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Abstract 
The hair-cell mechanotransduction channel remains unidentified. We tested whether four transient 
receptor channel (TRP) family members, TRPV5, TRPV6, TRPM6, and TRPM7, participated in 
transduction. Using cysteine-substitution mouse knock-ins and methanethiosulfonate reagents selective 
for those alleles, we found that inhibition of TRPV5 or TRPV6 had no effect on transduction in mouse 
cochlear hair cells. TRPM6 and TRPM7 each interacted with the tip-link component PCDH15 in cultured 
eukaryotic cells, which suggested they could participate in transduction. Cochlear hair cell transduction 
was insensitive to shRNA knockdown of Trpm6 or Trpm7, however, and was not affected by 
manipulations of Mg2+, which normally perturbs TRPM6 and TRPM7. To definitively examine the role 
of these two channels in transduction, we showed that deletion of either or both of their genes selectively 
in hair cells had no effect on auditory function. We suggest that TRPV5, TRPV6, TRPM6, and TRPM7 
are unlikely to be the pore-forming subunit of the hair-cell transduction channel. 

Introduction 
A central mystery in auditory neuroscience is the identity of the molecules making up the pore of the hair 
cell’s transduction channel, a cation-selective channel that responds to mechanical stimuli and produces a 
receptor potential in the cell. Transduction channels are gated by tension in tip links, thin extracellular 
filaments made from the cadherins CDH23 and PCDH15 (Siemens et al., 2004; Sollner et al., 2004; 
Alagramam et al., 2011). PCDH15 is located at the base of the tip link (Kazmierczak et al., 2007), where 
the transduction channel is located (Beurg et al., 2009); indeed, PCDH15 may bind directly to the 
transduction channel (Powers et al., 2012). The ion channel HCN1 has been reported to bind to PCDH15 
(Ramakrishnan et al., 2009; Ramakrishnan et al., 2012), but Hcn1 knockouts have normal hearing 
(Horwitz et al., 2010). By contrast, strong evidence suggests that the channel complex contains the 
transmembrane proteins TMC1 and TMC2 (Kawashima et al., 2011; Pan et al., 2013), TMIE (Zhao et al., 
2014), and LHFPL5 (Xiong et al., 2012); moreover, PCDH15 interacts with both TMC1 and TMC2 
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(Maeda et al., 2014; Beurg et al., 2015).  Nevertheless, evidence that any of these proteins contributes 
directly to the ion-permeation pathway is lacking.  

Because they carry out a wide variety of cellular functions, including sensory transduction, the 33-member 
transient receptor potential (TRP) family might well contain the transduction-channel pore molecule 
(Venkatachalam and Montell, 2007; Zanini and Göpfert, 2014). Many TRP channels are present in the 
inner ear; a comprehensive quantitative RT-PCR investigation of TRP channel expression during cochlear 
development detected transcripts for 30 different TRP genes (Asai et al., 2010). Several TRP channels 
have been advanced specifically as candidates for the transduction channel, but all evidence so far has 
ruled out these candidates (Fettiplace and Kim, 2014).  

Our preliminary evidence raised the possibility that TRPV5, TRPV6, TRPM6, or TRPM7 might be part 
of the transduction channel. TRPV channels play key roles in transduction in fly mechanoreceptors (Gong 
et al., 2004; Kernan, 2007; Lehnert et al., 2013; Zhang et al., 2013). As they are highly selective for Ca2+ 
(Owsianik et al., 2006), TRPV5 and TRPV6 are less likely as candidates for the transduction channel than 
other channels; nevertheless, the transduction channel’s permeability and conductance can change 
substantially depending on other components expressed (Xiong et al., 2012; Beurg et al., 2015). TRPM7, 
a member of the melanostatin subfamily, has been implicated in mechanosensation (Bessac and Fleig, 
2007; Numata et al., 2007a; Numata et al., 2007b; Wei et al., 2009; Xiao et al., 2015). TRPM7 and its 
closely related paralog TRPM6 uniquely possess a C-terminal kinase domain; these channels are thought 
to regulate Mg2+ homeostasis as well as cell death, proliferation, differentiation, and migration (Chubanov 
and Gudermann, 2014; Fleig and Chubanov, 2014). Trpv5, Trpv6, Trpm6, and Trpm7 transcripts were all 
detected in cochlea (Asai et al., 2010); Trpm6 levels increased during development, Trpv6 and Trpm7 
decreased, and Trpv5 was seen in only a fraction of the samples. Both Trpm6 and Trpm7 were detected in 
a cochlear cDNA library using conventional PCR, but Trpv5 and Trpv6 were not (Cuajungco et al., 2007).  

Because the cysteine-substitution mutations in TRPV5 (S556C) and TRPV6 (M527C) render these 
channels sensitive to methanethiosulfonate (MTS) reagents, we generated S556C-Trpv5 and M527C-
Trpv6 knock-in mice. Mechanotransduction was insensitive to MTS reagents, however, in both 
heterozygote and homozygote hair cells from these lines. Similarly, mechanotransduction in hair cells was 
not affected by conditions that should alter TRPM6 or TRPM7 function, and conditional deletion of the 
Trpm6 and Trpm7 genes in hair cells did not affect auditory function. We suggest that TRPV5, TRPV6, 
TRPM6, and TRPM7 should be added to the long list of ion channels that have been shown to not be part 
of the transduction channel (Horwitz et al., 2010).  

Materials and Methods 
Animal research 
This study was carried out in compliance with the Animal Welfare Act regulations and the Office of 
Laboratory Animal Welfare—Public Health Service Policy on Humane Care and Use of Laboratory 
Animals. Protocols were approved by the Institutional Animal Care and Use Committees (IACUC) of 
Oregon Health & Science University, Stanford University, and Scripps Research Institute. 

Generation of mouse lines 
For M527-Trpv5, we generated a targeted construct that contained (5’ to 3’) a short homology arm (1.8 
kb) with an added loxP-flanked neomycin resistance cassette, exon 13 including the codon encoding M527 
to a cysteine and an introduced ScaI site for screening, a long homology arm (5.3 kb), and a diphtheria 
toxin cassette. The targeting construct was linearized with XhoI for electroporation into ES cells. 
Screening was carried out on the 5’ and 3’ arms using PCR, with TOPO-cloning of PCR products to verify 
that the correct genomic DNA region was targeted. Mice were generated from the correctly-targeted ES 
cells by the University of Cincinnati Gene-Targeted Mouse Service. After blastocyst injections, founders 
were identified by coat color chimerism and were bred to C57BL/6 mice for >6 generations. Mice were 
genotyped using PCR, with AAATGGGAACCAGATTCATCTCA as the forward primer and 
ACTATACAAAAGGGTAACCTACCCACA as the reverse primer. The amplified samples were 
digested with BamHI (the knock-in removes a BamHI site) and analyzed by electrophoresis. 
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For S556C-Trpv6, we generated a targeted construct that contained (5’ to 3’) a diphtheria toxin cassette, 
a long homology arm (5.2 kb), exon 13 including the codon encoding the S556C alteration and an 
introduced AvrII site for screening, and a short homology arm (1.65 kb) with an added loxP-flanked 
neomycin resistance cassette. Screening of targeted ES cells was carried out using Southern blotting with 
5’ and 3’ probes, and targeted mice were generated, screened, and bred as above. Mice were genotyped 
using PCR, with CCAGTGTCTCATGCTTATATCC as the forward primer and 
TAGATGTCATGAAGATTAAAGG as the reverse primer. The amplified samples were digested with 
ScaI (the knock-in adds a ScaI site) and analyzed by electrophoresis. 

We obtained Trpm6tm1a(KOMP)Wtsi ES cells from the UC Davis KOMP repository (clones EPD0741_2_G10 
and EPD0741_2_G11). After blastocyst injections, founders were identified by coat color chimerism and 
targeting was verified by PCR analysis. Founders were bred to C57BL/6, and the FRT-neo cassette was 
removed by crossing with the Flp deleter line B6;SJL-Tg(ACTFLPe)9205Dym/J (Jackson Laboratories). 
PCR was used to verify loss of the cassette. These mice were referred to as Trpm6fl. To produce Trpm6CKO 
mice, we used the Atoh1-Cre mouse line (Matei et al., 2005), which recombines floxed genes in hair cells 
with >99% efficiency (Avenarius et al., 2017). Floxed mice were genotyped using PCR, with 
GCTCCTCAGGGTTCCTCCAGTCTGT as the forward primer and 
GCAAGGACAAGAGGGCGTCAGAGC as the reverse primer. The amplified samples were analyzed by 
electrophoresis; a wild-type allele produces a band of 670 bp, while the floxed-allele band is 833 bp. 

We generated a mouse allele with the putative ion-conductance pore of Trpm7 flanked by loxP sites. The 
5’ arm (4948 bp) was PCR-amplified using a forward primer that introduced an ApaI site 
(GCGGGGCCCTGGGTGATTGACATTTCATTCCAAGT) and a reverse primer that introduced a SalI 
site (GCGGTCGACTGTCAACTAGCAATGGAAATGCAGACTT). This fragment was introduced into 
the pBS-FRT-Neo-FRT plasmid. The 3’ arm (2987 bp) was PCR-amplified using the forward primer 
GCGCTCGAGGTGTATATAAGAATTGTCTCAGGATAGT and reverse primer 
GCGCCGCGGCCTCTTATCCTGTTTCTCTACATGTGT. A separate middle piece was prepared as a 
SalI/NotI fragment flanked by loxP sites; it was PCR-amplified using the forward primer 
GCGGTCGACGGTTTTGCCTTATATTTGCAAGGCATA and reverse primer 
GCGGCGGCCGCCCATTACCATCATTCCTTGAAGTGGCTTT. The middle piece was cloned into the 
5’ arm vector at SalI and NotI sites; the 3’ arm was then cloned into this latter piece (5’ and middle). 
Founders were bred to C57BL/6, and the FRT-neo cassette was removed as above (producing Trpm7fl 
mice). Trpm7CKO mice were generated with Atoh1-Cre as above. Floxed mice were genotyped using PCR, 
with CCATACTGGATGATTTTTGGTGAAGTTTATGCA as the forward primer and 
CACAAACAAGGAAGGGAAGAGTTTTAATATCCA as the reverse primer. The amplified samples 
were analyzed by electrophoresis; a wild-type allele produces a band of 514 bp, while the floxed-allele 
band is 633 bp. 

Heterologous expression in HEK cells and immunoprecipitation 
For coimmunoprecipitation assays, we used HEK293T cells grown in six-well tissue culture plates. Cells 
were transfected with Effectene transfection reagent (Qiagen, #301425) by preparing the DNA complex 
according to the manufacturer’s suggested protocol in PCR tubes, then adding the DNA complex to the 
cells. Cells were harvested at 48 hr, centrifuged briefly (16,000g for 5 sec), and the supernatant removed. 
To the pellet, 300 µl of cold lysis buffer containing PBS, 1% Triton X-100, 0.5% NP-40, and protease 
inhibitor cocktail (Sigma, #P8340) was added, and the cells were then sonicated on ice using a tip sonicator 
(Ultracell Sonicator, Sonics) set at 25% power. The lysate was then centrifuged at 16,000 g for 20 min at 
4°C, and the supernatant was separated from the pellet. A total of 10 µl of HA agarose (Sigma, #A2095, 
20 µl slurry) was added and the mixture was rotated overnight at 4°C. The immunoprecipitate mixture 
was centrifuged at 16,000 g for 1 sec, then washed 2x with 300 µl lysis buffer and 1X with PBS. After the 
washes, 32 µl of 2x SDS sample buffer (Invitrogen) was added to the agarose beads, and the mixture was 
incubated for 10 min at 70°C. The agarose beads were removed using a spin filter (Costar #8163), and 
5 µl of 10x reducing agent (Invitrogen, #NP0007) was added to the protein solution. The mixture was 
again incubated at 70°C for 10 min. The protein samples were separated on a 3-8% Tris-acetate gel 
(Invitrogen, #EA03755BOX) for 30-40 min. Proteins in the gel were then transferred to PVDF membrane 
(Millipore, #IPVH00010) using a semi-dry setup (Bio-Rad, Transblot SD). Towbin buffer (25 mM Tris, 
192 mM glycine, pH 8.3) with 10% MeOH and without SDS were used as transfer buffer. After 
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transferring for 40-50 min, the blot was washed 1x in PBS and blocked in blocking buffer (PBS containing 
10% FBS, 0.1% Tween) for 30 min, during which primary antibody were diluted in blocking buffer 
(1:1000) and incubated at room temperature for 10-20 min. The blot was incubated with primary antibody 
for 2 hr at room temperature. After washing the blot, HRP-coupled secondary antibody, diluted 1:100 in 
blocking buffer, was incubated with the blot for 30 min. After washing, SuperSignal West Pico 
Chemiluminescent Substrate (Pierce, #34077) was used for detection.  

Anti-HA agarose or anti-V5 agarose (Sigma, #A7345) were used to pull down the HA-tagged TRP 
channels. In the case of PCDH15 pull down, we used 10 µg of PB811, a rabbit antibody against PCDH15 
(Kazmierczak et al., 2007), or 10 µg of anti-HRP antibody (Jackson Immunoresearch) with 10 µl of 
Ultralink immobilized protein A (Pierce, #53139). For protein immunoblotting, PCDH15 was detected 
with PB811, TRP channels were detected with monoclonal anti-HA antibody (Applied Biological 
Materials, #G036).  

Mouse hair-cell mechanotransduction: Trpv5 and Trpv6 experiments  
For tissue preparation, organ of Corti explants from the mid apex region were dissected from mice of 
either sex at ages P6-P9. The tissue was placed into the recording chamber and held in place with single 
strands of dental floss. A bath perfusion and an apical perfusion pipette (50 µm diameter) was placed into 
the chamber and external solution was perfused over the tissue. The external solution contained (in mM) 
140 NaCl, 2 KCl, 2 CaCl2, 2 MgCl2, 10 (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (HEPES), 
6 glucose, 2 pyruvate, and 2 creatine, and was balanced to a pH of 7.4 and osmolality of 300-310 osmol/l. 
After turning off apical perfusion for up to 30 minutes, inhibitors (MTSET or MTSES) were applied by 
hand while recording mechanotransduction (MET) currents. Inhibitors were aliquoted into single use 
samples and kept frozen until a recording was obtained. The inhibitor was put into solution and rapidly 
applied to the recording chamber within 1 min of dissolving to avoid any breakdown of the compound. 
Bath flow was turned on after 30 minutes of recording from a given cell. Only one cell was recorded per 
mouse and recordings were done blindly to animal genotype.   

Electrophysiological recordings from hair cells were recorded as previously described (Peng et al., 2016). 
Thick-walled borosilicate patch pipettes, (2.5-3.5 MΩ) were used to establish whole-cell recordings from 
inner hair cells. The internal solution contained (in mM) 125 CsCl, 10 HEPES, 1  1,2-bis(o-
aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA), 5 ATP, 5 creatine phosphate, and 3.5 MgCl2; 
the pH was adjusted to 7.0 and osmolality 290-295 osmol/l. An Axopatch 200b amplifier was used to 
control electrode voltage and monitor current. The amplifier was controlled via JClamp software coupled 
to an IOtech interface. Recordings were included for data analysis if MET current amplitudes were stable 
prior to drug application and if the leak currents were less than 100 pA. For 70 cells recorded, the 
uncompensated series resistance was 14.6 ± 7 MΩ and capacitance was 5.8 ± 0.8 pF. Data were included 
for analysis only if the series resistance changed less than 10% during recording.  

Hair bundles were stimulated in either of two ways (Peng et al., 2016). A glass probe affixed to a piezo 
stack controlled by JClamp software was placed in the central region of the hair bundle. The tip was 
shaped to that of the angled outer hair cell bundle. Driving voltage was filtered at 3 kHz to limit piezo 
resonance. Hair bundles were also stimulated with fluid motion driven by a Picospritzer.  

Mouse hair-cell mechanotransduction: Trpm6 and Trpm7 experiments 
Whole cell recording were carried out on outer hair cells (OHCs) of either acutely isolated or cultured 
cochleae. Transducer currents were sampled at 100 KHz with a patch-clamp amplifier operated by 
Patchmaster 2.35 software (EPC10-USB, HEKA). The patch pipette was filled with an intracellular 
solution containing (in mM) 140 KCl, 1 MgCl2, 0.1 EGTA, 2 Mg-ATP, 0.3 Na-GTP and 10 H-HEPES, 
pH 7.2). For the magnesium test, MgCl2 was raised to 3 mM (3 Mg-SI) or removed (0 Mg-SI). The 
artificial perilymph contained (in mM): 144 NaCl, 0.7 NaH2PO4, 5.8 KCl, 1.3 CaCl2, 0.9 MgCl2, 5.6 
glucose, and 10 H-HEPES, pH 7.4. OHCs were clamped at -70 mV. Borosilicate glass with a filament 
(Sutter) was pulled with a pipette puller (P-97, Sutter), and polished to resistances of 3-5 MΩ with a 
microforge (MF-830, Narishige). Hair bundles were deflected with a glass pipette mounted on a 
piezoelectric stack actuator (P-885, Physik Instrument). The tip of the pipette was fire-polished to 4-6 µm 
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in diameter to fit the shape of OHC bundles. The actuator was driven with voltage steps that were low-
pass filtered at 10 KHz with an eight-pole Bessel filter (900CTF, Frequency Devices). 

Gene knockdown of cochlear hair cells 
OHCs were injectoporated with shRNAs against Trpm7 transcripts as previously described (Xiong et al., 
2014). In brief, the organ of Corti from P1 mice was cut into 3 pieces, then placed in DMEM/F12 medium 
containing 10% FBS and 1.5 µg/ml ampicillin. For electroporation, a glass electrode (2 µm diameter) was 
used to inject shRNA plasmid (pSicoR system, 0.5 µg/µl in 1x HBSS) into the cochlea, between the hair 
cells. A series of 3 pulses was applied at 1 sec intervals with a magnitude of 60V and a duration of 15 
msec by an electroporator (ECM 830, BTX). The tissues were cultured for 3 days in vitro (DIV). Before 
electrophysiological recording, the dish with organotypic cultures was changed to artificial perilymph. 
OHCs with shRNA expression were selected by GFP signal. 

Other methods  
Gene-gun transfection and visualization of fluorescence protein-tagged constructs was carried using an 
optimized procedure (Zhao et al., 2012). For biolistic transfection, mouse cochleas were dissected at P6, 
subjected to gene-gun transfection, and then cultured for 1 day. Surface biotinylation was carried out with 
NHS-LC-Sulfo-biotin (Elia, 2008). Shotgun mass spectrometry on immunoprecipitates was carried out 
using a Thermo Velos ion-trap mass spectrometer; peptides and proteins were identified using the PAW 
pipeline and SEQUEST searches (Wilmarth et al., 2009; Krey et al., 2014). ABRs were carried out as 
described (Schwander et al., 2007; Ebrahim et al., 2016). 

Results  
Evidence for role of TRPV5 and TRPV6 in transduction 
While localization of PCDH15 to stereocilia tips does not depend on USH1C (Lefevre et al., 2008), 
PCDH15 and USH1C can bind directly under some conditions (Adato et al., 2005; Reiners et al., 2005), 
suggesting that USH1C might couple the transduction channel to PCDH15 under some conditions. 
Sequences of 33 TRP channel genes were scanned for PDZ binding interfaces (PBIs); seven that had 
candidate PBIs were tested in yeast two-hybrid assay with USH1C as the bait (Fig. 1A). Of these, only 
TRPV6 interacted with USH1C (Fig. 1B). We carried out RT-PCR for Trpv6 transcripts and those for 
Trpv5, its close homolog, and found robust expression in vestibular tissues (Fig. 1C). Although 
immunocytochemistry experiments did not reliably detect either TRPV5 or TRPV6, the low levels of ion 
channels like TRP channels make them very difficult to detect. Together our data raised the possibility 
that TRPV6 interacts with USH1C in hair cells, thus making TRPV6 (and closely related TRPV5) a 
plausible transduction-channel candidate.  

MTS reagents do not affect transduction in S556C-Trpv5 and M527C-Trpv6 hair cells 
Individual knockouts of Trpv5 or Trpv6 had no reported effects on auditory or vestibular function 
(Hoenderop et al., 2003; Bianco et al., 2006). These two genes are closely linked on human chromosome 
7 or mouse chromosome 6 (Hoenderop and Bindels, 2008), so double knockouts cannot easily be created 
by breeding. To determine whether these channels participate in hair-cell transduction, we developed a 
method whereby inhibition of a single channel subunit should lead to a dominant-negative effect on the 
tetrameric channel (Voets et al., 2004a). Note that TRPV5 and TRPV6 can co-assemble into a single 
tetramer (Hellwig et al., 2005). We used cysteine-substitution mutagenesis to create Trpv5 and Trpv6 
alleles that were sensitive to MTS reagents. Residue-scanning experiments with cysteine substitution and 
MTS inhibition demonstrated that the S556C mutation rendered TRPV5 sensitive to sulfhydryl reagents 
(Dodier et al., 2004); similar experiments with TRPV6 identified M527C as a suitable mutation that 
created an MTS-sensitive allele (Voets et al., 2004a). We used standard gene-targeting methods to 
introduce mutations in the mouse genome that produced S556C-TRPV5 and M527C-TRPV6 expression 
(Fig. 2). 

S556C-Trpv5 and M527C-Trpv6 mice were viable and exhibited no apparent behavioral abnormalities as 
heterozygotes or homozygotes. Transduction currents of heterozygous S556C-Trpv5 and M527C-Trpv6 
hair cells under control conditions appeared normal in their amplitudes, kinetics, and adaptation (Fig. 
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3A,C). In wild-type mice, MTS reagents like MTSET and MTSEA had no effect on mechanotransduction 
in the absence of the sensitizing Trpv alleles (Fig. 3), which demonstrates the suitability of the cysteine-
substitution approach for probing the transduction channel.  

Unfortunately, treatment of S556C-Trpv5 or M527C-Trpv6 hair cells with 1 mM MTSET or MTSES, 
which inhibit TRPV5 or TRPV6 activity by >95% in tissue culture cells (Dodier et al., 2004; Voets et al., 
2004a), had no significant effects on mechanotransduction (Fig. 3). In the experiments illustrated in Fig. 
3A, hair cells were treated with MTSET applied in the external solution; no changes in the maximal 
transduction current were detected under these conditions for either wild-type or M527C-Trpv6 
heterozygotes over the course of the recording (Fig. 3B). S556C-Trpv5 heterozygote or homozygote hair 
cells were not inhibited by MTSET applied in the extracellular solution (data not shown). While the TRPV 
channels should be oriented in the membrane with the substituted residues exposed to the extracellular 
solution, there was a remote chance that the channels could be topologically flipped. We therefore also 
examined whether S556C-Trpv5 hair cells could be inhibited with the MTS reagent applied through the 
recording electrode (Fig. 3C-D). There was no difference in transduction current amplitude between wild-
type and S556C-Trpv5 hair cells, however, even after 20 min after establishment of the whole-cell 
recording configuration (Fig. 3D). 

TRPM6 and TRPM7 co-immunoprecipitate with PCDH15 in tissue-culture cells 
Based on its participation in mechanotransduction in other cell types, TRPM7 (and its close paralog 
TRPM6) is another plausible transduction channel candidate. We used heterologous expression of mouse 
proteins in HEK cells to investigate whether the TRPM channels can interact with PCDH15 (Fig. 4). We 
cloned full-length Trpm6 and Trpm7 from cDNA prepared from mouse inner ear, tagged them with the 
HA epitope tag, and co-expressed them with native, full-length PCDH15 in HEK293 cells. After 
solubilizing proteins and immunoprecipitating, when HA-tagged TRPMs were expressed, we could 
immunoprecipitate PCDH15 with anti-HA beads but not with negative-control anti-V5 beads (Fig. 4A). 
Likewise, immunoprecipitation with the anti-PCDH15 antibody PB811 selectively co-precipitated 
TRPM6 and TRPM7 (Fig. 4B). Co-expression of TRPM6 and TRPM7 consistently led to substantially 
more PCDH15 immunoprecipitated than with either alone (Fig. 4A). 

To demonstrate the selectivity of the interaction, we showed that a different cadherin, CDH2 (N-cadherin), 
was not immunoprecipitated with HA-tagged TRPM6 or TRPM7 (Fig. 4C), nor was PCDH15 
immunoprecipitated with HA-TRPC6, a different TRP channel (Fig. 4D). Co-expression was important; 
if HA-tagged TRPMs were expressed in separate samples from those of PCDH15 and the cell extracts 
were mixed, no PCDH15 was immunoprecipitated with HA-tagged TRPMs (data not shown). Deletion of 
the C-terminus of PCDH15 eliminated the interaction, but chimeras of PCDH15 and CDH2 that contained 
only the N-terminal extracellular domain of PCDH15 robustly co-precipitated TRPM6 and TRPM7 (Fig. 
4C). 

To determine whether any endogenous HEK proteins mediated the interaction between the TRPMs and 
PCDH15, we carried out a larger scale immunoprecipitation and subjected the final eluates to tandem 
mass spectrometry. When expressed by itself and immunoprecipitated by HA-agarose, no PCDH15 was 
detected in eluates. By contrast, when TRPM6 and TRPM7 were co-expressed with PCDH15, all three 
proteins were detected at high levels in the immune pellet eluates (Fig. 4F). Besides human heat shock 
protein cognate 71, no additional proteins co-immunoprecipitated at apparent stoichiometric levels, 
suggesting that the TRPM-PCDH15 interaction is direct.  

tdTomato-TRPM7 localizes to hair cell lateral membranes at the cell apex 
Localization of TRP channels by immunocytochemistry is generally unreliable (Gilliam and Wensel, 
2011). Instead, we generated a tdTomato-Trpm7 plasmid and transfected it into hair-cell progenitors at P6 
using gene-gun transfection. Transfection efficiency was poor, presumably because of the large size of 
the expression construct. We were able to identify several transfected cells using co-expressed ZsGreen, 
and found tdTomato signal that was largely localized to the lateral membranes of hair cells, close to the 
adherens junctions (Fig. 5A). While not detected in stereocilia, the location of tdTomato-TRPM7 close to 
the hair cell’s apical domain raised the possibility that small amounts of TRPM7 could be transported to 
stereocilia membranes. 
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Identification of a novel Trpm7 splice form in inner ear 
When cloning full-length Trpm6 and Trpm7 from cDNA prepared from mouse inner ear, we also identified 
novel splice forms that skipped exon 20 of each gene, which in both genes encodes transmembrane helix 
2 (TM2). Using RT-PCR analysis, we found that while the canonical Trpm7 splice form was expressed in 
all mouse tissues, while Dex27 (the Trpm7 splice form lacking exon 20) was restricted to inner ear, heart, 
and liver. Dex26 was expressed in a variety of tissues, including the inner ear.  

Interestingly, both DEX26 and DEX27 were readily expressed in HEK293 cells and were present on the 
cell surface, as assessed by a surface biotinylation assay (Fig. 6A). DEX26 and DEX27 both co-
immunoprecipitated PCDH15 as efficiently as the canonical splice forms (Fig. 6B), and could be co-
immunoprecipitated with the canonical forms. 

Mechanotransduction does not require Trpm7 
These results all suggested the possibility that TRPM6 or TRPM7 mediates mechanotransduction by hair 
cells. A characteristic of TRPM6 and TRPM7 conductances is that they are blocked by intracellular Mg2+ 
(Nadler et al., 2001; Voets et al., 2004b). Hair-cell transduction was not affected by manipulations of 
Mg2+, however; currents were identical if recorded in the presence of 0 or 3 mM intracellular MgCl2 in 
the internal solution (Fig. 7A).  

We also used a shRNA strategy with injectoporation (Xiong et al., 2014) to interfere with TRPM7 function 
in hair cells. We confirmed that our shRNAs reduced levels of TRPM7 in HEK293 cells. When cells were 
transfected with mouse Trpm7 in the absence of shRNAs, the outward current measured at 200 sec after 
establishment of the whole-cell recording configuration was 335 ± 22 pA. In cells transfected with mouse 
Trpm7 and shRNA TRPM7#1, the current at 200 sec was reduced to 65 ± 26 pA, approximately the same 
as cells transfected with GFP as a negative control.  

We used injectoporation (Xiong et al., 2014) to deliver shRNAs targeting Trpm7 to cochlear hair cells 
then measured mechanotransduction using whole-cell recording. Knockdown of Cdh23 using this 
paradigm profoundly reduced transduction in transfected cells (Xiong et al., 2014). By contrast, three 
different Trpm7 shRNAs each were without significant effect on transduction current amplitude (Fig. 7B). 

Trpm6CKO;Trpm7CKO double knockout mice have normal hearing  
To determine definitively whether TRPM6 or TRPM7 participate in hair-cell mechanotransduction, we 
produced Trpm6fl and Trpm7fl mice (Fig. 2) and expressed CRE recombinase in hair cells to delete 
essential exons for each gene. Global-null Trpm6Δ/Δ mice rarely survive past birth due to Mg2+ 
insufficiency (Walder et al., 2009; Woudenberg-Vrenken et al., 2011), and global-null Trpm7Δ/Δ mice have 
an embryonic lethality phenotype (Jin et al., 2008). We therefore used the Atoh1-Cre transgenic line to 
restrict Trpm6 and Trpm7 deletion to hair cells and a few other cell types (Matei et al., 2005; Pan et al., 
2012). Mice with both alleles recombined by CRE are referred to here as Trpm6CKO or Trpm7CKO. 

Trpm6CKO, Trpm7CKO, and Trpm6CKO;Trpm7CKO (double knockout, or DKO) mice were behaviorally 
normal, with no indication of gross auditory or vestibular disruption. We assessed auditory function using 
auditory brainstem response (ABR) measurements. While ABR thresholds at 32 kHz were slightly but 
significantly elevated for Trpm6CKO mice (Fig. 7C), thresholds were not statistically significant different 
for Trpm7CKO (Fig. 7D) or Trpm6CKO;Trpm7CKO DKO (Fig. 7E) mice as compared to controls at all 
frequencies. These results suggest that neither TRPM6 nor TRPM7 is a major contributor the 
mechanotransduction. 

Discussion 
Our experimental results suggest that TRPV5, TRPV6, TRPM6, and TRPM7 are not involved in hair-cell 
transduction. While each of these TRP channels had plausible initial evidence supporting their 
involvement, direct experiments—allele-specific inhibition for TRPV5 and TRPV6, and single and double 
knockouts for TRPM6 and TRPM7—gave no support for a role of any of them in forming the hair cell’s 
transduction pore. While these results do not provide direct evidence for the participation of TMC1 and 
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8 
TMC2 in forming the pore, the paucity of viable alternative candidates lends indirect support for the two 
TMCs. 

Inhibition of TRPV5 or TRPV6 does not interfere with hair-cell mechanotransduction 
MTS reagents did not inhibit transduction currents measured in hair cells of S556C-Trpv5 and M527C-
Trpv6 mice. In cell culture, each of these residues can be robustly inhibited from the extracellular side of 
the membrane (Dodier et al., 2004; Voets et al., 2004a), so the lack of MTS inhibition of transduction in 
mutant hair cells suggests that TRPV5 and TRPV6 do not contribute to the transduction channel.  

To definitively establish the viability of the cysteine substitution/MTS inhibition approach with these 
channels, future experiments could determine whether Ca2+ transport in kidney and intestine, mediated 
respectively by TRPV5 and TRPV6 (Nijenhuis et al., 2003), is inhibited when these alleles are present 
and MTS reagents are applied. Like allele-selective inhibition of myosins (Gillespie et al., 1999; Holt et 
al., 2002), this strategy provides strong evidence for the role of a protein in a biological function; three 
control conditions (wild-type, wild-type plus inhibitor, mutant) are matched with one experimental 
condition (mutant plus inhibitor), strengthening the interpretation of an inhibitory effect.  

Elimination of Trpm6 or Trpm7 does not interfere with auditory function 
Single and double knockouts of Trpm6 and Trpm7 had no effect on mouse hearing. While demonstrating 
conclusively that Trpm6 and Trpm7 transcripts are eliminated in hair cells is difficult because of the low 
level of expression (making in situ mRNA localization challenging) and expression in other cochlear cell 
types (preventing analysis of whole cochlea to assess transcript loss), recombination by Atoh1-CRE 
occurs robustly during hair cell development (Matei et al., 2005; Pan et al., 2012). We assessed ABRs at 
4-8 weeks of age, and it is very unlikely that Trpm7 mRNA or TRPM7 protein would be stable for so long 
after the genes were recombined. Nevertheless, even though there are limitations to our experiments, they 
nonetheless strongly suggest that TRPM6 and TRPM7 are not part of the transduction channel. 

TRPM6 and TRPM7 bind to PCDH15 
Our results suggest that under some circumstances, TRPM6 and TRPM7 can bind to PCDH15, a 
component of the tip link. Because TRPM6 and TRPM7 are not essential for hearing, these results suggest 
that TRPM6 and TRPM7 might interact with PCDH15 elsewhere besides the transduction complex. One 
possibility is that the TRPMs are present in kinocilia, and interact with the PCDH15 molecules that 
contribute to the kinocilial links (Goodyear et al., 2010). If so, the TRPMs are unlikely to play an essential 
role in kinocilia-link function, as loss of kinocilial links leads to deafness (Webb et al., 2011) but loss of 
the TRPMs does not affect hearing. Alternatively, RNA-seq experiments show that PCDH15 is expressed 
in inner-ear cell types besides hair cells (Burns et al., 2015), and so these channels could form complexes 
with PCDH15 there. 

An alternative view is that PCDH15 or the TRPMs bind membrane proteins promiscuously, which may 
call into question interactions described based on similar immunoprecipitation experiments 
(Ramakrishnan et al., 2009; Ramakrishnan et al., 2012; Maeda et al., 2014; Beurg et al., 2015; 
Cunningham et al., 2017; Erickson et al., 2017). While our experiments were well controlled, including 
the use of alternative cadherins and TRP channels, reliance simply on cell-culture immunoprecipitation 
experiments is fraught. Such evidence should always be backed up by alternative experiments that lack 
some of the ambiguity of in vitro experiments. 

Novel Trpm6 and Trpm7 splice forms 
We identified splice forms of Trpm6 and Trpm7 that each lack exon 20, which encodes most of 
transmembrane domain 2 in each channel. DEX26 and DEX27 were targeted to the surface of HEK293 
cells, and, like the canonical versions of TRPM6 and TRPM7, interacted with PCDH15 via its extracellular 
domain. Membrane topology programs suggested the possibility that DEX26 and DEX27 have partially 
inverted transmembrane domain regions, so that the pore of the channel is a re-entrant loop coming from 
the inside rather than the outside. This topology is speculative at this moment, however, as we have no 
experimental evidence that the pore is flipped. If this topology is correct, however, it limits the regions of 
the TRPM proteins that PCDH15 can interact with from the N-terminus through TM2 and from the cryptic 
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TM7 to the C-terminus. Regardless of whether the channel’s pores are inverted, the loss of TM2 will force 
an unusual topology on this channel, however, and it will be interesting to follow up the role of these 
splice forms in the organism. 

Implications for identification of the hair cell’s transduction channel 
Our results rule out several transduction channel candidates, adding to the list of channels disproven that 
includes P2RX2, SCNN1A, TRPN1, TRPA1, TRPV4, TRPML3, TRPC3, TRPC5, TRPC6, TRPM1, 
TRPM2, TRPM3, PKD1, PKD1L3, PKD2, PKD2L1, and PKD2L2 (Rusch and Hummler, 1999; Vollrath 
et al., 2007; Steigelman et al., 2011; Fettiplace and Kim, 2014; Wu et al., 2016). Because of their essential 
role in mechanotransduction and their size, the TMCs remain the best candidate for the transduction 
channel’s pore. Nonetheless, the TMCs still have not been conclusively demonstrated to form ion 
channels, necessary for showing that a given molecule forms the transduction pore.  

The cysteine-substitution/MTS inhibition approach could serve as a useful tool for testing additional 
transduction channel candidates, although the accurate knowledge of the location of the modified residues 
from cysteine-scanning mutagenesis (Dodier et al., 2004; Voets et al., 2004a) is essential, as is 
confirmation of the location of the modified residues in the protein structure (Saotome et al., 2016). 
Moreover, as modification of cysteines could allosterically affect channel function, perhaps even mediated 
through protein-protein interactions, the cysteine/MTS approach does not definitively prove that the 
modified residue is in the tested channel’s pore. Perhaps the most conclusive test for the transduction 
channel would be to change the ion selectivity of the pore based on knowledge of channel structure, and 
then show that hair-cell transduction ion selectivity changes in the predicted manner.  
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Figure Legends  
Figure 1. Characterization of TRPV5 and TRPV6. A, Seven TRP channels  (of 33) with candidate PDZ-
binding interface motifs. Yeast two-hybrid (Y2H) results examining interactions with USH1C (harmonin) 
are indicated. B, The 33 terminal amino acids of the TRPV6 PBI interact with USH1C, but deletion of the 
C-terminal seven amino acids abolishes binding (top row). The interaction of TRPV6 is through PDZ1 of 
USH1C (bottom row). C, RT-PCR (with reverse transcription primed either with oligo dT or random 
hexamers) showing that mRNAs for TRPV5 and TRPV6 are present in vestibular RNA.  

Figure 2. Targeted mutations in mouse Trpv5, Trpv6, Trpm6, and Trpm7 genes. A, Top, Trpv5 gene 
structure. Horizontal gray line indicates scaled length of gene with coding exons, which are shown as 
vertical black rectangles. Middle, magnification of targeted exon. The loxP site remaining after excision 
of the neo cassette is shown in blue. Bottom, nucleotides and protein translation for region targeted. The 
S556C mutation is indicated. B, M527C-Trpv6 targeting. C, Structure of the KcsA ion channel (image 
from https://commons.wikimedia.org/wiki/File:1K4C.png), along with the locations of the residues 
analogous to S556C-Trpv5 and M527C-Trpv6. The pore and transmembrane domain 2 (TM2) are 
indicated as well. D, Structure of Trpm6 fl allele; exon 7 is flanked by loxP recombination sites; a residual 
FRT site remaining after excision of the Flp cassette is indicated. E, Structure of Trpm7 fl allele; exon 21 
is flanked by loxP sites. 

Figure 3. MTS reagents do not inhibit hair-cell transduction in M527C-Trpv5 and S556C-Trpv6 hair 
cells. A, Hair-cell transduction currents from wild-type and M527C-Trpv5 heterozygous mice before and 
after treatment with 1 mM MTSET, applied in the extracellular solution. Color code is the same as in 
panel B. B, Summarized data. Box plots show individual data points with the star indicating the mean and 
the box representing the standard deviation of the mean. Each point was obtained from one mouse and 
data were collected blinded to genotype. No significant differences were observed between any of the 
groups. C, M527C-Trpv5 wild-type and heterozygote hair cells before and after treatment with 1 mM 
MTSET, applied in the intracellular solution. Color code is the same as in panel D. D, Summarized data 
for experiments similar to those in C; the x-axis represents time (in minutes) after obtaining the whole-
cell configuration. 

Figure 4. Interaction of PCDH15 with TRPM6 and TRPM7. A, Lysates were immunoprecipitated with 
anti-HA agarose, and probed with anti-HA (top panels) or anti-PCDH15 antibody (bottom panels). 
PCDH15 was only immunoprecipitated by anti-HA if TRPM6 or RPM7 were present. No PCDH15 was 
precipitated by the control antibody (V5). B, Lysates were immunoprecipitated with protein A/G agarose 
and either PB811 antibody (for PCDH15) or HRP antibody (control), then probed for TRP channels with 
anti-HA antibody. TRPM6 and TRPM7 were only precipitated with co-expressed with PCDH15 and 
precipitated with an anti-PCDH15 antibody. C, Lysates were immunoprecipitated with anti-HA agarose, 
and probed with anti-PCDH15 antibody (left panels) or CDH2 antibody (right). Two C-terminal deletion 
proteins of PCDH15, Δ1 and Δ2, did not immunoprecipitate with TRPM6/7. Chimeras that have N-
terminal extracellular domains of PCDH15 (15-2-15 and 15-2-2) immunoprecipitated with TRPM6/7 
more strongly than PCDH15. The chimera that does not contain extracellular domains of PCDH15 (2-15-
2) did not immunoprecipitate with TRPM6/7. D, Lysates were immunoprecipitated with anti-HA agarose 
and probed with an anti-PCDH15 antibody (PB811). The last two lanes are two controls: anti-V5 agarose 
as a control for non-specific binding of the agarose with PCDH15, and TRPC6 as a TRP channel outside 
the TRPM family. Both controls have much lower levels of PCDH15 immunoprecipitated. E, Summary 
of PCDH15 constructs (N- to C-terminal) used in panel C. Chimeras with CDH2 used the CD3 splice 
form of PCDH15. F, Mass spectrometry spectral counts for TRPM6, TRPM7, and PCDH15 in large-scale 
immunoprecipitation experiments using ant-HA agarose. No PCDH15 was immunoprecipitated when it 
was expressed alone, but large amounts were co-precipitated with TRPM6 and TRPM7. 

Figure 5. Localization of TRPM7 in the inner ear. A, Single x-y slice through apical region of outer 
hair cells. One transfected cell, identified by ZsGreen signal, shows tdTomato signal at the lateral 
membrane. Box indicates region used for x-z reslice in B. P6+1, cochlea dissected at P6 and maintained 
in culture for 1 day. B, Reslice of stack shows lateral view of transfected hair cell (in row 2; OHC2) and 
two other untransfected cells. tdTomato-TRPM7 signal was located near apex of cell.  
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Figure 6. Novel splice forms of Trpm6 and Trpm7 interact with PCDH15. A, Tissue expression profiles 
of mouse Trpm6, Dex27, and Dex26. Primer sets for Dex27 and Dex26 were designed such that they bind 
to the junctions of Trpm7 and Trpm6 exons 19 and 21; signal was only seen if exon 20 was absent. Both 
Dex27 and Dex26 were highly expressed in the ear (first lane on the left). B, Both TRPM6/7 and DEX26/7 
proteins traveled to the cell surface. HEK293T cells were transfected with TRPM6/7 or DEX26/7; before 
harvest, the cells were surface biotinylated. Cell lysates were then immunoprecipitated with neutravidin-
agarose, then probed with anti-HA antibody. C, DEX26 and DEX27 interacted with PCDH15 in a similar 
fashion with TRPM6 and TRPM7. D, Predicted membrane topology for canonical TRPM7 sequence (left) 
and hypothetical inverted DEX27 sequence (right). The loss of TM2 when exon 20 is spliced out could 
force inversion of TM3-TM6; a cryptic transmembrane domain (S7 here) is predicted by some topology 
algorithms to be used, maintaining the N- and C-termini intracellular. 

Figure 7. No evidence for contribution of TRPM6 or TRPM7 conductances to hair-cell transduction. 
A, No effect of internal Mg2+. Hair cells were dialyzed with internal solution containing 0 or 3 mM MgCl2. 
No difference in transduction current amplitudes or sensitivity were observed. Mean ± SEM are plotted; 
n=5 for each. B, shRNAs against Trpm7 had no effect on mechanotransduction. ns, not significant (for 
each of the three Trpm7 shRNAs compared to the scrambled shRNA). Mean ± SEM are plotted: 
TRPM7#1, n=5; TRPM7#2, n=3; TRPM7#3, n=4; scrambled peptide, n=4. C, ABR measurements for 
Trpm6CKO mice. Mean ± SEM are plotted: WT, n=11; Trpm6CKO, n=17. **, p<0.01. D, ABR 
measurements for Trpm7CKO mice. Mean ± SEM are plotted: WT, n=10; Trpm7CKO, n=14. E, ABR 
measurements for Trpm6CKO; Trpm7CKO DKO mice. Mean ± SEM are plotted: WT, n=11; Trpm6CKO; 
Trpm7CKO DKO, n=8. 
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