they were spread on the surface of slide
- 321 glasses ("mitotic spreads") or when they were simply exposed to hypotonic buffers

Takagi et al.

322	(Cuylen et al., 2016; data not shown). We infer that Ki-67's contribution to the
323	structural integrity of mitotic chromosomes becomes apparent only when they are in
324	close proximity in the cell, and that this situation is heavily perturbed when the cells are
325	exposed to hypotonic buffers and/or subjected to spreading techniques. This idea is
326	consistent with the recent proposal that Ki-67 could function as a "surfactant"
327	(electrostatic charge barrier) that helps to prevent the coalescence of individual
328	chromosomes (Cuylen et al., 2016).
329	It deserves to mention that the defective impact on chromosome appearance
330	upon depletion of Ki-67 was seen more evidently in the experiments using the AID
331	system (Takagi et al., 2016; this study) than in the previous experiments using siRNAs
332	(Takagi et al., 2014; Vanneste et al., 2009). This might be explained by the quickness of
333	Ki-67 degradation which was realized by the AID system, and also by the sure selection
334	of cells to be observed based on the loss of fluorescence (derived from the fluorescent
335	protein tagged tandemly to the AID). Likewise, the AID system is also powerful in
336	perturbing condensin functions (Figs. 2,5,S4): depletion of condensins with other
337	methods used so far, such as siRNA transfection or transcriptional repression, has been
338	reported to cause relatively mild defects in chromosome condensation (Gassmann et al.,
339	2004).
340	
341	Double depletion of Ki-67 and condensins causes unprecedented severe defects in

342 chromosome architecture and behaviors

343 The current study has shown that cells devoid of both Ki-67 and SMC2 fail to assemble

Takagi et al.

344	thread-like mitotic chromosomes, instead forming a ball-like chromatin cluster with no
345	discernible borders between individual chromosomes, which we call the "slime ball"
346	(Fig. 3D). This particular phenotype was different from, and much severer than, that
347	observed in the absence of either Ki-67 or SMC2 alone (Fig. 5A). We have also shown
348	that the depletion of Ki-67 and SMC2 "after" the completion of chromosome assembly
349	causes a drastic contration of thread-like chromosomes into a chromatin cluster
350	reminiscent of the slime ball (Figs. 4,S3). Such a drastic phenotype has never been
351	observed by depleting either Ki-67 (Takagi et al., 2016) or SMC2 alone after the
352	completion of chromosome assembly. Together also with their independent behaviors in
353	mitotic cells (Figs. 1,2,S2), it is reasonable to speculate that Ki-67 and SMC2 support
354	the structural integrity of mitotic chromosomes through distinct molecular mechanisms.
355	What is the relationship between the two distinct mechanisms? The subunits of
356	condensins were widely conserved among eukaryotes and play fundamental roles in the
357	organization and segregation of mitotic chromosomes (Hirano, 2016). On the other hand,
358	the orthologs of Ki-67 are detectable only in vertebrates. Ki-67 could have evolved to
359	play an auxiliary role in increasing the fidelity of segregation of chromosomes,
360	especially, of large size. Such an evolutionary situation could parallel the emergence of
361	increasing numbers of phase-separeted organelles in complex organisms (Banani et al.,
362	2017). Alternatively, non-vertebrate cells could have a peripheral chromosomal protein
363	that plays an equivalent role to that of Ki-67 but has no sequence similarity to it.
364	Vertebrate cells have two different condensin complexes, condensins I and II,
365	which behave and function differently (Green et al., 2012; Hirota et al., 2004; Ono et al.,

Takagi et al.

366	2004). To get more insight into the mechanism behind the formation of the slime- ball
367	phenotype, we co-depleted Ki-67 with either hCAP-H or hCAP-H2 (Fig. S1). Double
368	depletion of Ki-67/hCAP-H or Ki-67/hCAP-H2 displayed less severe defects than
369	double depletion of Ki-67/SMC2: the chromosomes were more swollen than
370	Ki-67-depleted chromosomes, but never produced a phenotype reminiscent of the
371	slime- ball phenotype observed in cells devoid of both Ki-67 and SMC2. Thus, loss of
372	both functions of condensins I and II, along with loss of Ki-67, is required to create the
373	highly characteristic defective phenotype.
374	
375	What mechanism might underlie the formation of the slime ball?
376	In the current study, we have shown that depletion of SMC2 alone or Ki-67 and SMC2
377	commonly causes microtubules to lose their radial arrays and to make bundles in
378	STLC-treated mitotic cells (Figs. 6A,D, and S4A). This defect in microtubule
379	orientation is therefore specific to loss of SMC2, but not that of Ki-67. A similarly
380	characteristic microtubule orientation was observed in STLC-treated cells when "end-on"
381	attachments of microtubules to kinetochores were blocked by depleting Nuf2 (Silk et al.,
382	2009), suggesting strongly that kinetochores formed in cells devoid of SMC2 are
383	"laterally" attached to microtubule fibers. Consistent with the notion, α -tubulin and
384	Hec1 showed localization patterns close to but exclusive from each other in cells devoid
385	of SMC2 (Fig. S4D). It should be noted that the slime-ball phenotype was observed
386	only in cells devoid of both Ki-67 and SMC2. While the slime ball as a whole was
387	pushed to one side in the cytoplasm to the vicinity of the cell cortex, the kinetochores

Takagi et al.

388	were clustered at the opposite side (Figs. 6B,S5) and pulled to the direction to the minus
389	end of microtubules (Fig. 6D) probably via their lateral attachment to the bundled
390	microtubules (Fig. S5D). Although the similar distribution of kinetochores relative to
391	microtubule bundles occurred also in cells devoid of SMC2 alone (Fig. S4), those
392	kinetochores tended to stay close to the chromatin mass (Fig. 6E). We imagine that the
393	formation of the slime ball might be based on the reduced rigidity of chromosomes,
394	which is caused by double depletion of Ki-67 and SMC2, and accelerated by the
395	"unidirectional" pulling force exerted on kinetochores along the bundled microtubules,
396	which is caused by depletion of SMC2 alone, as illustrated in Fig. S5E.
397	We verified that not only Hec1 (an outer kinetochore component; Fig. 6B) but
398	also CENP-A (a centromeric chromatin component), CENP-I/hMis6 (an inner
399	kinetochore component) and BubR1 (a spindle check point kinase) were localized in the
400	protrusions of slime ball (Fig. S5). These obsrevations suggest that most, if not all,
401	components of kinetochores remain intact within each kinetochore unit. We speculate,
402	however, that some specific components or abilities necessary for the end-on
403	attachments of microtubules are lost from the kinetochores in the slime ball (and
404	similarly from those in cells devoid of SMC2 alone). It will be important to understand
405	in the future how loss of SMC2 produces such a drastic and specific phenotype in
406	kinetochore-microtuble attachments.
407	

408 Conclusions

Takagi et al.

409	The key observations we made in the current study are summarized in Fig. 7. The most
410	important finding is that cells devoid of both Ki-67 and condensins rapidly lose the
411	structural integrity of mitotic chromosomes to an unprecedented level. In light of this
412	finding, we propose a new concept in which Ki-67 and condensins, which localize to
413	the external surface and the central axis of mitotic chromosomes, respectively,
414	cooperate to support the structural integrity of mitotic chromosomes through distinct
415	mechanisms. Additionally, we propose the possibility that the contacts and interferences
416	among mitotic chromosomes must be restricted through the action of Ki-67, otherwise
417	the chromosome morphology is adversely affected.

Takagi et al.

418 Materials and methods

419

420 Establishment of cell lines and their handling

- 421 HCT116 cells and its derivatives were cultured at 37°C with 5% CO2 in DMEM
- 422 supplemented with 10% FBS. A panel of cells, collectively called AID cells in the
- 423 current manuscript, were generated from HCT116 cells via successive uses of
- 424 CRISPR/Cas9-mediated genome editing as described previously (Natsume et al., 2016).
- 425 Briefly, as the first step, the constitutive or DOX-inducible expression units of OsTIR1

426 was integrated in the AAVS1 locus of the HCT116 genome to generate cells called

- 427 NIG272 or NIG430, respectively (Natsume et al., 2016). In these cells, as the second
- 428 step, cassette sequences encoding variable tags were knocked-in immediately upstream
- 429 of the stop codons of genes to be analyzed. Table S1 contains a list of the parental lines,
- 430 the target genes, the kind of tags, the sequences of guide RNAs, the plasmid names of
- 431 targeting and knock-in constructs, and antibiotics used for generating AID cells. Of
- 432 cellular clones selected by their resistant to antibiotics (700 µg/ml neomycin or 100
- 433 µg/ml hygromycin B), the final selection of AID11 and AID44 were carried out visually
- 434 with fluorescence microscopy. For other cell lines, clones in which the genome had
- 435 been edited as designed in both alleles were selected by genomic PCRs using
- 436 KOD-plus-Neo (TOYOBO, Osaka, Japan) and appropriate primer sets listed in Table
- 437 S2. Successful editing in both alleles was further confirmed by immunoblotting (to
- 438 check the loss of target proteins of their original size).
- 439

For fixed-cell immunofluorescence, cells were seeded on coverslips treated

Takagi et al.

440	with 10 μ g/ml fibronectin (Wako, Osaka, Japan). For live-cell imaging, including FRAP
441	analysis, cells were seeded onto glass-bottom dishes (IWAKI, Tokyo, Japan). 2 x 10^5
442	cells were plated on a 35-mm dish (either a glass-bottom dish or a polystyrene dish
443	containing four fibronectin-coated round coverslips) 1 day before the experiments and
444	processed as follows. Cells were treated with 2 mM thymidine for 16 h, released in
445	thymidine-free medium for 6-7 h, treated with 10 μ M RO-3306 (Tocris, Minneapolis,
446	MN) for 3 h for arrest at the G2/M boundary, and released in medium containing 10 μM
447	STLC (Tokyo Chemical Industry, Tokyo, Japan) for arrest in mitosis. Cells were
448	mock-treated or treated with 0.5 mM IAA (Tokyo Chemical Industry) during the period
449	depicted in Figs. 1A,2A,3A,4A,S3A. For the observations of AID cells derived from
450	NIG430 (AID29, AID30 and AID35), incubation with 2 μ g/ml DOX (MP Biomedicals,
451	Santa Ana, CA) after the release from thymidine block was added for inducing the
452	expression of OsTIR1. For probing DNA in live-cell observations, cells were treated
453	with 100 ng/ml Hoechst 33342, 30 min before removing RO-3306.
454	

455 Immunoblotting

- 456 Cells were washed twice with ice-cold PBS supplemented with 0.3 mM PMSF,
- 457 collected by centrifugation, and snap-frozen in liquid nitrogen. Cell pellets were
- 458 resuspended in buffer B (20 mM Tris-HCl [pH 7.5], 150 mM NaCl, 5 mM MgCl₂, 0.1%
- 459 NP-40, 1 mM DTT, Complete Protease Inhibitor Mixture [Roche, Basel, Switzerland],
- 460 and PhosSTOP [Roche]) supplemented with 0.25 units/ml Benzonase (Novagen,
- 461 Madison, WI, USA), kept on ice for 30 min, mixed with the same volume of 4x

Takagi et al.

462	concentrated sample buffer (250 mM Tris-HCl [pH 6.8], 8% SDS, 40% glycerol, 0.02%
463	bromophenol blue, and 0.1 M DTT), and heated at 95°C. The denatured protein samples
464	were electrophoretically separated on a SuperSep Ace 5-20% gradient gel (Wako,
465	Osaka, Japan) and blotted onto a Immobilon-P membrane (Merck Millipore, Billerica,
466	MA). The following antibodies were used as primary antibodies at the indicated
467	dilutions or concentrations: mouse anti-β-actin (1:5,000, AC-15; Sigma-Aldrich, St.
468	Louis, MO), rabbit anti-NCAPH/hCAP-H (1:1,000, 11515-1; ProteinTech, Rosemont,
469	IL), rabbit anti-hCAP-H2 (1 µg/ml, AfR205-4L; Ono et al., 2003), rabbit anti-Ki-67
470	(1:1,000, sc-15402; Santa Cruz, Dallas, TX), rabbit-OsTIR1 (1:1,000; Natsume et al.,
471	2016), rabbit anti-SMC2 (1:1,000, ab10412; Abcam, Cambridge, UK), and mouse
472	anti-topoisomerase II α (1:2,000, 1C5; MBL, Nagoya, Japan) antibodies. The following
473	antibodies were used as secondary antibodies at the indicated dilutions: goat anti-mouse
474	HRP (1:3,000, 170-6516; Bio-Rad, Hercules, CA), and goat anti-rabbit HRP (1:3,000,
475	170-6515; Bio-Rad) antibodies. Protein bands were visualized by chemiluminescence
476	using Immobilon Western (Merck Millipore).

477

478 Immunofluorescence

479 One hour after the removal of RO-3306, cells were fixed with 3.7% PFA in PBS at

480 room temperature for 10 min. The fixed cells were permeabilized with 0.5% Triton

- 481 X-100 in PBS for 5 min, blocked with a blocking solution (PBS containing 5 mg/ml
- 482 BSA and 50 mM glycine) for 1 h, and processed for immunofluorescence. The
- 483 following antibodies were used as primary antibodies at the indicated dilutions: mouse

Takagi et al.

- 484 anti-α-tubulin (1:10,000, DM1A; Sigma-Aldrich), mouse anti-BubR1 (1:400, 8G1;
- 485 MBL), mouse anti-CENP-A (1:200, 3-19; MBL), rat anti-CENP-I/hMis6 (1:100,
- 486 PD032; MBL), mouse anti-HEC1 (1:1,000, 9G3; GeneTex, Irvine, CA), rabbit
- 487 anti-Ki-67 (1:200, sc-15402; Santa Cruz), mouse anti-Ki-67 (1:500, NA-59; Merck
- 488 Millipore), rabbit anti-pericentrin (1:1,000, ab4448; Abcam), and mouse
- 489 anti-topoisomerase IIα (1:1,000, 1C5; MBL) antibodies. Secondary antibodies
- 490 conjugated with Alexa Fluor 488/594/647 were purchased from Thermo Fisher Science
- 491 (Waltham, MA). DNA was counterstained with $0.5 \mu g/ml$ Hoechst 33342.
- 492 Immunofluorescence images were captured with a DeltaVision Core (Applied Precision,
- 493 Issaquah, WA, US) with an inverted microscope (IX71; Olympus, Tokyo, Japan), an
- 494 UPlanApo 60x/1.40 objective lens (Olympus), and a CoolSNAP HQ2 camera
- 495 (Photometrics, Tucson, AZ, US). Images from z sections spaced 0.5-µm apart were
- 496 acquired, deconvolved with softWorx (Applied Precision), and presented as maximum
- 497 intensity projections.
- 498

499 Quantification of fluorescence intensities

- 500 Cells were fixed and stained with Hoechst 33342 as described above. Images of
- 501 chromatin stained with Hoechst 33342 and the fluorescent proteins to be quantified
- 502 were captured and processed as described above except for the use of an UPlanFL
- 503 40x/0.75 objective lens (Olympus). Chromosomal regions were determined based on
- the Hoechst-stained images, and the total pixel intensities of fluorescence images from
- 505 those regions were calculated. The obtained values were normalized by the average

Takagi et al.

506	value of control	cells (cells	untreated	with IAA) and 1	plotted	using	GraphPad	Prism6
-----	------------------	--------------	-----------	----------	---------	---------	-------	----------	--------

507 (GraphPad Software, La Jolla, CA, US).

508

509 FRAP

- 510 For FRAP experiments, we first attempted to generate a cell line expressing
- 511 Ki-67-mClover plus SMC2-mACh, but without success. We therefore decided to use
- 512 AID14 (a cell line expressing Ki-67-mACl plus hCAP-H-mACh) which had been
- 513 generated for other purposes (Fig. S1). It has to be mentioned that SMC2 is not tagged
- 514 with mAID in AID14. FRAP experiments were performed on the laser scanning
- 515 confocal microscope FV1200 (Olympus) equipped with PLAPON 60XO/1.42
- 516 (Olympus). Cells expressing Ki-67-mACl and hCAP-H-mACh from their intrinsic
- 517 promotors (AID14) were transfected with siControl

518 (5'-CGUACGCGGAAUACUUCGAdTdT; Elbashir et al., 2001) or siSMC2

- 519 (5'-UGCUAUCACUGGCUUAAUdTdT; (Gerlich et al., 2006)) at 0 and 24 h at a final
- 520 concentration of 10 nM using Lipofectamine RNAiMAX (Thermo Fisher Scientific),
- 521 and synchronized in mitosis as described above. The cells were transferred to a
- 522 humidified environmental chamber (Stage Top Incubator; TOKAI HIT, Shizuoka,
- 523 Japan) maintaining its temperature at 37° C and the CO₂ concentration at 5%, and
- subjected to FRAP analysis within 100 min after the release from the cell cycle arrest
- with RO-3306. One pre-bleach frame followed by 2-sec bleach time with 473 nm laser
- 526 line at 80% transmission, and 8-10 post-bleach frames were recorded at 30-sec intervals.
- 527 In parallel with the signal of Ki-67-mACl, the signals of hCAP-H-mACh and DNA

Takagi et al.

528	(stained with Hoechst 33342) were recorded. The mean mClover fluorescence
529	intensities of the bleached chromatin region for each time point was normalized to that
530	of unbleached chromatin region at the same time point within the same cell. As cells
531	tended to move slightly during the imaging time, the measurement areas were corrected
532	manually relying on the chromatin images. The value for each time point was further
533	normalized with that at the pre-bleached frame.
534	
535	Live cell observations
536	Cells cultured in a glass-bottom dish were mounted on an inverted microscope (IX71,
537	Olympus) equipped with a humidified environment chamber (MI-IBC, Olympus) to
538	maintain its temperature at 37°C and the CO_2 concentration at 5%. Fluorescence images
539	were collected with a DeltaVision Core (Applied Precision) from z sections (5 sections
540	spanning 8 μm for Fig. 3; 5 sections spanning 2 μm for Figs. 4 and S3) every 10 min
541	with 2 x 2 binning and presented as maximum intensity projections. Differential
542	interference microscope images were acquired in parallel from a single focal plane.
543	
544	Morphological quantification of chromosome with wndchrm
545	Microscopic images of chromosomes were obtained from fixed cells stained with
546	Hoechst 33342 using DeltaVision Core (Applied Precision) with an UPlanApo 60x/1.40
547	objective lens (Olympus). Images from z sections (24 sections spanning 11.5 μ m) were
548	obtained, deconvolved, and presented as maximum intensity projections. For
549	quantitative assessment of chromosome structures, a supervised machine-learning

Takagi et al.

550	algorithm, wndchrm (weight neighbor distance using a computed hierarchy of
551	algorithms representing morphology) ver. 1.52 (Ono et al., 2017; Orlov et al., 2008;
552	Tokunaga et al., 2014), was applied to 36 projected images (188x188 pixels, 8 bit) in
553	each condition, which was defined as a class. All of the images in the defined class were
554	applied to wndchrm, and morphological feature values were assigned by training a
555	machine. Phylogenies were computed using the Fitch-Margoliash method implemented
556	in the PHYLIP package ver.3.696, which was based on pairwise class similarity values
557	reported by wndchrm ver. 1.52 (Felsensein, 1989; (Johnston et al., 2008)). For each
558	analysis, cross-validation tests were automatically repeated for 20 times with 13
559	training/5 test image data set. The options used for the image analysis were a large
560	feature set of 2919 (-1) and multi- processors (-m). To measure pairwise class
561	dissimilarity, morphological distances (MD) were calculated as the Euclidean distances
562	$(d = \sqrt{\sum}(A-B)^2)$ from the values in class probability matrix obtained from the
563	cross-validations (Johnston et al., 2008). To calculate P values, two-sided Student's
564	t-test was performed for each of comparisons. To optimize the classification capacity,
565	we measured classification accuracy (CA) using different numbers of training data sets,
566	and found that the accuracy reached a plateau with more than 15 images (Fig. 5B). Then,
567	each image in a class (36 images) was randomly assigned to two independent sets
568	(folder 1 and folder 2, each containing 18 images) to confirm that images within the
569	same class (condition) show negligible differences. They were expected to localize
570	closely in phylogenies and to show low MD between them.
571	

571

Takagi et al.

572	Measurement of the distance between chromatin mass and Hec1-distributed region
573	Microscopic images of chromosomes and Hec1were obtained using DeltaVision Core
574	(Applied Precision) with an UPlanApo 60x/1.40 objective lens (Olympus). Images from
575	z sections (40 sections spanning 7.8 μ m) were obtained, deconvolved, and presented as
576	maximum intensity projections under the same condition. Chromosomal regions were
577	determined by thresholding the chromosomal images. To delineate Hec1-positive
578	regions, the convex hull of Hec1 signals were determined manually from the uniformly
579	binarized images of Hec1. The distances between the centroids of these two regions
580	were measured and plotted using GraphPad Prism6 (GrapPad Software).
581	
582	Acknowledgments
583	We thank RIKEN BSI-Olympus Collaboration Center for the technical assistance with
584	the FRAP experiment. This work was supported by the JSPS KAKENHI (26650070
585	and 17K07399 to M. T., 16K07455 to T. O., 15K18482 and 17K15068 to T.N.,
586	16K15095 to M.T.K., 25116009 and 16H04744 to N.S., 15H04707 to M.N., 26251003
587	to T. H., 15H05929 to N.I.). M.T.K. was supported by a grant from the Mochida
588	Memorial Foundation for Medical and Pharmaceutical Research, the SGH Foundation,
589	the Sumitomo Foundation, and the Canon Foundation.
590	
591	The authors declare no competing financial interests.
592	
593	Author contributions: M. Takagi designed and performed most of the experiments,

Takagi et al.

594	generated cell lines and constructs, and analyzed data. C. Sakamoto and N. Saitoh
595	performed the wndchrm analysis, and T. Ono and M. Nakao contributed to the
596	wndchrm analysis. T. Natsume and M.T. Kanemaki gave advice to M. Takagi on the
597	AID system. N. Imamoto surpervised the entire study. M. Takagi and T. Hirano wrote
598	the paper with input from all authors.
599	
600	Supplemental materials
601	Fig. S1 shows the characterization of AID14 and AID15. Fig. S2 shows the FRAP
602	analysis of Ki-67 in the presence or absence of SMC2. Fig. S3 shows the live
603	observation of AID35 treated with IAA after the establishment of mitotic chromosome
604	structure. Fig. S4 shows the localization of α -tubulin, Hec1 and topo II α in cells devoid
605	of SMC2. Fig. S5 shows the localization of centromere/kinetochore-associated proteins
606	in cells devoid of both Ki-67 and SMC2. Table S1 lists the AID cell lines. Table S2 lists
607	the primers used for genomic PCR. Table S3 lists antibodies used in this study.
608	
609	
610	References
611	
612	Banani, S.F., H.O. Lee, A.A. Hyman, and M.K. Rosen. 2017. Biomolecular
613	condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol.
614	18:285-298.
615	Booth, D.G., A.J. Beckett, O. Molina, I. Samejima, H. Masumoto, N. Kouprina, V.
616	Larionov, I.A. Prior, and W.C. Earnshaw. 2016. 3D-CLEM Reveals that a Major
617	Portion of Mitotic Chromosomes Is Not Chromatin. Mol Cell. 64:790-802.

618 Booth, D.G., M. Takagi, L. Sanchez-Pulido, E. Petfalski, G. Vargiu, K. Samejima, N.

Takagi et al.

619	Imamoto, C.P. Ponting, D. Tollervey, W.C. Earnshaw, and P. Vagnarelli. 2014.
620	Ki-67 is a PP1-interacting protein that organises the mitotic chromosome
621	periphery. eLife. 3:e01641.
622	Cuylen, S., C. Blaukopf, A.Z. Politi, T. Muller-Reichert, B. Neumann, I. Poser, J.
623	Ellenberg, A.A. Hyman, and D.W. Gerlich. 2016. Ki-67 acts as a biological
624	surfactant to disperse mitotic chromosomes. Nature. 535:308-312.
625	Gassmann, R., P. Vagnarelli, D. Hudson, and W.C. Earnshaw. 2004. Mitotic
626	chromosome formation and the condensin paradox. Exp Cell Res. 296:35-42.
627	Gerlich, D., T. Hirota, B. Koch, J.M. Peters, and J. Ellenberg. 2006. Condensin I
628	stabilizes chromosomes mechanically through a dynamic interaction in live cells.
629	Current biology : CB. 16:333-344.
630	Green, L.C., P. Kalitsis, T.M. Chang, M. Cipetic, J.H. Kim, O. Marshall, L. Turnbull,
631	C.B. Whitchurch, P. Vagnarelli, K. Samejima, W.C. Earnshaw, K.H. Choo, and
632	D.F. Hudson. 2012. Contrasting roles of condensin I and condensin II in mitotic
633	chromosome formation. Journal of cell science. 125:1591-1604.
634	Hirano, T. 2016. Condensin-Based Chromosome Organization from Bacteria to
635	Vertebrates. Cell. 164:847-857.
636	Hirota, T., D. Gerlich, B. Koch, J. Ellenberg, and J.M. Peters. 2004. Distinct functions
637	of condensin I and II in mitotic chromosome assembly. Journal of cell science.
638	117:6435-6445.
639	Johnston, J., W.B. Iser, D.K. Chow, I.G. Goldberg, and C.A. Wolkow. 2008.
640	Quantitative image analysis reveals distinct structural transitions during aging in
641	Caenorhabditis elegans tissues. PLoS One. 3:e2821.
642	Maresca, T.J., B.S. Freedman, and R. Heald. 2005. Histone H1 is essential for mitotic
643	chromosome architecture and segregation in Xenopus laevis egg extracts. J Cell
644	Biol. 169:859-869.
645	Mazumdar, M., J.H. Lee, K. Sengupta, T. Ried, S. Rane, and T. Misteli. 2006. Tumor
646	formation via loss of a molecular motor protein. Current biology : CB.
647	16:1559-1564.
648	Natsume, T., T. Kiyomitsu, Y. Saga, and M.T. Kanemaki. 2016. Rapid Protein
649	Depletion in Human Cells by Auxin-Inducible Degron Tagging with Short
650	Homology Donors. Cell Rep. 15:210-218.
651	Ono, T., Y. Fang, D.L. Spector, and T. Hirano. 2004. Spatial and temporal regulation of

Takagi et al.

652	Condensins I and II in mitotic chromosome assembly in human cells. Mol Biol
653	<i>Cell</i> . 15:3296-3308.
654	Ono, T., C. Sakamoto, M. Nakao, N. Saitoh, and T. Hirano. 2017. Condensin II plays an
655	essential role in reversible assembly of mitotic chromosomes in situ. Mol Biol
656	Cell.
657	Orlov, N., L. Shamir, T. Macura, J. Johnston, D.M. Eckley, and I.G. Goldberg. 2008.
658	WND-CHARM: Multi-purpose image classification using compound image
659	transforms. Pattern Recognit Lett. 29:1684-1693.
660	Saiwaki, T., I. Kotera, M. Sasaki, M. Takagi, and Y. Yoneda. 2005. In vivo dynamics
661	and kinetics of pKi-67: transition from a mobile to an immobile form at the
662	onset of anaphase. Exp Cell Res. 308:123-134.
663	Samejima, K., I. Samejima, P. Vagnarelli, H. Ogawa, G. Vargiu, D.A. Kelly, F. de
664	Lima Alves, A. Kerr, L.C. Green, D.F. Hudson, S. Ohta, C.A. Cooke, C.J. Farr,
665	J. Rappsilber, and W.C. Earnshaw. 2012. Mitotic chromosomes are compacted
666	laterally by KIF4 and condensin and axially by topoisomerase IIalpha. J Cell
667	Biol. 199:755-770.
668	Scholzen, T., and J. Gerdes. 2000. The Ki-67 protein: from the known and the unknown.
669	J Cell Physiol. 182:311-322.
670	Shintomi, K., T.S. Takahashi, and T. Hirano. 2015. Reconstitution of mitotic
671	chromatids with a minimum set of purified factors. Nat Cell Biol. 17:1014-1023.
672	Silk, A.D., A.J. Holland, and D.W. Cleveland. 2009. Requirements for NuMA in
673	maintenance and establishment of mammalian spindle poles. J Cell Biol.
674	184:677-690.
675	Takagi, M., T. Natsume, M.T. Kanemaki, and N. Imamoto. 2016. Perichromosomal
676	protein Ki67 supports mitotic chromosome architecture. Genes Cells.
677	21:1113-1124.
678	Takagi, M., Y. Nishiyama, A. Taguchi, and N. Imamoto. 2014. Ki67 antigen contributes
679	to the timely accumulation of protein phosphatase 1 gamma on anaphase
680	chromosomes. The Journal of biological chemistry. 289:22877-22887.
681	Takahashi, M., T. Wakai, and T. Hirota. 2016. Condensin I-mediated mitotic
682	chromosome assembly requires association with chromokinesin KIF4A. Genes
683	Dev. 30:1931-1936.
684	Tokunaga, K., N. Saitoh, I.G. Goldberg, C. Sakamoto, Y. Yasuda, Y. Yoshida, S.

Takagi et al.

685	Yamanaka, and M. Nakao. 2014. Computational image analysis of colony and
686	nuclear morphology to evaluate human induced pluripotent stem cells. Sci Rep.
687	4:6996.
688	Uhlmann, F. 2016. SMC complexes: from DNA to chromosomes. Nat Rev Mol Cell
689	Biol. 17:399-412.
690	Vanneste, D., M. Takagi, N. Imamoto, and I. Vernos. 2009. The role of Hklp2 in the
691	stabilization and maintenance of spindle bipolarity. Current biology : CB.
692	19:1712-1717.
693	

Takagi et al.

694 Figure legends

695

696 Figure 1. Ki-67 and hCAP-H/H2 localize on mitotic chromosomes independently of

- 697 one another. (A) Schematic diagram of the cell preparation protocol. Thymidine (2
- mM), RO-3306 (10 μ M), STLC (10 μ M), and IAA (0.5 mM) were added and/or washed
- 699 out at the indicated time points. AID-tagged proteins are subjected to
- 700 proteasome-mediated degradation upon the treatment of cells with IAA. (B)
- 701 Immunoblot analysis of HCT116 (control), AID11 and AID44 cells. Membranes were
- 702 probed with specific antibodies against the indicated proteins. The asterisk indicates a
- 703 non-specific band. (C-D) Immunofluorescence analysis of AID11 and AID44 cells
- prepared in the absence (-) or presence (+) of IAA. Ki-67 and hCAP-H/H2 were
- detected via the fluorescence of mClover and mCherry, respectively, fused to their
- 706 C-terminal ends. Topo IIa was detected by indirect immunofluorescence (IF) using a
- 707 specific antibody. DNA was counterstained with Hoechst 33342. (E) Immunoblot
- analysis of AID12 and AID13 cells. Membranes were probed with specific antibodies
- against the indicated proteins. The asterisk indicates a non-specific band. (F-G)
- 710 Immunofluorescence analysis of AID12 and AID13 cells prepared in the absence (-) or
- 711 presence (+) of IAA. hCAP-H and hCAP-H2 were detected via the fluorescence of
- 712 mCherry fused to their C-terminal ends. Ki-67 and topo IIa were detected by indirect
- 713 immunofluorescence (IF) using specific antibodies. DNA was counterstained with
- 714 Hoechst 33342. The areas indicated by the white squares are 4.2-times enlarged and
- shown on the bottom. Scale bars, 10 µm.

Takagi et al.

716

717	Figure 2. Ki-67 localizes on mitotic chromosomes independently of SMC2. (A)
718	Schematic diagram of the cell preparation protocol. Thymidine (2 mM), DOX (2 μ g/ml),
719	RO-3306 (10 μM), STLC (10 μM), and IAA (0.5 mM) were added and/or washed out at
720	the indicated time points. AID-tagged proteins are subjected to proteasome-mediated
721	degradation upon the treatment of cells with DOX plus IAA. (B) Immunoblot analysis
722	of NIG430 (a mother cell of AID29 and AID30), AID29 and AID30 cells. Membranes
723	were probed with specific antibodies against the indicated proteins. (C) Fluorescence
724	intensities of SMC2-mACh in AID30 cells prepared in the absence (-) or presence (+)
725	of IAA. Each circle represents the fluorescence intensity of an individual cell relative to
726	the average intensity of untreated AID30 cells. (D) Immunofluorescence analysis of
727	AID30 cells prepared in the absence (-) or presence (+) of IAA. SMC2 was detected via
728	the fluorescence of mCherry fused to the C-terminal end. Ki-67 and topo II α were
729	detected with indirect immunofluorescence (IF) using specific antibodies. DNA was
730	counterstained with Hoechst 33342. Images of AID30 cells, in which
731	SMC2-mAID-mCherry was degraded only moderately (second row) or completely
732	(third row), are shown. The areas indicated by the white squares are 4.2-times enlarged
733	and shown on the right. Scale bars, 10 µm.
734	
735	Figure 3. Rapid loss of the structural integrity of chromosomes immediately after
736	NEBD in cells devoid of both Ki67 and SMC2. (A) Schematic diagram of the cell

737 preparation protocol. Thymidine (2 mM), DOX (2 μ g/ml), RO-3306 (10 μ M), STLC

Takagi et al.

738	(10 μ M), Hoechst 33342 (100 ng/ml), and IAA (0.5 mM) were added and/or washed out
739	at the indicated time points. (B) Immunoblot analysis of AID35 cells. Membranes were
740	probed with specific antibodies against the indicated proteins. (C) Fluorescence
741	intensities of Ki-67-mACl in AID35 cells prepared in the absence (-) or presence (+) of
742	IAA. Each circle represents the fluorescence intensity of an individual cell relative to
743	the average intensity of untreated AID35. The horizontal bars show the average
744	intensities. (D-E) Live observation of AID35 cells prepared in the absence (D) or
745	presence (E) of IAA. Images were taken at 10-min intervals. The first frame after
746	NEBD marks the time point 0. DIC: differential interference contrast. Shown here are
747	representative image sets out of more than six image sets captured. Scale bars, 10 μ m.
748	
749	Figure 4. Rapid loss of the structural integrity of mitotic chromosomes in cells
	Figure 4. Rapid loss of the structural integrity of mitotic chromosomes in cells devoid of both Ki67 and SMC2 even after their assembly is complete. (A)
750	
750 751	devoid of both Ki67 and SMC2 even after their assembly is complete. (A)
749 750 751 752 753	devoid of both Ki67 and SMC2 even after their assembly is complete. (A) Schematic diagram of the cell preparation protocol. Thymidine (2 mM), DOX (2 μg/ml),
750 751 752	devoid of both Ki67 and SMC2 even after their assembly is complete. (A) Schematic diagram of the cell preparation protocol. Thymidine (2 mM), DOX (2 μ g/ml), RO-3306 (10 μ M), STLC (10 μ M), Hoechst 33342 (100 ng/ml), and IAA (0.5 mM)
750 751 752 753	devoid of both Ki67 and SMC2 even after their assembly is complete. (A) Schematic diagram of the cell preparation protocol. Thymidine (2 mM), DOX (2 μ g/ml), RO-3306 (10 μ M), STLC (10 μ M), Hoechst 33342 (100 ng/ml), and IAA (0.5 mM) were added and/or washed out at the indicated time points. AID-tagged proteins are
750 751 752 753 754	devoid of both Ki67 and SMC2 even after their assembly is complete. (A) Schematic diagram of the cell preparation protocol. Thymidine (2 mM), DOX (2 μ g/ml), RO-3306 (10 μ M), STLC (10 μ M), Hoechst 33342 (100 ng/ml), and IAA (0.5 mM) were added and/or washed out at the indicated time points. AID-tagged proteins are subjected to proteasome-mediated degradation upon the treatment of cells with IAA.
750 751 752 753 754 755	devoid of both Ki67 and SMC2 even after their assembly is complete. (A) Schematic diagram of the cell preparation protocol. Thymidine (2 mM), DOX (2 μg/ml), RO-3306 (10 μM), STLC (10 μM), Hoechst 33342 (100 ng/ml), and IAA (0.5 mM) were added and/or washed out at the indicated time points. AID-tagged proteins are subjected to proteasome-mediated degradation upon the treatment of cells with IAA. (B) Live observation of AID35 cells. Images were taken at 10-min intervals over 100
750 751 752 753 754 755 756	devoid of both Ki67 and SMC2 even after their assembly is complete. (A) Schematic diagram of the cell preparation protocol. Thymidine (2 mM), DOX (2 μ g/ml), RO-3306 (10 μ M), STLC (10 μ M), Hoechst 33342 (100 ng/ml), and IAA (0.5 mM) were added and/or washed out at the indicated time points. AID-tagged proteins are subjected to proteasome-mediated degradation upon the treatment of cells with IAA. (B) Live observation of AID35 cells. Images were taken at 10-min intervals over 100 min, and only the selected frames are represented (all images are represented in Fig. S3).

Takagi et al.

representative image serieses of more than eight captured image serieses. Sca	e bars,
---	---------

- **761** 10 μm.
- 762

763	Figure 5. Quantitative analyses of chromosome morphology using a
764	machine-learning algorism. (A) Representative images of mitotic chromosomes
765	observed in four different experimental settings. The sources of the images include
766	AID2 cells in the absence (-) or presence (+) of IAA according to the protocol
767	illustrated in Figure 1 A, and AID30 and AID35 cells in the presence (+) of IAA
768	according to the protocol illustrated in Figure 2 A. For collecting chromosome images
769	from the IAA-treated cells, cells were selected in which the fluorescence signals of
770	Ki-67-mACl and/or SMC2-mACh were diminished to an undetectable level. 36 images
771	were collected from each setting and stored as four different classes (Δ Cont, Δ Ki-67,
772	Δ SMC2 and Δ Ki-67 Δ SMC2). Scale bar, 10 μ m. (B-D) Wndchrm analysis. (B)
773	Assessment of the optimum numbers of training images required for classification.
774	Different numbers of images (5-35 images) from each class were used as training
775	images for constructing classifiers. The classification accuracy (CA) of each classifier
776	was determined by cross validation tests. The values shown are the mean and SD from
777	20 independent tests. The accuracy reached a plateau when more than 15 training
778	images were used. (C-D) Morphological distance (MD) and phylogeny. Images
779	obtained from each of the four settings were randomly divided into two subclasses (each
780	containing 18 images) and one of them served as a negative control of another. The MD
781	values shown are the mean and SD from 20 independent cross validation tests. Statistics

Takagi et al.

are from a two-tailed Student's *t* test.

783

784	Figure 6. Behavior of chromosomal and non-chromosomal markers in cells devoid
785	of both Ki-67 and SMC2. AID35 cells (A-C) and AID30 cells (D) were prepared in the
786	absence (-) or presence (+) of IAA according to the protocol depicted in Figure 2 A, and
787	processed for immunofluorescence using antibodies against α -tubulin (A), Hec1 (B),
788	topo II α (C), or α -tubulin and pericentrin (D). (A-C) Ki-67 and SMC2 were detected
789	via the fluorescence of mClover and mCherry, respectively, fused to their C-terminal
790	ends. (A-D) DNA was counterstained with Hoechst 33342. Scale bars, 10 $\mu m.$ (E)
791	Distances between the centroid of chromatin mass (blue) and Hec1-positive region (red)
792	of IAA-treated AID30 and AID35 cells (20 cells each) were measured and plotted. The
793	results from two independent experiments are shown.
794	

795 Figure 7. Ki-67 and condensins support the integrity of mitotic chromosomes

through distinct mechanisms. (A) In control cells, Ki-67 (green) and condensins (red)

support the integrity of mitotic chromosomes internally and externally, respectively. (B)

798 In cells devoid of Ki-67, mitotic chromosomes are slightly swollen and tend to be

799 coalesced with each other. (C) In cells devoid of SMC2, mitotic chromosomes are

800 severely disorganized. The centromere/kinetochore regions tend to be clustered at the

side of the chromatin mass close to the centrosome (not shown). (D) When both Ki-67

and SMC2 are depleted, all chromosomes apparently fused to form a single cluster,

803 which we call a "slime ball", from which the centromere/kinetochore regions tend to

Takagi et al.

- 804 protrude toward a single direction through the action of microtubules. See the text for
- details.
- 806
- 807

Takagi et al.

807 Supplementary figure legends

- 808
- 809 Figure S1. Loss of the structural integrity of mitotic chromosomes in cells devoid of
- 810 Ki-67 and hCAP-H or cells devoid of Ki-67 and hCAP-H2. (A) Immunoblot analysis
- 811 of AID14 and AID15 cells prepared as illustrated in Figure 1A. Membranes were
- 812 probed with specific antibodies against the indicated proteins. (B-C)
- 813 Immunofluorescence analysis of AID14 and AID15 cells prepared in the absence (-) or
- 814 presence (+) of IAA. Ki-67 and hCAP-H/H2 were detected by the fluorescence of
- 815 mClover and mCherry, respectively, fused to their C-terminal ends. Topo IIa were
- 816 detected with indirect immunofluorescence (IF) using a specific antibody. DNA was
- 817 counterstained with Hoechst 33342. The areas indicated by the white squares are
- 818 4.2-times enlarged and shown on the bottom. (D) Representative images of mitotic
- 819 chromosomes formed in AID14 and AID15 treated with IAA. Scale bars, 10 μm.
- 820

821 Figure S2. FRAP analysis of Ki-67 in the presence or absence of SMC2. (A)

- 822 Schematic diagram of the cell preparation protocol. AID14 cells were transfected with
- 823 control siRNA (siControl) or siRNA against SMC2 (siSMC2) twice, the first time at
- time 0 by a reverse transfection method and the second time at 24 h by a forward
- transfection method, and then processed for synchronization into mitosis. Thymidine (2
- 826 mM), RO-3306 (10 μ M), Hoechst 33342 (100 ng/ml), and STLC (10 μ M) were added
- 827 and/or washed out at the indicated time points. (B-E) FRAP on Ki-67-mACl in AID14
- 828 transfected with siControl (B-C) or siSMC2 (D-E). (B, D) Representative image sets.

Takagi et al.

829	The areas marked with red dashed circles were bleached. Time relative to the bleach
830	point are indicated. (C, E) Recovery curves of Ki67-mACl fluorescence. Data from
831	single cells were draw in grey. Thick curves and bars display mean ±SD. In AID14
832	transfected with siControl, Ki-67-mACl was highly mobile showing \sim 92% recovery in
833	240 s after bleaching, a result consistent with the previous observation on EGFP-Ki-67
834	transiently expressed in HeLa cells (Saiwaki et al., 2005). In AID14 transfected with
835	siSMC2, depletion of SMC2 was indirectly monitored by the disappearance of
836	hCAP-H-mACh fluorescence from mitotic chromosomes. We found that the FRAP of
837	Ki-67-mACl in the condensin-depleted cells was indistinguishable from that observed
838	in the control cells. Scale bars, 10 μm.
839	
840	Figure S3. Rapid loss of the structural integrity of mitotic chromosomes in cells
840 841	Figure S3. Rapid loss of the structural integrity of mitotic chromosomes in cells devoid of both Ki67 and SMC2 even after their assembly is complete. (A)
841	devoid of both Ki67 and SMC2 even after their assembly is complete. (A)
841 842	devoid of both Ki67 and SMC2 even after their assembly is complete. (A) Schematic diagram of the cell preparation protocol. Thymidine (2 mM), DOX (2 μg/ml),
841 842 843	devoid of both Ki67 and SMC2 even after their assembly is complete. (A) Schematic diagram of the cell preparation protocol. Thymidine (2 mM), DOX (2 μg/ml), RO-3306 (10 μM), STLC (10 μM), Hoechst 33342 (100 ng/ml), and IAA (0.5 mM)
841 842 843 844	devoid of both Ki67 and SMC2 even after their assembly is complete. (A) Schematic diagram of the cell preparation protocol. Thymidine (2 mM), DOX (2 μ g/ml), RO-3306 (10 μ M), STLC (10 μ M), Hoechst 33342 (100 ng/ml), and IAA (0.5 mM) were added and/or washed out at the indicated time points. AID-tagged proteins are
841 842 843 844 845	devoid of both Ki67 and SMC2 even after their assembly is complete. (A) Schematic diagram of the cell preparation protocol. Thymidine (2 mM), DOX (2 μ g/ml), RO-3306 (10 μ M), STLC (10 μ M), Hoechst 33342 (100 ng/ml), and IAA (0.5 mM) were added and/or washed out at the indicated time points. AID-tagged proteins are subjected to proteasome-mediated degradation upon the treatment of cells with IAA.
841 842 843 844 845 846	devoid of both Ki67 and SMC2 even after their assembly is complete. (A) Schematic diagram of the cell preparation protocol. Thymidine (2 mM), DOX (2 μ g/ml), RO-3306 (10 μ M), STLC (10 μ M), Hoechst 33342 (100 ng/ml), and IAA (0.5 mM) were added and/or washed out at the indicated time points. AID-tagged proteins are subjected to proteasome-mediated degradation upon the treatment of cells with IAA. (B-C) AID35 cells, HCT116-based cells expressing Ki-67-mACl and SMC2-mACh,
841 842 843 844 845 846 847	devoid of both Ki67 and SMC2 even after their assembly is complete. (A) Schematic diagram of the cell preparation protocol. Thymidine (2 mM), DOX (2 μ g/ml), RO-3306 (10 μ M), STLC (10 μ M), Hoechst 33342 (100 ng/ml), and IAA (0.5 mM) were added and/or washed out at the indicated time points. AID-tagged proteins are subjected to proteasome-mediated degradation upon the treatment of cells with IAA. (B-C) AID35 cells, HCT116-based cells expressing Ki-67-mACl and SMC2-mACh, were filmed at 10-min intervals over 100 minutes. In the cell #1 (B), Ki-67-mACl and

Takagi et al.

- 852 Shown here are representative image sets out of more than eight image sets captured.
- 853 Scale bars, $10 \,\mu m$.

854

- 855 Figure S4. Behavior of chromosomal and non-chromosomal markers in cells devoid
- **of SMC2.** AID30 cells were prepared in the absence (-) or presence (+) of IAA
- 857 according to the protocol depicted in Figure 2 A, and processed for
- immunofluorescence using antibodies against α -tubulin (A), Hec1 (B), topo II α (C), or
- 859 α-tubulin and Hec1 (D). Ki-67 and SMC2 were detected via the fluorescence of
- 860 mClover and mCherry, respectively, fused to their C-terminal ends. DNA was
- 861 counterstained with Hoechst 33342. (D) The area indicated by the white square is
- enlarged four times and shown on the right. Note that, in the absence of SMC2,
- 863 microtubules (green) were bundled and Hec1 (red) was localized along the microtubule
- bundles. Scale bars, 10 µm.

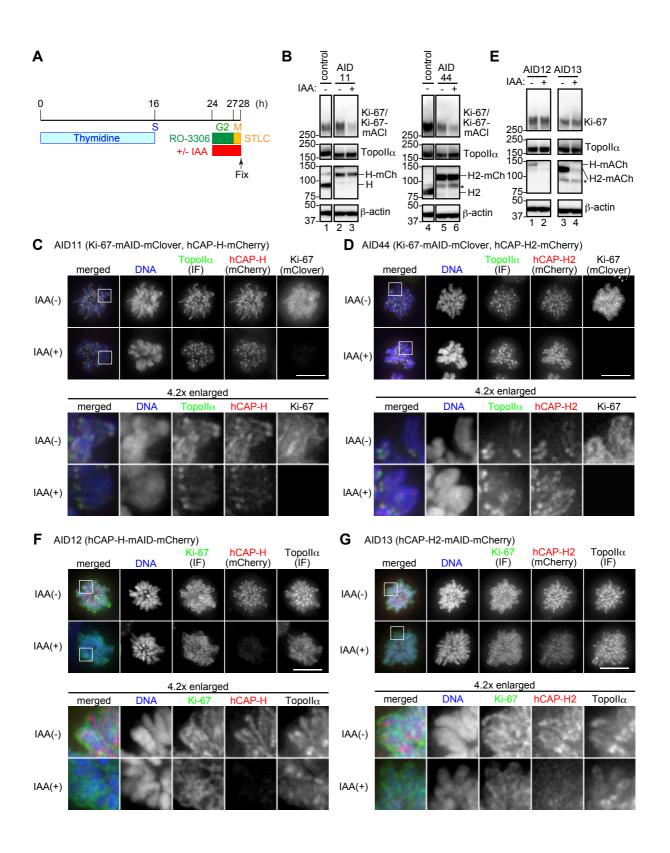
865

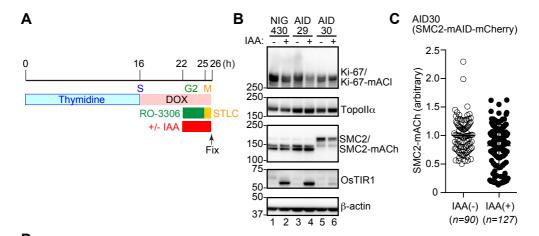
- of both Ki-67 and SMC2. AID35 cells were treated in the absence (-) or presence (+)
- 868 of IAA according to the protocol depicted in Figure 2 A, and processed for
- immunofluorescence using antibodies against CENP-A (A), CENP-I/hMis6 (B), BubR1
- 870 (C), or α -tubulin and Hec1 (D). Mouse anti-CENP-A monoclonal antibody (3-19,
- 871 MBL) was used at 1:200 dilution in combination with goat anti-Mouse IgG (H+L),
- 872 Alexa Fluor 647 (Thermo Fisher Science). Rat anti-CENP-I/hMis6 polyclonal antibody

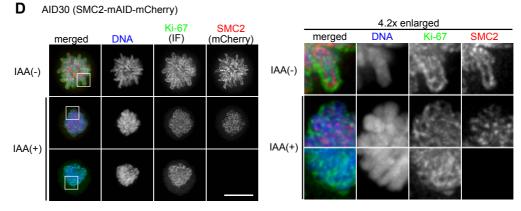
⁸⁶⁶ Figure S5. Behavior of centromere/kinetochore-associated proteins in cells devoid

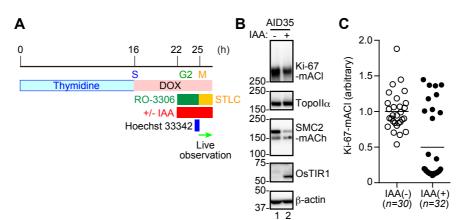
Takagi et al.

873	(PD032, MBL) was used at 1:100 dilution in combination with goat anti-Rat IgG (H+L),
874	Alexa Fluor 647 (Thermo Fischer Science). Mouse anti-BubR1 monoclonal antibody
875	(8G1, MBL) was used at 1:400 dilution in combination with goat anti-Mouse IgG
876	(H+L), Alexa Fluor 647 (Thermo Fisher Science). Ki-67 and SMC2 were detected by
877	the fluorescence of mClover and mCherry, respectively, fused to their C-terminal ends.
878	DNA was counterstained with Hoechst 33342. Note that a certain amount of
879	CENP-I/hMis6 was detected on the surface of mitotic chromosomes (B). (D) The area
880	indicated by the white square is enlarged four times and shown on the right. Note that,
881	in the absence of both Ki-67 and SMC2, microtubules (green) were bundled and Hec1
882	(red) was localized along the microtubule bundles. Scale bars, 10 μm for A-C and 2.5
883	μ m for D. (E) A model for the collapse of mitotic chromosome architecture upon
884	degradation of both Ki-67 and SMC2 in STLC-treated cell. Paired sister mitotic
885	chromosomes in control cells are shown in single ovoid with one kinetochore (black
886	dot) for simplicity. The force exerted on kinetochores is depicted by the blue arrows.
887	Upon depletion of Ki-67 (green), chromosomes come to closer and start to interfere
888	mutually (depicted with red bidirectional arrows). Microtubules (black lines) display
889	radial array even in the absence of Ki-67. Upon depletion of SMC2, the chromosome
890	architecture is disturbed but not collapsed completely. At the same time, microtubules
891	lose the symmetric array and become bundled, and the fashion of microtubule
892	attachment to kinetochore appears to be changed from "end-on" to "lateral". Under the
893	condition where the effects of Ki-67- and SMC2-depletions are overlapped, the
894	architecture of mitotic chromosome is severely collapsed. We speculate that the

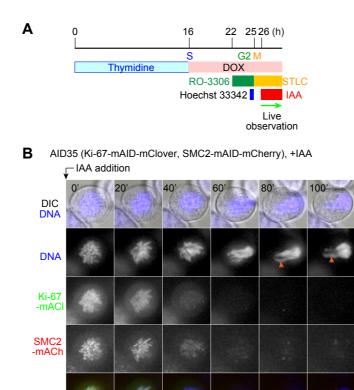

42


Takagi et al.

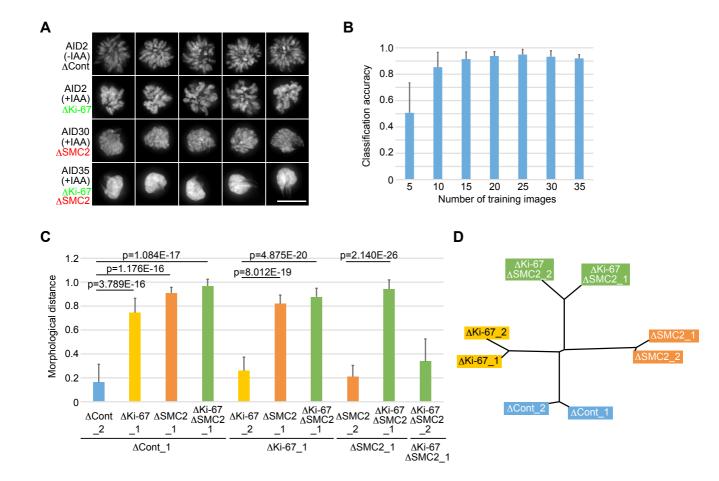

kinetochores along bundled microtubules. Kinetochores are denoted by two different
symbols (filled or hollow circles) to express the difference in their properties. Whereas
kinetochores denoted by filled circles can establish the end-on attachments of
microtubules, kinetochores denoted by hollow circles tend to establish the lateral
attachment to microtubules.
Table S1. AID cell lines used in this study. A panel of cell lines, collectively called
AID cells, were generated from HCT116 cells via successive CRISPR/Cas9-mediated
genome editing as described previously (Natsume et al., 2016). Briefly, as the first step,
the constitutive or doxycycline-inducible expression unit of OsTIR1 was integrated in
the AAVS1 locus of the HCT116 genome to generate cells called NIG272 or NIG430,
respectively. In these cells, cassette sequences encoding variable tags were knocked-in
immediately upstream of the stop codons of genes to be analyzed. Hyg; hygromycin,
Neo; neomycin.
Table S2. Primers used for genomic PCR.
Table S3. Antibodies used in this study.


914

43


D AID35 (Ki-67-mAID-mClover, SMC2-mAID-mCherry), -IAA

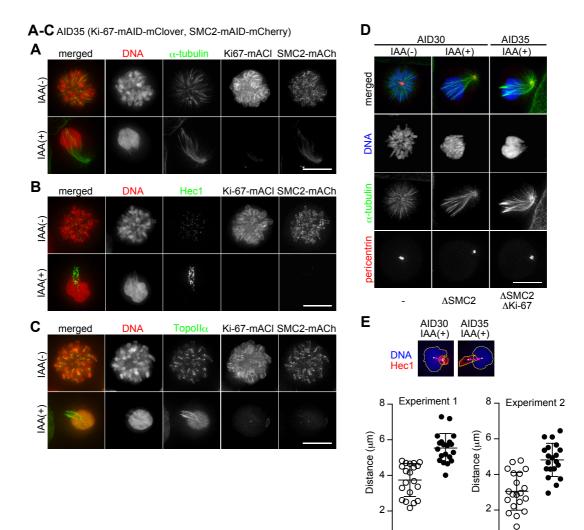
DIC	-30'	-20'	-10'	0'	10'	20'	30'	40'
merged	*		-	and the second s	No.	W.	A.C.	A. C.
DNA				and a	No.			
Ki-67 -mACI	*				S.M.	A. S.		
SMC2 -mACh				A.S.	and the	A.		

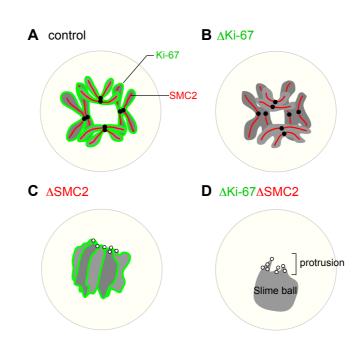

E AID35 (Ki-67-mAID-mClover, SMC2-mAID-mCherry), +IAA

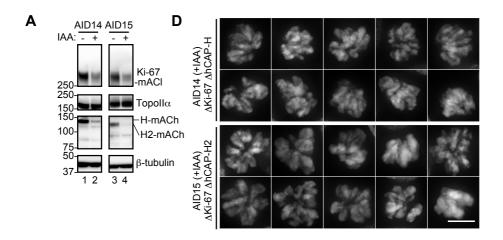
DIC	-30'	-20'	-10'	0,	10'	20'	30,	40'
merged	all and		(Carlor)	all a	67.0		1	-
DNA				34	6ta		e	-
Ki-67 -mACI								
SMC2 -mACh								

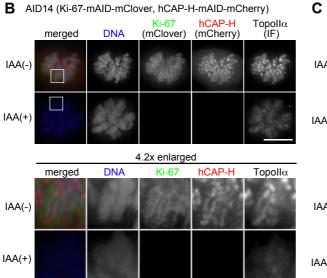
Takagi et al. Figure 4

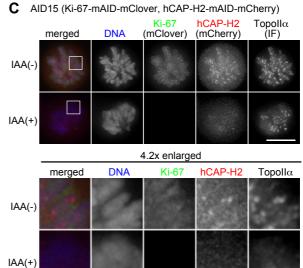
merged

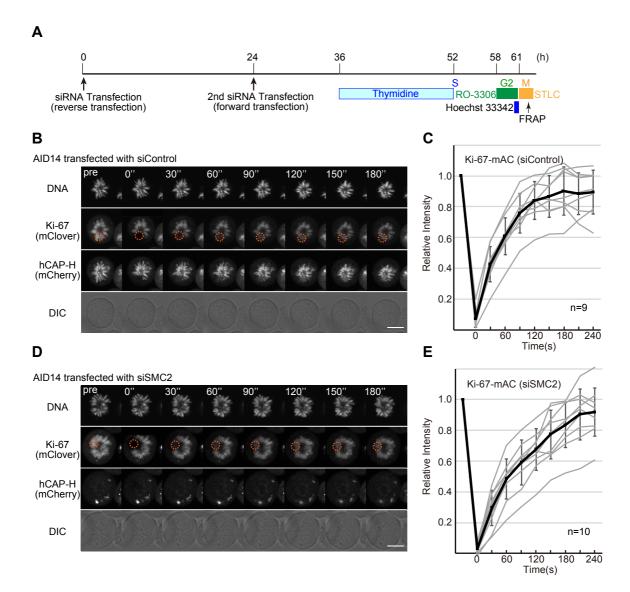

Takagi et al. Figure 6

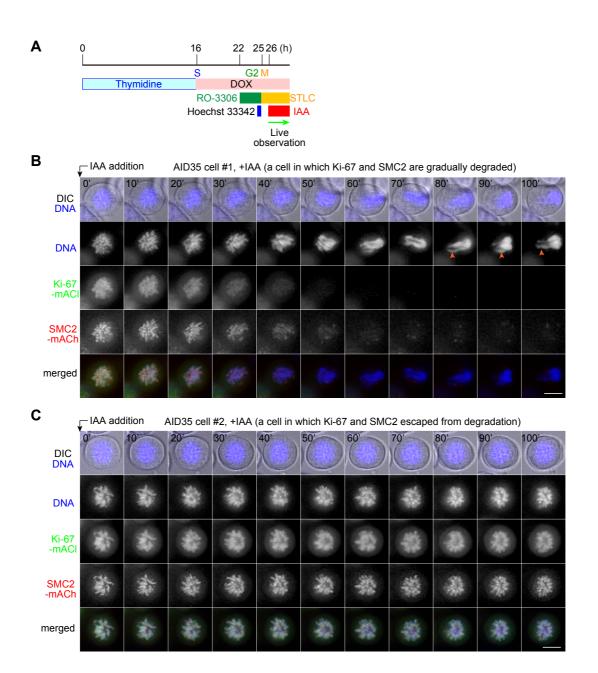

0

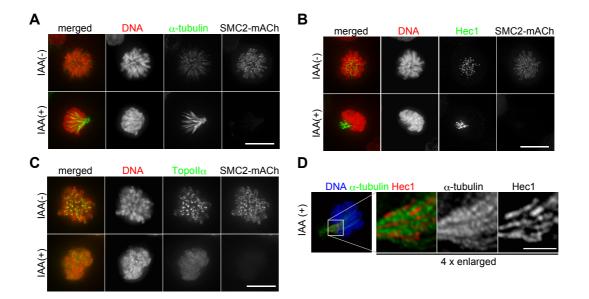

AID30 AID35 IAA(+) IAA(+)


0


AID30 AID35 IAA(+) IAA(+)







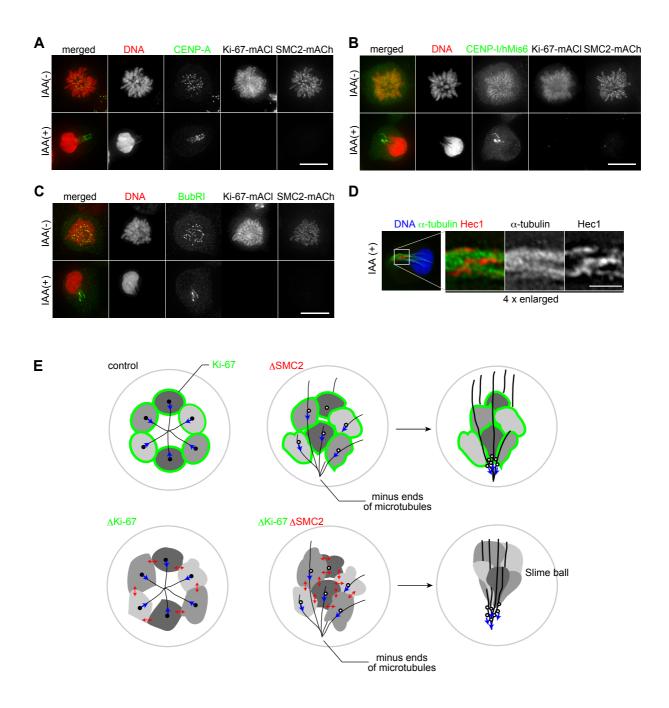


Table S1.
AID
cells
used
ii.
this
study

ting as described	yenome edit	-mediated (A series of cells, collectively called AID cells, were generated from HCT116 cells via successive uses of CISPR/Cas9-mediated genome editing as described	ls via suc	ו HCT116 cel	nerated from	were ge	lled AID cells,	lectively ca	of cells, coll	A series
tills study	1001	& pMT695	& AGGAGCCGTGTGTCTGCTCC	NCO			- Iyg		N-07		
this study	DMT697	pMT694	TGAGTGGGGGGGCACCGAGGC	Neo	mCherry	HCAP-HS	Hva	mAID-mClover	K1-67		
this study	pMT680	pMT678	AACTTGCACATGTGCTCCTT	Neo	mAID-mCherry	SMC2	Hyg	mAID-mClover	Ki-67	AID29	AID35
this study	pMT680	pMT678	AACTTGCACATGTGCTCCTT				Neo	mAID-mCherry	SMC2	NIG430	AID30
this study	pMT670	pMT671	TTTGACAGAAAAATCGAACT				Hyg	mAID-mClover	Ki-67	NIG430	AID29
		& pMT695	& AGGAGCCGTGTGTCTGCTCC	TROO			- 175				
this study	nMT698	pMT694	TGAGTGGGGAGCACCGAGGC	Neo	hCAP-H2 mAID-mCherry	hCAP-H2	Ηνσ	mAID-mClover	Ki-67	AID?	AID15
this study	pMT696-1	pMT691	CAAGGAGATTGAGTTCACTA	Neo	hCAP-H mAID-mCherry	hCAP-H	Hyg	mAID-mClover	Ki-67	AID2	AID14
		& pMT695	& AGGAGCCGTGTGTCTGCTCC								
this study	nMT698	pMT694	TGAGTGGGGAGCACCGAGGC				Neo	hCAP-H2 mAID-mCherry	hCAP-H2	NIG979	
this study	pMT696-1	pMT691	CAAGGAGATTGAGTTCACTA				Neo	hCAP-H mAID-mCherry	hCAP-H	NIG272	AID12
this study	pMT692	pMT691	CAAGGAGATTGAGTTCACTA	Neo	mCherry	hCAP-H	Hyg	mAID-mClover	Ki-67	AID2	AID11
Takagi et al. (2016)	pMT670	pMT671	TTTGACAGAAAAATCGAACT				Hyg	mAID-mClover	Ki-67	NIG272	AID2
Nelelelice	Construct	Contstruct	Galae Mind taiget sequence	Marker	- 200	Gelle	Marker	- ag	Qelle	ancester	
Dofotopoo	Knock-in	Targeting	Cuido DNA taxant pogunaso	Selection	Toa	0	Selection	Taa	Cono.	Immedeate	
					Target #2			Target #1			

previously (Natsume et al., 2016). Briefly, as the first step, the constitutive or doxycycline-inducible expression units of OsTIR1 was integrated in the AAVS1 locus of the HCT116 genome to generate cells called NIG272 or NIG430, respectively. In these cells, cassette sequences encoding variable tags were knocked in immediately upstream of the stop codons of genes to be analyzed. Hyg; hygromycin, Neo; neomycin.

bioRxiv preprint doi: https://doi.org/10.1101/202390; this version posted October 12, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Table S2. Primers used for the genomic PCR

Cell lines	Primer 1	Primer 2
AID12 and AID14	CCATT CCCTC TTATT TGACT (P819)	TTCAA GTAGT CGGGG ATGTC (P786)
AID13 and AID15	CCTTT GACAT CACAC CTAT (P808)	GTACT TTGGC TTCAC TCACT (P790)
AID29	GGACC TGCAT AATAC CTAGT AA (P708)	CCCAG CAAAT CCAAA GTTTT C (P709)
AID30 and AID35	CTTAA GTTCA TTGTG GTGTC (P739)	TCTGT TTCCT ATCTC AGTCT (P738)

bioRxiv preprint doi: https://doi.org/10.1101/202390; this version posted October 12, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

	(3016) lo to to como		no WD: montour blotting SOno		
1:2,000	1:1,000	1C5	MBL	mouse	topoisomerase llα
1:1,000		ab10412	Abcam	rabbit	SMC2
	1:1:000	ab4448	Abcam	rabbit	pericentrin
1:1,000			¶ Kanemaki lab	rabbit	OsTIR1
	1:500	NA-59	Merck Millipore	mouse	Ki-67
1:1,000	1:200	sc-15402	Santa Cruz	rabbit	Ki-67
	1:1,000	9G3	GeneTex	mouse	HEC1
$1 \ \mu g/ml$		AfR205-4L	§ Hirano lab	rabbit	hCAP-H2
1:1,000		11515-1	ProteinTech	rabbit	hCAP-H/NCAPH
	1:100	PD032	MBL	rat	CENP-I/hMis6
	1:200	3-19	MBL	mouse	CENP-A
	1:400	8G1	MBL	mouse	BubR1
	1:10,000	DM1A	Sigma-Aldrich	mouse	α-tubulin
1:5,000		AC-15	Sigma-Aldrich	mouse	β-actin
WB dilution	IF dilution	#Catalog or clone name	Manufacturer or provider	Species	Antigen

Table S3. Antibodies used in this study

IF; immunofluorescence, WB; western blotting. § Ono et al. (2003). ¶ Natsume et al. (2016).

bioRxiv preprint doi: https://doi.org/10.1101/202390; this version posted October 12, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.