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Abstract  12 

Emerging pathogens are a major threat to public health, however understanding how 13 

pathogens adapt to new niches remains a challenge. New methods are urgently required to 14 

provide functional insights into pathogens from the massive genomic data sets now being 15 

generated from routine pathogen surveillance for epidemiological purposes. Here we 16 

integrate a method for scoring the functional impact of mutations with a random forest 17 

classifier, and apply this to the classification of Salmonella enterica strains associated with 18 

extraintestinal disease. Members of the species fall along a continuum, from pathovars 19 

which cause gastrointestinal infection and low mortality, associated with a broad host-range, 20 

to those that cause invasive infection and high mortality, associated with a narrowed host 21 

range. By training our random forest classifier to discriminate gastrointestinal and invasive 22 

serovars of Salmonella, using a small and well-characterised training dataset, we are able to 23 

additionally discriminate recently emerged Salmonella Enteritidis and Typhimurium lineages 24 

associated with invasive disease in immunocompromised populations in sub-Saharan Africa. 25 

Importantly, our classifier produces interpretable lists of gene variants associated with 26 

extraintestinal disease. This approach accurately identifies patterns of gene degradation 27 

specific to invasive serovars that have been captured by more labour-intensive 28 

investigations, but can be readily scaled to larger analyses. 29 

Introduction 30 

Understanding how bacteria adapt to new niches and hosts and thus emerge or re-emerge 31 

as a cause of infectious disease in human and animals is of critical importance to 32 

anticipating and preventing epidemic disease (Frank and Schmid-Hempel 2008; Fauci and 33 

Morens 2012). With the decreasing cost of genome sequencing, comparative genomics has 34 

become a rich source of insight into the origins and movement of bacteria in new pathogenic 35 

niches. However, translating whole genome sequence databases into mechanistic and 36 

functional insights remains a challenge. 37 
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 38 

Early expectations were that pathogen evolution would be driven primarily by the acquisition 39 

of virulence factors. However, as whole-genome sequencing has become increasingly 40 

routine, a decidedly more complex picture has emerged (Pallen and Wren 2007; Loman and 41 

Pallen 2015). A pattern of bacterial entrance to a new niche followed by adaptation through 42 

the loss of antivirulence loci and reduced metabolic flexibility is now recognised as a 43 

paradigm of the emergence of important human pathogens from non-pathogenic bacterial 44 

species (McNally et al. 2016; The et al. 2016; Merhej et al. 2013; Reuter et al. 2014). These 45 

new niches can be the result of virulence factor acquisition providing access to a previously 46 

inaccessible niche in a so-called foothold moment (Reuter et al. 2014), or the emergence of 47 

new host niches driven by chronic disease (Marvig et al. 2015; Klemm et al. 2016; Feasey et 48 

al. 2012). While pathogen and host requirements for infection vary, there is increasing 49 

evidence of parallel evolution in bacteria adapting to the same or similar host niche. This is 50 

perhaps nowhere more evident than in the species Salmonella enterica.   51 

 52 

Salmonella enterica strains that cause disease in warm-blooded mammals lie on a spectrum 53 

from those that have a broad host range and cause self-limiting gastrointestinal infection, to 54 

those that are more restricted in host range, but cause systemic disease and are typically 55 

associated with higher mortality (Rabsch et al. 2002; Feasey et al. 2012). Host-restricted, 56 

extraintestinal variants of Salmonella enterica have evolved independently multiple times 57 

from gastrointestinal ancestors (Bäumler and Fang 2013), and show a greater degree of 58 

gene degradation compared to their generalist relatives (Parkhill et al. 2001; McClelland et 59 

al. 2004; Thomson et al. 2008). There are common patterns in the genes that undergo 60 

pseudogenization in invasive Salmonella, most obviously an extensive network of genes 61 

required for anaerobic metabolism in the inflamed host gut (Nuccio and Bäumler 2014; 62 

Langridge et al. 2015), a pattern with parallels in other host-adapting enteropathogens 63 

(McNally et al. 2016).  64 

 65 
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Identifying these signals of parallel evolution has been challenging, relying mainly on manual 66 

annotation and comparison of pseudogenes (Nuccio and Bäumler 2014; Langridge et al. 67 

2015). Detection of pseudogenes in particular relies on ad-hoc criteria to identify large 68 

truncations, deletions, or frameshifts (Lerat and Ochman 2005; Kuo and Ochman 2010). It is 69 

rare that the same genes or complete pathways are pseudogenized in host-adapted species; 70 

rather interpretation has relied on identifying overrepresentation of independent 71 

pseudogenization events clustered in certain pathways (Nuccio and Bäumler 2014). If 72 

pseudogenization leads to pathway attenuation or inactivation, it seems likely that reduced 73 

selective pressure will lead to a higher incidence of detrimental mutation fixation in other 74 

genes in these pathways. Indeed, we have previously shown that functional variant calling, 75 

based on sequence deviation from patterns of conservation observed in deep sequence 76 

alignments, shows a similar functional signal in host-restricted Salmonella enterica serovar 77 

Gallinarum to pseudogene analysis (Wheeler et al. 2016), identifying a larger cohort of 78 

genes where constraints on drift appear to have been lifted during host-adaptation. 79 

  80 

In previous work we developed DeltaBS, a profile hidden Markov model (HMM) based 81 

approach to functional variant calling (Wheeler et al. 2016). The basic assumption of this 82 

approach is that variation in conserved positions of a protein sequence is more likely to 83 

affect protein function than variation in less conserved regions. This approach can integrate 84 

information about nonsynonymous mutations, indels, and truncations. We have previously 85 

shown that DeltaBS can successfully identify functional changes in genes that would be 86 

missed by standard pseudogene analysis (Kingsley et al. 2013), and that a subset of genes 87 

in host-adapted strains appear to accumulate large DeltaBS values (Wheeler et al. 2016). 88 

Additionally, others have observed similar changes in DeltaBS distributions during 89 

adaptation of Salmonella to a single immunocompromised host (Klemm et al. 2016).  We 90 

generally assume that a large DeltaBS value is indicative of a decay in protein function. We 91 

cannot rule out that a large DeltaBS may rather indicate a change in protein function, though 92 

we expect this to be relatively rare. 93 
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 94 

Here, we have leveraged these previous observations to identify signatures of mutational 95 

burden consistent with adaptation to an invasive lifestyle. We have developed a random 96 

forest classifier using delta bitscore (DeltaBS) functional variant calling (Wheeler et al. 2016) 97 

that can perfectly separate intestinal Salmonella serovars from host-adapted, extraintestinal 98 

serovars. We use random forest models because they perform well on datasets with few 99 

informative variables (Dutilh et al. 2013; Pappu and Pardalos 2014), and have the potential 100 

to detect functional relationships (i.e. epistasis) between genes with a decision tree structure 101 

(Touw et al. 2013; Wei et al. 2014). They have been applied successfully in the past to 102 

predict microbial phenotype using gene presence/absence data (Bayjanov et al. 2012), and 103 

SNPs already known to be associated with phenotype (Laabei et al. 2014; Alam et al. 2014). 104 

We show that these models produce interpretable signatures of host-adaptation, and 105 

furthermore that these signatures can be detected in strains of Salmonella associated with 106 

invasive disease in immunocompromised populations in sub-Saharan Africa. 107 

Results 108 

Constructing a random forest classifier for extraintestinal Salmonellae 109 

The approach taken in this investigation is summarised in Fig 1, and described below. We 110 

built our model using a collection of genomes from well-characterised reference strains of 111 

gastrointestinal and extraintestinal Salmonella serovars (Supplemental Table S1), drawing 112 

on the extensive curation of orthology relationships performed by Nuccio and Bäumler 113 

(2014). These strains were originally characterised as “gastrointestinal” or “extraintestinal” 114 

based on common patterns of gene degradation, host restriction and clinical characteristics 115 

observed among the extraintestinal strains (Nuccio and Bäumler 2014), and we have 116 

employed this same categorisation our analysis. We scored the functional importance of 117 

sequence variation by comparing the protein coding genes of each serovar to profile HMMs 118 

from the eggNOG database (Huerta-Cepas et al. 2016), designed to capture patterns of 119 
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sequence variation typically seen in the protein coding genes of Gammaproteobacteria (see 120 

Methods). 121 

 122 

Fig 1 | Overview of the approach employed in this study 123 

For each genome, the functional significance of sequence variation within protein coding 124 

genes is quantified using the DeltaBS metric. Following scoring, a bootstrap sampling of 125 

genomes are used to train each decision tree. For each node in the tree, a random subset of 126 

genes are sampled, and the most informative gene from this set is chosen to split the data. 127 

For each node in the tree, the predictive utility of the selected gene (variable importance) is 128 

tested by calculating how well the gene separates the samples according to phenotype.  129 

 130 

We then employed random forests to identify the genes which were most informative of 131 

phenotype when viewed collectively. Random forests work by building an ensemble of 132 

decision trees designed to predict a characteristic of the samples (Breiman 2001), in this 133 

case adaptation to an extraintestinal, or invasive, niche. For each node in the decision tree, 134 

the best gene of a random sampling from the training gene set is selected according to its 135 

ability to separate a randomly selected subset of samples by phenotype based on DeltaBS 136 

values. The process of building a random forest produces measures of variable importance 137 

that can be used to assess the relative utility of different genes in classification of Salmonella 138 

strains based on lifestyle. 139 
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A small subset of genes are strongly predictive of invasiveness in Salmonella 140 

To obtain an indication of the proportion of the genome that shows patterns of unusual 141 

sequence variation associated with an invasive phenotype, we trained a random forest 142 

model on a set of 6,438 orthologous genes. Accuracy of the model was assessed using out-143 

of-bag accuracy. This out-of-bag (OOB) measure of accuracy gives us an indication of how 144 

well each decision tree in the forest performs at predicting phenotype in a serovar it has 145 

never encountered before, using information on DeltaBS differences collected from other 146 

serovars. Next, we performed iterative feature selection to improve the performance of the 147 

model. This process involved repeated rounds of selecting the top 50% of predictors and re-148 

training the model, until the model achieved perfect OOB predictive performance on the 149 

training dataset (Fig 2A). When the full set of filtered orthologous genes was used to build a 150 

model, a subset of genes ranked much higher than the others in variable importance (VI) 151 

(Fig 2B). We then saw a tailing off of VI, resulting in 4,721 orthologous groups either not 152 

being used in the model, or not improving classification accuracy (as indicated by VI ≤ 0). 153 

The final model used 196 of the original 6,438 genes for prediction (Supplemental Table S2). 154 

This model additionally achieved perfect classification accuracy on an independent set of 155 

genomes of the same serovars as our training data (Supplemental Fig S1). 156 
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 157 

Fig 2 | A subset of Salmonella genes are strongly indicative of invasive potential 158 

A: Out-of-bag votes for phenotype of each serovar cast by each model. Model 1 is the model 159 

built using all predictor variables, then each successive model was built using sparsity 160 

pruning from the previous model’s predictor variables. Model 5 is the final model with 100% 161 

accuracy. Out-of-bag votes include only those votes cast by trees that were not trained on a 162 

given sample. The dashed grey line indicates the voting threshold to classify an isolate as 163 

invasive. Invasive serovars are coloured in red and gastrointestinal serovars are coloured in 164 

blue. 165 
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B: Of all genes used in the original training dataset, a small minority are given high 166 

importance in identifying invasive strains. Variable importance is shown for the top 1000 167 

genes used in the original training set. Variable importance was measured as average 168 

decrease in Gini index in a random forest model trained on all orthologous groups that met 169 

the inclusion criteria (N = 6,438).  170 

C: Functional categories associated with the top predictive genes.  171 

D: Mutations in mrcB (penicillin-binding protein 1b), one of the top three predictors. 172 

Mutations in different strains are colour-coded, with bars in red indicating a mutation in an 173 

extraintestinal strain and bars in blue indicating a mutation in a gastrointestinal strain. An 174 

estimate of the effect of the mutation on protein function (DeltaBS) is shown on the y-axis, 175 

with positive values indicating higher chance of a mutation being deleterious to protein 176 

function. The x-axis represents the length of the protein.  177 

Predictive genes are typically degraded or absent in invasive isolates 178 

We anticipated that the majority of informative genes identified in our study would be genes 179 

that showed functional degradation in invasive isolates but not in gastrointestinal isolates. Of 180 

the top predictors in our study (N = 196), 154 showed significantly greater mutational burden 181 

in extraintestinal strains compared to gastrointestinal strains (Mann-Whitney U test, adjusted 182 

P-value < 0.05), compared to 9 genes that showed significantly greater mutational burden in 183 

gastrointestinal strains. Of the genes that were more conserved in invasive isolates, one was 184 

the aldo-keto reductase yakC, which was deleted or truncated in all but one gastrointestinal 185 

strain and intact in all invasive strains. Another was the chaperone protein yajL, which 186 

appears to be important for oxidative stress tolerance (Kthiri et al. 2010; Le et al. 2012).  187 

 188 

Among the top predictors were several sets of genes belonging to the same operon (S2 189 

Table). Examples included the ttr, cbi and pdu operons, which are all required for the 190 

anaerobic metabolism of 1,2-propanediol (Roth et al. 1996). These operons have previously 191 

been identified as key degraded pathways in invasive isolates (Thomson et al. 2008; Nuccio 192 
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and Bäumler 2014; Langridge et al. 2015), and indicate the agreement of this method with 193 

other studies linking loss of gene function to host niche. Overall, a large proportion of the 194 

identified genes were involved in metabolism (Fig 2C), consistent with the findings of similar 195 

studies (Nuccio and Bäumler 2014; Langridge et al. 2015). Other major categories affected 196 

include proteins involved in cell wall and membrane function, perhaps suggesting changes 197 

affecting recognition by the host immune system, and signal transduction, suggesting some 198 

degree of consistent regulatory rewiring during adaptation to an extraintestinal niche. 199 

Sequence changes in key indicator genes involve independent mutations in each 200 

serovar, contributing to similar functional outcomes 201 

When examining individual genes that showed differences in mutational burden between 202 

invasive and gastrointestinal isolates, we found that most of these mutations had occurred 203 

independently, and had occurred at different sites in the protein. While the majority of genes 204 

identified appeared to be cases of gene degradation in invasive lineages, some genes 205 

showed more subtle signs of mutational burden, restricted to nonsynonymous changes of 206 

modest predicted functional impact. An example of this, Fig 2D, illustrates mutation 207 

accumulation in one of the top candidate genes, mrcB, encoding penicillin-binding protein 1b 208 

(PBP1b). Not only does mrcB carry more mutations in invasive serovars compared to 209 

gastrointestinal serovars, the mutations have occurred independently in different positions 210 

within the protein. Penicillin-binding proteins are the major target of β-lactam antibiotics and 211 

are important for synthesis and maturation of peptidoglycan (Typas et al. 2011). PBP1b in 212 

particular extends and crosslinks peptidoglycan chains during cell division. While PBP1b is 213 

not essential, it has been shown to be synthetically lethal with PBP1a and is important for 214 

competitive survival of extended stationary phase, osmotic stress (Pepper et al. 2006), and 215 

—  in Salmonella Typhi —  growth in the presence of bile (Langridge et al. 2009). Bile is an 216 

important environmental challenge for Salmonella, particularly for extraintestinal serovars 217 

which colonize the gall bladder (Crawford et al. 2010). While there are more mutations in 218 

invasive than in gastrointestinal serovars, the mutations that occur in this protein are all 219 
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amino acid substitutions of modest predicted impact. This suggests that sequence changes 220 

could result in a modification of protein function, rather than a loss, consistent with the 221 

importance of PBP1b for the survival of S. Typhi during a typical infection cycle (Langridge et 222 

al. 2009).  223 

S. Dublin and S. Enteritidis serovars are more difficult to classify than others 224 

To anticipate the performance of our random forest model on new data we computed out-of-225 

bag (OOB) error. Because random forests train each decision tree on a random subset of 226 

the training data, OOB error can be computed by testing the performance of these trees on 227 

data they have not been trained on, providing inbuilt cross-validation (Breiman 2001). In our 228 

case, perfect OOB classifications were only achieved by the fifth iteration of the model. The 229 

need for iterative improvement of the model came from difficulty in correctly classifying the 230 

reference strains for serovars Enteritidis and Dublin. This is reflective of their relatively 231 

recent divergence and niche adaptation compared to other serovars in the study. S. 232 

Gallinarum was classified much more readily than S. Entereitidis and S. Dublin, despite 233 

being closely related to both serovars, perhaps due to its host restriction.  234 

 235 

S. Enteritidis was initially mis-classified as invasive, indicating that it shares genomic trends 236 

with invasive lineages. Genomic analyses have indicated that the ancestor of S. Enteritidis 237 

previously possessed intact pathogenicity islands (SPI-6 and SPI-19), each encoding a type 238 

six secretion system (Langridge et al. 2015; Blondel et al. 2009). These loci have been 239 

implicated in host-adaptation and survival during extraintestinal infection (Blondel et al. 2013; 240 

Mulder et al. 2012), and it has been speculated based on their loss and other evidence that 241 

classical S. Enteritidis has been adapting towards greater host generalism with respect to its 242 

ancestral state (Langridge et al. 2015). This could explain the greater number of disrupted 243 

and deleted genes relative to other gastrointestinal serovars used in this study, and the 244 

difficulty in classifying it correctly. Conversely, S. Dublin was initially mis-classified as 245 

gastrointestinal. In previous studies S. Dublin has been shown to possess fewer 246 
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pseudogenes than related invasive isolates (Nuccio and Bäumler 2014; Langridge et al. 247 

2015), suggesting a lower degree of host adaptation than other invasive isolates. Indeed, S. 248 

Dublin is more promiscuous in its host range, primarily infecting cattle (Kingsley and Bäumler 249 

2000) while still causing sporadic human disease (Harvey et al. 2017). It seems likely that a 250 

subset of informative genes identified in early iterations of the model may have been 251 

indicators of host restriction or generalism rather than broad extraintestinal adaptation.  252 

Patterns of gene degradation identified in established invasive lineages are present in 253 

novel lineages of S. Typhimurium and S. Enteritidis associated with systemic 254 

infection 255 

In recent years there have been reports of novel S. Typhimurium and S. Enteritidis lineages 256 

associated with invasive disease in sub-Saharan Africa (Kingsley et al. 2009; Okoro et al. 257 

2012; Feasey et al. 2016) in populations with a high prevalence of immunosuppressive 258 

illness such as HIV, malaria, and malnutrition (Uche et al. 2017). These lineages contribute 259 

to a staggering burden of invasive non-typhoidal salmonella (iNTS) disease, which is 260 

responsible for an estimated 3.4 million cases and circa 680,000 deaths annually (Ao et al. 261 

2015). Based on epidemiological analysis, high-throughput metabolic screening of selected 262 

strains, and analysis of pseudogenes it has been suggested that these lineages may be 263 

rapidly adapting to cause invasive disease in the human niche created by widespread 264 

immunosuppressive illness (Kingsley et al. 2009; Feasey et al. 2012; Okoro et al. 2012, 265 

2015; Feasey et al. 2016).  266 

 267 

Two iNTS-associated lineages have recently been described within serovar Enteritidis 268 

(Feasey et al. 2016), geographically restricted to West Africa and Central/East Africa, 269 

respectively. Initial observations have demonstrated that a representative isolate of the 270 

Central/East African clade has a reduced capacity to respire in the presence of metabolites 271 

requiring cobalamin for their metabolism and has lost the ability to colonize a chick infection 272 

model (Feasey et al. 2016), suggesting adaptation to a new host niche. Similarly, two iNTS 273 
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disease associated lineages have been described in serovar Typhimurium (Okoro et al. 274 

2012), both members of sequence type 313 (ST313), generally referred to as Lineage I and 275 

II in the literature. Lineage II appears to have largely replaced Lineage I since 2004, and it 276 

has been suggested this is due to Lineage II possessing a gene encoding chloramphenicol 277 

resistance (Okoro et al. 2012). Laboratory characterization of Lineage II strains has shown 278 

that they are not host-restricted (Parsons et al. 2013; Ramachandran et al. 2017), but do 279 

appear to possess characteristics suggestive of adaptation to an invasive lifestyle 280 

(Ramachandran et al. 2015; Carden et al. 2015; Singletary et al. 2016; Carden et al. 2017).  281 

 282 

Given the evidence of adaptation to an invasive niche in these lineages, we asked if 283 

genomics signatures of extraintestinal adaptation we had detected previously could be 284 

detected in iNTS disease associated lineages. To this end, we applied our predictive model 285 

trained on well-characterized extraintestinal strains to calculate an invasiveness index, the 286 

fraction of decision trees in the random forest voting for an invasive phenotype. First, we 287 

compared isolates from African iNTS-associated clades of S. Enteritidis (N=233) to a global 288 

collection of isolates generally associated with intestinal infection (N=100) (Feasey et al. 289 

2016).  290 

 291 

Our model gave iNTS-associated S. Enteritidis strains a higher invasiveness index than the 292 

globally distributed isolates (Fig 3A,B, Supplemental Table S3), indicating the presence of 293 

genetic changes paralleling those that have occurred in extraintestinal serovars of 294 

Salmonella. Similar gene signatures were only rarely observed in the global epidemic clade 295 

(Fig 3C). These findings are consistent with the metabolic changes observed by Feasey et 296 

al. (2016) in the Central/Eastern African clade compared to the global epidemic clade. In 297 

particular we found signs of gene sequence variation uncharacteristic of gastrointestinal 298 

Salmonella across a number of key genomic indicators, including tcuR, ttrA, pocR, pduW, 299 

eutH, SEN2509 (a putative anaerobic dimethylsulfoxide reductase) and SEN3188 (a putative 300 

tartrate dehydratase subunit), all in pathways previously identified by Nuccio and Bäumler 301 
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(2014) as being involved in the utilization of host-derived nutrients in the inflamed gut 302 

environment. This indicates that our model is able to identify early signatures of adaptation, 303 

even in these recently emerged strains that still retain some capacity to cause enterocolitis 304 

(Feasey et al. 2016).  305 

 306 

Fig 3 | Voting of the model on African iNTS and global gastrointestinal isolates 307 

A: Maximum likelihood phylogeny of all S. Enteritidis isolates included in the study, 308 

annotated with invasiveness ranking and clade.  309 

B: Invasiveness indices for African and non-African clades of Salmonella. Lower and upper 310 

boundaries of the boxplots correspond to the 25th and 75th quantiles.  311 
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C: The proportion of isolates from each tested dataset carrying a hypothetically disrupted 312 

coding sequence (HDC, as defined by a DeltaBS>3 relative to the reference serovar). Genes 313 

are ordered by the amount of degradation observed in African clades. African strains are 314 

shown in the positive y-axis in darker grey, global strains are shown in the negative y-axis in 315 

lighter grey. 316 

 317 

To confirm this, we performed an additional comparison of S. Typhimurium ST313 isolates 318 

(N=208), to global isolates from other STs, predominantly ST19, associated with 319 

gastroenteritis (N=51) (Okoro et al. 2015; Ashton et al. 2017). Similarly to iNTS associated 320 

S. Enteritidis isolates, S. Typhimurium ST313 isolates has a higher invasiveness index than 321 

isolates from other STs (Supplemental Fig S2, Supplemental Table S4). Within ST313, 322 

Lineage II scored higher than Lineage I, possibly suggesting differential adaptation to the 323 

extraintestinal niche. We found that there were in fact more degraded genes unique to 324 

Lineage I than Lineage II, but that these genes were assigned less weight in the model, so 325 

did not impact score as strongly (Supplemental Fig S2  & S3). Interestingly, ST313 has 326 

recently been shown not to be entirely restricted to Africa, with isolation reported in Brazil 327 

(Almeida et al. 2017) and the UK (Ashton et al. 2017). We included a collection of UK ST313 328 

strains (Ashton et al. 2017) in our analysis, and found that their invasiveness index tended to 329 

be elevated compared to non-ST313 salmonellae, and intermediate between Lineage I and 330 

II, suggesting that some of the changes we are detecting are ancestral to ST313 as a whole 331 

(Supplemental Fig S3).  332 

 333 

To test whether we could detect a recent case of accelerated adaptation over the course of a 334 

single infection, we scored the invasiveness index of a collection of hypermutator S. 335 

Enteritidis isolates collected over a ten year period that were adapting to chronic systemic 336 

infection of an immunocompromised patient (Klemm et al. 2016). We found a significant 337 

positive correlation between invasiveness index and duration of carriage (r=0.96, n=6, 338 

P=0.002, Supplemental Fig S4).  339 
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Discussion 340 

Parallel evolution appears to be common in niche adaptation, which allows us to identify 341 

genes that are important for survival in different environments. Parallelism has been 342 

observed across vastly different time scales in adapting pathogens. Parallel evolution in the  343 

distantly related genuses Salmonella and Yersinia during adaptation to invasive infection of 344 

the human host has lead to independent losses of the ttr, cbi and pdu genes, important for 345 

anaerobic metabolism during intestinal infection (McNally et al. 2016). Within genuses, 346 

parallelism has been observed when distinct lineages acquire similar virulence factors 347 

leading to similar phenotypes, as with Yersinia pseudotuberculosis and enterocolitica 348 

(Reuter et al. 2014), or the repeated emergence of the Shigella phenotype within the 349 

Escherichia (The et al. 2016). Even on the scale of a single human lifetime, parallel 350 

adaptation has been observed in Pseudomonas aeruginosa lineages adapting to infection of 351 

the lungs of children with cystic fibrosis (Marvig et al. 2015), or a hypermutator strain of 352 

Salmonella adapting to an immunocompromised host (Klemm et al. 2016). With pathogen 353 

sequencing for disease surveillance becoming increasingly routine (Quick et al. 2016; 354 

Aanensen et al. 2016; Schürch and Schaik 2017), we have the opportunity to search for 355 

signals of parallel evolution as new pathogens emerge, or old pathogens expand into new 356 

niches.  357 

 358 

Here, we have developed an approach for automatically learning which genes contribute to 359 

this parallel adaptation. Leveraging the DeltaBS functional variant scoring approach we 360 

developed previously (Wheeler et al. 2016) allowed us to construct scores which integrate 361 

independent mutations and indels that impact gene function. Using these scores, we were 362 

able to construct a classifier model which is able to separate Salmonella serovars adapted to 363 

an extraintestinal niche from gastrointestinal strains. Importantly, the random forest classifier 364 

that we used produces interpretable lists of genes involved in this adaptation, which agree 365 

with results in the literature attained through manual curation of pseudogenes. Additionally, 366 
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we have shown that this classifier is able to identify nascent signatures of adaptation in 367 

strains of Salmonella which have been evolving in response to large populations of 368 

immunocompromised patients in resource-poor nations.  369 

 370 

Other automated approaches to detecting adaptation have been developed which search for 371 

SNPs (Lippert et al. 2011) or words (Lees et al. 2016; Earle et al. 2016) associated with 372 

phenotype. These approaches, termed microbial genome-wide association studies 373 

(GWASs), have used techniques adapted from human GWASs, but better cater to 374 

methodological issues that arise due to the differences between human and bacterial 375 

inheritance patterns. Major differences impacting analyses are stronger linkage 376 

disequilibrium (LD) between genetic variants in bacterial genomes, greater population 377 

stratification, and often stronger selection for traits (Chen and Shapiro 2015). Greater LD 378 

and population stratification often result in traits being linked closely with particular lineages, 379 

and a large number of variants unique to a lineage being spuriously associated with 380 

phenotype. Correction for population stratification allows greater discrimination of true and 381 

false positive associations, but results in a substantial loss of power to detect true positives 382 

(Chen and Shapiro 2015), particularly in phenotypes that are highly polygenic and are not 383 

under strong positive selection (Power et al. 2017). This can be corrected by increasing the 384 

sample size of the study, but increasing sample size can make measurement of complex 385 

phenotypes infeasible (Dutilh et al. 2013).  386 

 387 

DeltaBS differs from current approaches by allowing the estimation of the combined effects 388 

of variants, both common and rare, on gene function. The weighting scheme can also 389 

combine data on gene presence/absence, indels and SNPs into a single metric. It 390 

significantly reduces the number of association tests that need to be performed to 391 

comprehensively capture much of the genetic diversity in a species, increasing power to 392 

detect associations, and reducing the requirement for such large sample sizes. The 393 

approach also aids in identifying genetic variants that are most likely to have a phenotypic 394 
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effect within LD blocks. The DeltaBS variant scoring approach can be readily applied to large 395 

datasets, and could be employed in a linear mixed model (LMM) based association testing 396 

framework (Lippert et al. 2011), or used in a hybrid LMM-random forest based approach 397 

(Stephan et al. 2015) to preserve the ability of the metric to detect epistasis between genes 398 

(Wei et al. 2014).  399 

Methods 400 

Genome data and identification of orthologs 401 

Genomes for 13 Salmonella enterica serovars were retrieved from the NCBI database 402 

(accessions and serovar information can be found in S1 Table). The serovars were divided 403 

into gastrointestinal and extraintestinal serovars according to the classifications made by 404 

Nuccio and Bäumler (2014). Ortholog calls were also taken from the Supplementary Material 405 

of Nuccio and Bäumler (2014).  406 

Measuring the divergence of genes from predicted sequence constraints 407 

Profile hidden Markov models (HMMs) for Gammaproteobacterial proteins were retrieved 408 

from the eggNOG database (Huerta-Cepas et al. 2016). We chose this source of HMMs 409 

because it is publically available, allowing for better reproduction of analyses, and we feel it 410 

provides a good balance between collecting enough sequence diversity to capture typical 411 

patterns of sequence variation in a protein, without sacrificing sensitivity in the detection of 412 

deleterious mutations, as we have observed with Pfam HMMs (Wheeler et al. 2016). Each 413 

protein sequence was searched against the HMM database using hmmsearch from the 414 

HMMER3.0 package (http://hmmer.org). The top scoring model corresponding to each 415 

protein was used for analysis (N = 8,060 groups). Orthologous groups (OGs) with no 416 

corresponding eggNOG HMM, or more than one top model hit were excluded from further 417 

analysis (N = 1,524). If most genes in an OG had a significant hit (E-value<0.0001) to the 418 

same eggNOG model, any genes within this OG that did not were assigned a score of zero, 419 
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reflecting a loss of the function of that protein. These cases typically reflected a truncation 420 

that had occurred early in the protein sequence. Additionally, genes with no variation in 421 

bitscore for the match between protein sequences and their respective eggNOG HMM 422 

across isolates were excluded (N = 188). After this filtering process, 6,439 orthologous 423 

groups remained for analysis. Residue-specific DeltaBS (as in Fig 2D) was calculated by 424 

aligning orthologous sequences, choosing a reference sequence (from S. Typhimurium), and 425 

substituting each variant match state and any accompanying insertions into the reference 426 

sequence and calculating the difference in bitscore caused by the substitution.  427 

Training a random forest classifier 428 

The R package “randomForest” (Liaw and Wiener 2002) was used to build random forest 429 

classifiers using a variety of parameters to assess which were best for accuracy. Prediction 430 

accuracy, as measured by out-of-bag (OOB) error rate, stabilised at 1000 trees, so we chose 431 

this as a parameter for optimising the number of genes sampled per node (mtry). mtry 432 

values of 1, p/10, p/5, p/3, p/2 and p (where p = the number of predictors) were tested, and 433 

we found that at mtry=p/10, the number of genes that were either not incorporated into trees, 434 

or did not improve the homogeneity of daughter nodes when they were incorporated into 435 

trees (as measured by mean decrease in Gini index, (Breiman et al. 1984)) stabilised at 436 

~92%.  437 

 438 

To improve the performance of the model, we performed five model building and sparsity 439 

pruning cycles. For the first cycle, we built a random forest model using all genes that met 440 

the inclusion criteria, and performed sparsity pruning by eliminating all variables that had a 441 

mean Gini index (variable importance) of zero or lower (meaning the gene was either not 442 

included in the model or did not improve model accuracy when it was). Four successive 443 

rounds of model building and sparsity pruning involved building a new model with the pruned 444 

dataset, then pruning the genes with the lowest 50% of variable importances. The resulting 445 

model had 100% out-of-bag classification accuracy. We also tested the accuracy of the full 446 
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model on a collection of alternative strains related to the training dataset (see Table S1). 447 

Orthologs to the top genes identified by our model were identified using phmmer from the 448 

HMMER3.0 package (http://hmmer.org).  449 

Invasive non-typhoidal Salmonella analysis 450 

Read data from Feasey et al. (2016) and Klemm et al. (2016) was mapped to the reference 451 

genome S. Enteritidis P125109. Reads from Okoro et al. (2015) and Ashton et al. (2017) 452 

were mapped to the reference genome S. Typhimurium LT2. For samples in the Okoro 453 

study, if an isolate was sequenced using multiple runs, the most recent run was chosen for 454 

analysis. All reads were mapped using BWA mem (Li and Durbin 2009) and regions near 455 

indels were realigned using GATK (McKenna et al. 2010). Picard 456 

(http://broadinstitute.github.io/picard) was used to identify and flag optical duplicates 457 

generated during library preparation. SNPs and indels were called using samtools v1.2 458 

mpileup (Li 2011), and were filtered to exclude those variants with coverage <10 or quality 459 

<30. For tree building, a pseudogenome was constructed by substituting high confidence 460 

(coverage >4, quality >50) variant sites in the reference genome, and masking any sites with 461 

low confidence with an “N”. Insertions relative to the reference genome were ignored, and 462 

deletions were filled with an “N”. Pseudogenome alignments were then used as input to 463 

produce trees using Gubbins (Croucher et al. 2015) to exclude recombination events, and 464 

RAxML v8.2.8 (Stamatakis 2014) to build maximum likelihood trees using a GTR + Gamma 465 

model.  466 

 467 

Sequences for the 196 genes of interest used in the random forest model were retrieved for 468 

each isolate and translated. These were then scored using their respective profile HMMs. 469 

Score data was collated, and any missing values were marked as ‘NA’ and imputed using 470 

the na.roughfix function from the randomForest R package (Liaw and Wiener 2002). This is 471 

a different approach used to that of the training dataset, due to the potentially lower quality of 472 

the sequenced genomes leading to gene absence due to low coverage rather than true 473 
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deletion or severe truncation. The relationship between invasiveness ranking and phylogeny 474 

were visualised using Phandango (Hadfield et al. 2017).  475 

Data access 476 

All genome sequence data are publically available, and accessions are provided in the 477 

appropriate Supplemental Tables. Code and data for reproducing this analysis, performing 478 

an equivalent analysis using new data, and assessing the invasiveness index of other 479 

Salmonella strains is publically available at github.com/UCanCompBio/invasive_salmonella.  480 
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